Integrating along a curve: Distance traveled and length

- Let t denote time. Suppose the position of a particle moving in the plane is given by a function $\gamma(t)$. The position is described by its x - and y-coordinates, so for some functions x and y, we have:

$$
\gamma(t)=(x(t), y(t))=\text { position of the particle at time } t .
$$

- The velocity of the particle at time t is $\gamma^{\prime}(t)=\left(x^{\prime}(t), y^{\prime}(t)\right)$, and the speed of the particle is $\left|\gamma^{\prime}(t)\right|=\sqrt{\left(x^{\prime}(t)\right)^{2}+\left(y^{\prime}(t)\right)^{2}}$.
- Distance is the integral of speed, so:

$$
[\text { total distance traveled between time } a \text { and time } b]=\int_{a}^{b} \sqrt{\left(x^{\prime}(t)\right)^{2}+\left(y^{\prime}(t)\right)^{2}} d t
$$

If the particle traverses the curve $\{\gamma(t) \mid a \leq t \leq b\}$ only once without ever doubling back or re-tracing any sections of the curve, then this integral also gives the length of the curve.

Example 1. Find the length of the graph of $y=f(x)$ from $x=a$ to $x=b$.
Solution: This portion of the graph is given parametrically by $\gamma(t)=(t, f(t)), t \in[a, b]$. Thus, the length is:

$$
\int_{a}^{b} \sqrt{1+\left(f^{\prime}(t)\right)^{2}} d t
$$

When specific functions are considered, this may be a very difficult integral. For example, the length of the graph of $f(x)=x^{2}$ from $(0,0)$ to $(1,1)$ is

$$
\int_{0}^{1} \sqrt{1+4 t^{2}} d t=\frac{2 \sqrt{5}+\operatorname{ArcSinh}(2)}{4}
$$

Example 2. A wheel is 1 foot in radius. Find out how far a point on the rim travels when the wheel rolls one full revolution. (This example was not given in class, but it's very nice.) Solution: Suppose the wheel rolls leftwards along the x-axis in such a way that the center is at point $(-t, 1)$ at time t. Then the wheel rotates counterclockwise making one full revolution in the t-interval $[0,2 \pi]$. Suppose there is a mark on the rim which is at position $(0,0)$ at time $t=0$. At time t, that mark will be at position

$$
\gamma(t)=(-t, 1)+(\sin t,-\cos t)=(-t+\sin t, 1-\cos t)
$$

The velocity of the mark is $\gamma^{\prime}(t)=(-1+\cos t, \sin t)$ and the speed is

$$
\left|\gamma^{\prime}(t)\right|=\sqrt{\left(1-2 \cos t+\cos ^{2} t\right)+\sin ^{2} t}=\sqrt{2-2 \cos t}
$$

Thus, the distance traveled is:

$$
\int_{0}^{2 \pi} \sqrt{2-2 \cos t} d t
$$

To solve this integral, note that the half-angle formula, $1-\cos t=2 \sin ^{2}(t / 2)$, gives $\sqrt{1-\cos t}=\sqrt{2} \sin (t / 2)$, so

$$
\int_{0}^{2 \pi} \sqrt{2-2 \cos t} d t=\int_{0}^{2 \pi} 2 \sin (t / 2) d t=\int_{0}^{\pi} 4 \sin u d u=8
$$

Exercise 1. Find the length of the graph of $y=e^{x}$ from from $(0,1)$ to $(\ln 2,2)$. (Helpful hint: $\int \sqrt{1+e^{2 t}} d t=\sqrt{1+e^{2 t}}-\operatorname{ArcTanh}\left(\sqrt{1+e^{2 t}}\right)$.

Weight of a piece of wire

- Suppose the density per unit length of a streight piece of wire lying on the x-axis is given by the function $\delta(x)$. Then the weight of the portion of the wire between $x=a$ and $x=b$ is given by

$$
\int_{a}^{b} \delta(x) d x
$$

- The same idea can be applied to a curved piece of wire in the plane. Suppose that the parametric function $\gamma(t), t \in[a, b]$ describes a uni-directional motion that goes once along a portion of the wire. Also, suppose that the density per unit length of the wire at any point (x, y) is $\delta(x, y)$. Then the weight of the portion of the wire covered between $t=a$ and $t=b$ is

$$
\int_{a}^{b} \delta(\gamma(t))\left|\gamma^{\prime}(t)\right| d t
$$

Example 3. Find the weight of a piece of wire lying on the graph of $y=x^{2}$ from from $(0,0)$ to $(1,1)$ if the density (in units of weight per unit length) is $\delta(x, y)=x$.
Solution: In this case, $\gamma(t)=\left(t, t^{2}\right)$ and $\delta(\gamma(t))=t$. As in Example 1, $\left|\gamma^{\prime}(t)\right|=\sqrt{1+4 t^{2}}$. Thus, the weight is

$$
\int_{0}^{1} t \sqrt{1+4 t^{2}} d t=\frac{5 \sqrt{5}-1}{12}
$$

Exercise 1. Find the weight of a piece of wire lying on the graph of $y=x^{3}$ from from $(0,0)$ to $(1,1)$ if the density (in units of weight per unit length) is $\delta(x, y)=y$.

Exercise 2. Find the weight of a ring of wire lying over the portion of the unit circle in the first quadrant, if the density is $\delta(x, y)=x y$. Note: the unit circle is parametrized by $\gamma(t)=(\cos t, \sin t)$, and for the portion in the first quadrant we want $t \in[0, \pi / 2]$.

