1. Integrate: $\int_{0}^{1} \int_{0}^{1+\cos x} \sqrt{x+\sin x} d y d x$.
2. Let R be the triangle with vertices at $(-1,0),(1,0)$ and $(0,1)$. Express $\iint_{R} f(x, y) d A$ as an iterated integral in each of the two possible orders of integration. Do not evaluate the integrals. (Note: in one order, it will be written as a sum of two iterated integrals.)
3. Draw the region of integration and rewrite the integral, changing the order of integration. (Do not evaluate the new integral.)

$$
\int_{0}^{2} \int_{x^{2}}^{2 x} f(x, y) d y d x
$$

4. Let D be the disk of radius 1 about $(0,0)$. Evaluate using polar coordinates:

$$
\iint_{D} \sqrt{1+x^{2}+y^{2}} d A
$$

5. Find $\iiint_{E} 2 y z d V$ where E is the region of space bounded by the vertical planes $x=0, y=0$ and $y=2-2 x$, bounded on the bottom by the $x-y$-plane and bounded on top by the surface $z=\sqrt{x+y}$.
6. Suppose E is the region in space bounded by the planes $z=0, x=0, y=1$ and the surfaces $y=x^{2}$ and $y=z^{3}$. Find the limits when this integral is written in the indicated orders:
a. $\int_{?}^{?} \int_{?}^{?} \int_{?}^{?} f(x, y, z) d x d y d z$
b. $\int_{?}^{?} \int_{?}^{?} \int_{?}^{?} f(x, y, z) d z d x d y$
c. (Hard) How do you write this integral in the order $\iiint f(x, y, z) d y d z d x$?
7. Use spherical coordinates to compute $\iiint_{E} z d V$, where E is the region of space inside the cone $\phi=\frac{\pi}{4}$ and between the spheres $\rho=1$ and $\rho=2$.
8. Suppose a piece of wire has parametric representation $\gamma(t)=(\cos t, 2 \sin t), t \in[0, \pi]$ and the density of the wire is $\delta(x, y)=x y$ (units of mass per unit length). What is the weight?
