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ARITHMETIC OF BINARY CUBIC FORMS

by J. William HOFFMAN and Jorge MORALES

Abstract. This paper explores a connection between the theory of binary cubic
forms and binary quadratic forms that was first discovered for forms over Z by

Eisenstein. We generalize Eisenstein's theory to cubic forms over an arbitrary intégral
domain of characteristic not 2 or 3 using Kneser's Clifford algebra interprétation of

the composition of quadratic forms.

1. Introduction

An important problem of number theory is the classification of binary
n -forms

where the coefficients a t are integers, up to SL 2 (Z) -équivalence.
In Disquisitiones Arithmeticœ Gauss presented a systematic theory for

n = 2, based in part on earlier researches of Fermât, Euler, Lagrange
and Legendre. Recall that a composition of two binary quadratic forms
q and q' is a quadratic form q" such that there exists a bilinear map
5:Z 2 xZ 2 -^Z 2 with the property q"(B(x,y)) = q(x)q'(y). One of the most
remarkable discoveries of Gauss is that the set of SL2(Z) -équivalence classes
of binary primitive quadratic forms of given discriminant D is a finite abelian

group with respect to composition of quadratic forms. This group was later
interpreted by Dedekind in terms of idéal class groups.



KG. Eisenstein in his first paper [6] showed a remarkable connection
between the theory of binary cubic forms (n = 3) and the theory of binary
quadratic forms (n = 2) . This connection is as follows :

To every binary cubic form of the type

(1)

Eisenstein associâtes a quadratic form

(2)

where A=a\— asci2, B= a\a,2 — a§a 3 and C=a\— a\a 3 . Eisenstein [7]
calls q F the determining form of F Çdeterminierende Form'). He shows that
the correspondent F i— > q F commutes with the natural action of the group
SL 2 (Z) by linear substitution and therefore takes classes of cubic forms to

classes of quadratic forms. Notice that q F is essentially the Hessian of F.
It is natural to fix a nonzero integer D = 0 or 1 mod 4 and ask for

ail cubic forms F such that qp has discriminant D, in other words, for ail
solutions of the quartic équation (hence the title of the paper [6])

(3)

in integers û o^i s^2 s^3- Note that the discriminant D of q F is related to the

discriminant ô(F) of F (as in [12, Chap. V, §9]) by

(4)

Eisenstein observes that from one solution of (3) one can obtain infinitely
many solutions by taking its translations under the action of SL2(Z). The
orbits of this action are the essentially différent solutions to (3).

He states without proof in [6] that if D = Ad with d square-free, and q(x)
is a primitive quadratic form of discriminant D , then there exists a cubic form
F as in (2) such that q F =q if and only if "the triplication of q(x) gives the

principal class", that is, if and only if q(x) is an élément of 3 -torsion in the

class group of binary quadratic forms of discriminant D . He also asserts that
when q(x) is an élément of 3 -torsion, there is only one class of cubic forms
F with q F =q. The latter assertion turned out not to be completely correct as

stated when D > 0
, for in this case there are in fact three nonequivalent cubic

forms F with q F = q (see Example 7.2). This was noticed by Arndt [I],
Pépin [13], Cayley [3] and Hermite [B].

In a second paper [7], Eisenstein proves his assertions for the case when
D = —4/7, where p a positive prime congruent to 3 mod 4. A key point in



Eisenstein's proofs of thèse results is a syzygy that he found Connecting the

fondamental covariants of a binary cubic form F. Let

(5)

One has the polynomial identity (essentially in [7, §s]) relating F, q F and GFG F :

(6)

where Dis the discriminant of q F . It is worth noting that the graded ring of

covariants of binary cubic forais (over a field of characteristic 0) is generated
by F, q F , D, GFG F and that (6) générâtes the idéal of relations among thèse

(cf. [15, 3.4.3]).
Let 7> and Tq f be the symmetric trilinear forais such that

(note that the middle coefficients of F and GFG F are divisible by 3). One vérifies
the identity, équivalent to (6),

(7)

Suppose now that q F is primitive (i.e., the GCD of its coefficients is 1).

Assume also that D=4d for an integer d 0. Since the forai X2X
2

— dY 2 is

the unit élément in the group of primitive quadratic forms of discriminant D,
the identity (7) shows that q F is an élément of 3 -torsion for composition of

quadratic forms. To see this it is enough to divide by 4 throughout in (7),
observing that Tq f will hâve integer coefficients, ail divisible by 2 since D
is a multiple of 4. A similar argument can be given when D = 1 (mod 4) (or
see Proposition 5.9 for a gênerai statement).

In this paper, we generalize Eisenstein's theory to cubic forms over any
intégral domain R of characteristic not 2 or 3

. In order to ex tend Eisenstein's
determining form (2) to the case of projective, not necessarily free, i?-modules
we need to allow quadratic forms with values in arbitrary projective /^-modules
of rank one. Thus Kneser's theory of binary quadratic mappings [11] provides
the appropriate setting.

In Section 2 we explain Kneser's Clifford algebra description of the
composition law for binary quadratic forms and mappings. We restate some
of his results and give a natural interprétation in flat cohomology of his
exact séquence relating the class groups of binary quadratic forms and binary
quadratic mappings.



In Section 3 we generalize Eisenstein's notion of determining form to any
intégral domain R of characteristic not 2 or 3 and introduce the concept of
a cubic C-form that plays a central rôle in the rest of the paper.

In Section 4 we use a natural Lie algebra représentation to characterize
the cubic C-forms (Theorem 4.5). This allows us to use the formalism of
dérivations.

In Section 5 we give necessary and sufficient conditions on a module M to

admit cubic C-forms F with primitive determining mapping and we classify
thèse forms (Theorem 5.1 and Theorem 5.2). Thèse results are roughly the

analogues of Eisenstein's theorems. We also discuss the relation between the

notions of C-equivalence and ordinary (R-) équivalence and give an application
to counting cubic forms over finite fields.

In the spécial case where R is a PID, we obtain a statement (Theorem 5.10)
that closely parallels Eisenstein's theory. Thèse results were known, modulo
language, to Eisenstein [6] and [7], Arndt [I], Pépin [13], Cayley [3] and

Hermite [8] in the case where R — X. The more spécifie classical results over
Z concerning class numbers are deduced in Corollaries 5.11 and 5.12.

The main resuit for PlD's (Theorem 5.10) can be summarized as follows:
Let q = ax\ J rbx\X2-\-cj3i be a primitive quadratic form with D = b 2 —4ac 0.

Let C = C + (q) be the even Clifford algebra of q and let r € C be such
that r2r

2 =D. Then there exists a cubic form F(x) in the shape of (1), with
cii G R such that qp — q (qp as in (2)) if and only if the triplication of

q in the sensé of composition is trivial. Furthermore, when this condition is

satisfied, the cubic forms in the fiber of the map F h-> qp above q can be

written uniquely as F' —aF+ bGp , where F is a fixed form with qp —q,
the form Gp is the cubic covariant defined in (5), and the coefficients a and
b are in the field of fractions of R and are such that a + br is a unit of C

satisfying 1
) a2a

2
— Db 2 —1. The SL2OR) -équivalence class of F' is determined

uniquely by the class of a + br in C x /C x
.

In Section 6, we show that the flat cohomology group H\(Spcc C, M- 3 ) acts

simply transitively on the set of isomorphism classes of cubic C-forms with
primitive determining mapping (Theorem 6.1). We also show that the main
classification theorem of Section 5 can be interpreted in terms of a Kummer
exact séquence in flat cohomology.

In Section 7 we show how to represent C-forms as scaled cubic trace
forms and give applications to explicit computations over Z.

l
) In fact, defining F' = aF + bGr for arbitrary a and b, one has the identity

qq F t = (a 2
— Db 2

) qF , which was apparently discovered by Hermite (see his letter to Cayley, [8])



A final remark: Gauss' theory of binary quadratic forms led to two major
developments : the theory of number fields on the one hand, and the theory
of quadratic forms in more than two variables on the other. The arithmetic
of forms of higher degree over Z seems to hâve been largely neglected. In

modem times Shintani revived interest in the arithmetic of cubic forms by

introducing a family of Dirichlet séries that dépend on class numbers of cubic
forms, and hâve good analytic properties (analytic continuation and functional
équations). This work has been reinterpreted in the language of adèles by

Wright [16]. For a gênerai introduction to arithmetic problems concerning
forms of higher degree, see [9].

We would like to thank J. Hurrelbrink and S. Weintraub for helpful
discussions concerning this work.
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2. Binary quadratic mappings

We shall assume throughout this section that the ground ring R is an intégral
domain of characteristic not 2. The fraction field of R will be denoted by K.

A binary quadratic form is a pair (M, q) such that M is a projective
R -module of rank two and q\ M -> R is a mapping such that q(ax) = a

2 q(x),
aGR,xGM, and such that b(x,y) := q(x +y)- q(x) - is i?-bilinear'
The form q is said to be primitive if the idéal generated by q(M) is R.
A morphism (M,q) -> {M\q') is an /Minear mapping f: M -*M f such that
q=q' of. If M=R2 is the free module, we will often omit référence to M.



Let C be a quadratic /^-algebra in the sensé of [11], that is, an /?- algebra,
which as an is projective of rank two, and such that RI C C is a

direct factor of C as /^-modules. Locally over Spec/?, such an algebra C is

isomorphic with an algebra of the form

Let n: C — > R and t : C -+ R be the norm and the trace maps of C. It
is easy to see that C possesses a unique nontrivial jR-automorphism x \— > x

satisfying t(x) =x + x and n(x) = xx.
When R = Z, for each nonzero integer D = 0 or 1 (mod 4), we shall

dénote by C& the unique quadratic Z -algebra of discriminant D.

The notion of a form of type C was introduced by Kneser [11] and will
play an important rôle in this paper.

DEFINITION 2.1. Let Mbea projective C-module of rank 1
. We say that

a quadratic form q: M — > R is of type C if it satisfies

(8)

for ail xGM, c € C. A C-morphism (M, q) — > (M 7

, #0 is a C-linear mapping
/: M->M; such that #= o/.

Recall that the Clifford algebra C(M, q) is the quotient of the tensor algebra
Tr(M) by the idéal generated by x(g)x — q(x)l for ail x G M. The even Clifford
algebra, C + (M,q), is the subalgebra generated by tensors of even degree, and

is easily seen to be a quadratic Also, M is identified with the odd

part of the Clifford algebra (Le., generated by tensors of odd degree), and

the map C^iM^q) x M — » M induced by multiplication in CiM^q) makes
M into a C + (M,q) -module. The formation of the Clifford algebra commutes
with localization on SpecJß.

In the spécial case when M—R2 we can describe C + (M,q) explicitly :

Let {e\, e{\ be a basis of R2R
2 relative to which q = ax\ + bx\x 2 + cx\.

Then e\ = a, e\ = c, ei^ + — b in the Clifford algebra of g. Thus if

lu — —^I^2 we hâve



Proposition 2.2 ([ll, Proposition 1]).

1. Let (M,q) be a primitive quadratic form and C = C + (M,q) its even

Clifford algebra. Then M becomes a projectile C-module of rank one, and

(M, q) is a quadratic form of type C.

2. Let C be a quadratic R-algebra and (M,q) be a nonzero quadratic
form of type C. Then there exists a unique homomorphism of R-algebras

satisfying <f>(u)x = ux for u G C + {M,q) and x e M. Furthermore, (f) is an

isomorphism if and only if q is primitive.

If q is a binary form over Z of discriminant D, then C + (M^q) is the

unique quadratic algebra Cd over Z of discriminant D. If moreover q is

primitive, then qisof type C D . Thus ail the primitive forms of discriminant
D are of type Cd •

Kneser showed [11, Theorem 3] that the set G(Q of primitive binary
forms of type C modulo C-isomorphism forms a group for composition,
which generalizes Gauss' theory for binary quadratic forms over Z. The

group law on G(Q is explicitly given as follows : The composition of (M, q)

and (M\q') is the form (M ® c M'
, q") , where q/f(x®y)q

/f (x®y) = q(x)q\y). The
neutral élément is clearly (C,ri).

The relation between C-isomorphism and i?-isomorphism of quadratic forms
is explained by the following proposition. Recall that an algebra over a field
is étale if it is a product of separable extension fields of that field.

PROPOSITION 2.3. Let C be a quadratic R-algebra, and suppose that
C<S>K is an étale K -algebra. Let (M,q) and {M',q f

) be nonzero quadratic
forms of type C. Then every R-isomorphism f: (M,q) — > (M f ,q') is either
C-linear or C-sesquilinear.

Proof. By extending scalars to K, it will suffice to prove our proposition
for the case when R = K. The map / will induce an isomorphism of the
even Clifford algebras C + {M,q) -> C+{M',q'). Thèse algebras are canonically
isomorphic with C by Proposition 2.2, and hence / induces an automorphism
/* of the £-algebra C satisfying /(ex) =/*(c)/(x). By hypothesis C is an
étale algebra over X, so its only £-automorphisms are the identity and the
canonical conjugation. Thus /*(c) is either c or c for ail c G C, which
complètes the proof.



Note that the proposition is false if C 0 K is not étale, as can be easily
seen by taking C= R[t]/(t 2

) with the norm form.
Let (M, g) be a nonzero binary quadratic form over R. Suppose that it is

of type C, and let C* be the subgroup of the units of C with n(c) — 1.

Then we obtain a natural homomorphism (l c = multiplication by c in M):

(9)

where SO(M, q) C Aut#(M) is the subgroup of /?-automorphisms fixing q

and having déterminant 1.

COROLLARY 2.4. With the above hypothèses, and assuming that C (g) K
is an étale K-algebra, the map (9) is an isomorphism.

Proof. Since Mis projective of rank one over C, the map c—» l
c is an

isomorphism C ~ Endc(M) ; thus it is enough to show that the éléments of

SO(M,q) are C-linear.
Let /G SO(M, q) . It is sufficient to show the C-linearity of / locally ; so

we may assume M=C and q—an with aG C x
.

The canonical conjugation a of C préserves q and has déterminant —1.

Suppose now that / is C-sesquilinear. Then fa is C-linear, i.e. fa —lc for
some cGCx which must satisfy n(c) = det(/ c ) =1, since l

c préserves g.
Thus det(f) = —1, contrary to our hypothesis. Hence, by Proposition 2.3, the

map / must be C-linear.

To define an analogue of Eisenstein's determining form (2) for gênerai
rings, we shall need the more gênerai notion of binary quadratic mapping.

A binary quadratic mapping over R is a triple (M, g, N) where M is

a projective /^-module of rank two, N is a projective i?-module of rank
one and q: M — > N is a map such that q(ax) = a

2 q(x) and b(x,y) =
q(x 4- y) - q(x) - q(y) is #-bilinear.

A morphism (M,q,N) — > (M\q\N f
) is a pair (/", g) of /Minear maps

such that q'f = gq. We say that (M,q,N) is primitive if Rq(M) ~N. If N is

free over i?, then choosing a basis n of iV we can write q(x) = Q(x)n. Then

(M, Q) is a quadratic form in the previous sensé. Note however that in this

case (M,q,N) is isomorphic to (M',q',N') as quadratic mappings if and only
if there exists a unit u£Rx such that (M, Q) c^ (M', u<2') as quadratic forms.



Hence we can think of a quadratic mapping over R as defining a family of

quadratic forais up to similarity équivalence, locally on a covering of Specß,
and glued together in an obvious sensé.

In the case R = Z every projective module is free, so that a quadratic
mapping in this case is the same thing as a quadratic forai, but up to similarity
équivalence as above. This differs therefore from the usual theory, based

on SL2(Z) -équivalence, but this différence is easily accounted for (see the

discussion for PIDs in Section 5).

Let C be a quadratic algebra and assume that M is a projective C-module
of rank 1. A quadratic mapping (M,q,N) is of type C if q satisfies the

identity (8).
In order to hâve an analogue of Proposition 2.2 we need a définition of

the even Clifford algebra in the context of quadratic mappings. The (total)
Clifford algebra of a quadratic mapping (as opposed to a quadratic forai)
cannot be defined. The reason is that the Clifford algebra is not a functor for
similarities of quadratic forms. As Kneser observed, the even Clifford algebra
is a functor for similarities of quadratic forms. We can define directly the

even Clifford algebra for quadratic mappings as follows:

DEFINITION 2.5. Let (M,q,N) be a quadratic mapping. The even Clifford
algebra C + {M,q,N) is the quotient of the tensor algebra

where N* = YLom R {N,R), by the idéal generated by

(10)

(A,/jeAT, x,y,zeM).

One vérifies easily that the above définition dépends only on the isomor
phismclass of (M,q,N). For a similar construction, see [10, Ch. 11, Section B].
Note that the second defining relation can also be written as

This is because \(u)/j,(v) = \(v)fi(u) on TV since the différence is an alternating
bilinear form, which must vanish since N has rank 1. We also need to define
a C+(M,g,ÀO-moduleC + (M, g,À0 -module structure on M; this is not completely obvious since
the total Clifford algebra is no longer available. We begin with a lemma :



LEMMA 2.6. Let Q be a quadratic form on M and let B be the associated
bilinear form. Then

for ail x,y,z £ M.

Proof. Let Cbe the Clifford algebra of Q. The expression

(H)

where a runs over ail permutations of {1,2,3}, defines an alternating
i^-trilinear map M3M 3

— >• C. Since M has rank 2 over R, we hâve A 3 M —0;
thus the expression (11) is identically zéro. The lemma follows from the

identity X;X7 + xjXt = B(x z -,x ; ) in the Clifford algebra.

We can now derme a C + (M, g, AO -module structure on M as follows:

(12)

Note that dividing by 2 in (12) makes sensé in M by virtue of Lemma 2.6

applied to Q = À oq, B = À o b, and the fact that R is an intégral domain
of characteristic not 2. To see that this is a well-defined module we need:

LEMMA 2.7. The définition (12) is compatible with the defining relations
(10) for C + (M,q,N).

Proof This is straightforward for the first relation. For the second relation
of (10), we can, without loss of generality, extend scalars from R to its fraction
field K . We prove that the second relation vanishes when applied to an élément
w € M. If the vectors z and y are linearly dépendent, say z = ay for a G X,
then the second relation is a conséquence of the first, so we may assume that

z and y are linearly independent. In this case it is enough to çonsider the

subcases (a) w=y, (b) w=z, since now y , z forms a basis of M . The case

(b) is easily seen by direct computation of both sides. In case (a), applying
(À ®x <g> y) ® (/x <g> y <g> z) to y , we get

In the last three terms in this formula, we may exchange À and /x, using the

identity X(u)fx(v) = \(v)/jl(u) . The expression then reduces to

which is exactly the proposed identity.



It is important to note that in the case of a quadratic form, as opposed to

a quadratic mapping, (12) really defines the usual module structure given by

multiplication in the Clifford algebra of the form. Namely, the expression in

(12) equals x®y®z in that algebra. We leave this vérification to the reader

(hint : use (11) and the fact that x<g)y<g)z = z(g)y(g)x in the Clifford algebra
of a binary quadratic form).

Locally on Spec(#), where both M and N are free, the choice of
trivializations of thèse modules reduces a quadratic mapping to a quadratic
form well-defined up to scalar multiples by a local unit. The even Clifford
algebra as we hâve defined it is isomorphic on this open set to the Clifford
algebra of this quadratic form, and the module structure as we hâve defined
it coincides with the module structure given by multiplication in the Clifford
algebra of the locally defined form. In fact, we can define the even Clifford
algebra and the module structure by taking thèse locally defined objects and

gluing them together, which provides an alternative construction.

Hère is the analogue of Proposition 2.2 for quadratic mappings :

Proposition 2.8.
1. If (M,q,N) is primitive, then M is a projective C = C + (M,q,N)

module of rank one and q is of type C.

2. Let (M,q,N) be a nonzero quadratic mapping of type C, and
let C + (M,q,N) be its even Clifford algebra. Then there exists a unique
homomorphism of R-algebras </>: C + (M,q,N) -> C satisfying </>(w)x = ux for
u e C+(M,q,N) and x GM. Furthermore, </> is an isomorphism if and only
if q is primitive.

We shall omit the proof, since it is essentially rephrasing the proof given
n [11, Proposition I].

Remark 2.9. Proposition 2.3 also holds for quadratic mappings. This can
e easily seen by extending the scalars to K.

M. Kneser [11, Section 6] shows that the set H(C) of isomorphism classes
of primitive binary quadratic mappings (M,q,N) of type C forms a group for
composition, the neutral élément being (C,n,R). Note that the équivalence
relation hère is C-equivalence : an isomorphism is a pair (/", g) as before, but
with / a C-linear isomorphism. He also showed that H(C) is isomorphic to
the group Pic(C) via the canonical map (M,q,N) h-> M.



We compare the group G(Q of C-isomorphism classes of primitive
quadratic forms of type C and the group H(C) above by means of the

canonical group homomorphism G(C) — > H(C) induced by the correspondence
(M,q) h-* (M,q,R). M. Kneser (op. cit.) showed that this map fits into an

exact séquence

(13)

In the classical case of a quadratic Z-algebra C of discriminant D, the

séquence (13) was essentially known to Dedekind. Since Pic(Z) = 0 and
Z x = {±I}, the séquence (13) shows that the group G(Q is the narrow
class group of C if D > 0, and it is {±l}x the class group of C if D < 0

(the sign corresponding to positive and négative definite forms). In either case,
it differs from the idéal class group Pic(C) at most by a cyclic factor of
order 2.

It is worth noticing that the exact séquence above has a natural interprétation
in flat cohomology. Let tt: SpecC — > Specß be the natural morphism. Let
G — Autc(C,/i) and H = Aut c (C, n,R) as group schemes over Spzcß. One

sees immediately that 7i = 7r*G m , where G m is the multiplicative group
scheme, and that Gis the kernel of the norm map n: 7r*G m — » G m . From
the short exact séquence of group schemes over Spec/?

we obtain the long exact séquence (see [14, Chap. 111, §4])

where the flat topology is understood. The group G(C) [respectively H(Q] can
be identified with H^iSpecß, G) [respectively //^(Spec/?, H)] by interpreting
quadratic forms [respectively quadratic mappings] as torsors for G [respectively
H] in the flat topology.

Note that there is a natural isomorphism

so we also hâve H(C) = Pic(C) (compare [11, Proposition 2])



3. Cubic forms

We shall assume henceforth that the ground ring R is an intégral domain

of characteristic not dividing 6. The field of fractions of R will be denoted

by K as previously.
Let M be a projective fl-module of rank 2, and let M* = Hom#(M, R)

be its dual. Consider the symmetric algebra

In this paper, a binary n-form is a pair (M, F), where M is a projective
i?-module of rank 2, and F G Sym£(M*). A morphism (M, F) -> (M', F') is

an iMinear map (f>: M-+MI such that F r
(j> = F '.

DEFINITION 3.1. An élément F€ Sym^(M*) will be called a Gaussian
n-form if there is a symmetric rc-linear forai T: M x -•- x M -* R with
F(x) = r(x,...,x).

The set of Gaussian n -forms is a submodule of Sym R (M*) and will
be denoted by S n (M*). The module Sym n (M*) is projective of rank n+ 1

over R. If no binomial symbol (") is zéro in R for 0 < i < n, then
S n (M*) is also a projective /^-module of rank n+ 1

. If each of thèse binomial
symbols is invertible in R then 5"( M*) = Sym£(M*). Note that for any
.R-homomorphism M—> M, the induced map Sym^CM 7 *) -^ Sym^(M*)
sends 7 *) to S n (M*).

In this section we shall concentrate on binary cubic forms (n = 3). Unless
otherwise stated ail the binary cubic forms we shall consider are assumed to
be Gaussian forms.

Let F G S 3 (M*) and let T be the symmetric trilinear form such that
F(x) = T(x, x, x) . For fixed xGM we consider the homomorphism

Applying the second alternating power functor A2A
2 we get a homomorphism

thus an élément of T>(M) := Hom*(A 2 M, A 2 M*). We define

(14)



It is immédiate from the définitions that

(15)

is a binary quadratic mapping in the sensé of Section 2. It is also évident
that if {M, F) is isomorphic to (M 7

,
F 7 ), then (M, q F ,T>(M)) is isomorphic to

(M,<7 F/ ,2)(M')).

DEFINITION 3.2. The quadratic mapping (M,q F ,T>(M)) is called the

determining mapping of (M, F).

By abuse of language, we shall refer sometimes to q F as the determining
mapping of F, without referring explicitly to the underlying modules M and

Over any open subset of Specß where M is free, the choice of a local
basis m = {mi, 1112} of M allows us to write

(16)

where x= ximi + X2 m 2- Let m* = {m^ , m|} be the dual basis of M* . An

easy computation gives

In the bases ni! Am2 for A 2 M and — m^ Amj for A 2 M* (note the sign
change), the determining form q F is given by

(17)

which shows that (15) coincides locally with Eisenstein's determining form (2).

Now let C be a quadratic i?-algebra as in Section 2 and let M be a

projective C-module of rank one.

DEFINITION 3.3. Let FG S 3 (M*) and let T be the symmetric trilinear
form associated to F. We will say that F is a C-form if T(cx,y,z) is

symmetric in x,y,z for any c € C.



Remark 3.4. The above définition makes sensé for forais in S n (M*) for

any n. In particular, one has the notion of a quadratic C-form. This should
not be confused with the concept of a quadratic forai of type C. Indeed, it is

easy to see that a quadratic forai q is of type C if and only if the symmetric
bilinear form b attached attached to q satisfies Z?(cx, y) = b(x, cy) ; whereas
the condition for a C-form reads b(cx,y) — b(x,cy).

We will use throughout the notation

Note that there is a natural epimorphism of /^-modules p: M® 3 -» M® 3
.

We hâve the following characterization of C-forms :

LEMMA 3.5. Let F€ S 3 (M*) and let T be the associated symmetric
R-trilinear form, viewed as a linear form on M® 3

. Then Fisa C-form if
and only if there exists a linear map A: M® 3

— > R such that T = X op.
Furthermore, the map À is unique.

Proof It is enough to prove the lemma locally, so we assume that Mis
free over C.

Let À: M® 3
— » R be an /?-homomorphism. Write M — Cm for some

m€M and let x= cim, y= c 2 m, z= c 3 m with c t €C.
Then T(x 0 y (g) z) = X(cic 2 c 3 (m (g) m (g) m)) is visibly symmetric and

satisfies the condition of Définition 3.3.

Conversely, if T(cx,y,z) is symmetric then in particular T itself is

symmetric (c = 1), and hence

showing the existence of A. Uniqueness follows from the fact that p is
onto. D

Let S^(M*) c S 3 (M*) be the submodule of cubic C-forms on M. Note
that the lemma above can be summarized by saying that the map

(18)

is an isomorphism of



On the other hand, we also hâve

LEMMA 3.6. Let L be any projective C-module offinite ranh Then the

map

(19)

is an isomorphism of C-modules (the dual P* — Hoïïlr(P, R) is made into a

C-module by setting (c\)(pc) = X(cx) for \ e P* ).

Proof By localization, it is sufficient to prove the lemma when L—C,
in which case the map is the identity.

Combining the isomorphisms (18) and (19) with L= M® 3

, we obtain

Proposition 3.7. The map

(20)

is an isomorphism of R-modules.

Using the isomorphism (20) we give SS
3

C (M*) the C-module structure so

that this bijection becomes a C-module isomorphism. Note that

is the symmetric trilinear form attached to F<f> . Hence the C-module structure
on Sq(M*) is given explicitly by

(21)

LEMMA 3.8. C* is an invertible C-module.

Proof Locally over Speci?, we hâve C= R[w] = R[x]/(x 2 +bx+c). Then
the /?-module C* is freely generated by Ài,À 2 , where Ài(l) = l,Ài(u;) =0,

A2(l)A

2 (l) =0, X 2 (cu) =1. One sees that vX 2 =Ai— b\ 2 , so that À2À
2 is a local

C-module basis of C* .

By virtue of (20) and this lemma, Sç(M*) is an invertible C-module

In the next section we will give alternate characterizations of the cubic
C-forms on M, related to their determining mapping.



4. A Lie algebra representation

Let M be a projective of rank two. Let G = Aut R (M) and let

g = Endfl(M) viewed as a Lie algebra over #.
The group G acts on the right on Sym^M*) by algebra automorphisms

via

for F G Sym R (M*) and a e G. Taking the formai derivative at the origin of

the associated map

we get a représentation of Lie algebras

(22)

The action of G préserves the homogeneous components Sym£(M*) and also

the submodule S n (M*) of Gaussian forms. The same is true for the Lie algebra
action of g.

We shall compute the action of g on sn(M*)5
n (M*) explicitly

LEMMA 4.1. Let F€ S n (M*) and let T be the associated n-linear form.
Then

for ail g G g.

Proof. To compute the derivative of G—> Aut/?(S"(M*)), we extend the

scalars to the "dual numbers" R[e]/(e 2 ). Using the symmetry of Twe hâve

which proves our assertion.

Let C/R be a quadratic algebra in the sensé of Section 2 and let M be

an invertible C-module. Then we hâve a natural map C — » End#(M) and we
can restrict the représentation p to C. Note that when R is a field and C

is an étale quadratic algebra then the image of C is a Cartan subalgebra f) C

of Q.

Comparing (22) with équation (21), we see that the C-module structure
on SS

3

C (M*) is related to the Lie algebra action by

(23)

We will make this explicit in a spécial case that we need:



LEMMA 4.2. Let F<E S 3 (M*) be a binary cubic form over a field K of
characteristic not 20r3. Let q F be its determining form, and C— C^(q F )

its even Clifford algebra. Let x\, x2x 2 be coordinates on the vector space M
with respect to a basis mi,ni2. Let

Note that r2r
2 =Dis the discriminant of q F . Then

acting on forms ofany degree.

Proof As we hâve seen,

where P = a\ — a 0 a 2 , Q = aia 2 — a^a^, and R — a\ — a\a^. By direct
computation in the Clifford algebra C, we see that

Since p(c) is a dérivation of Sym R (M*), we hâve

Thus r(jcimi -b x2x 2 m 2 ) = (Q*i + 2Rx 2 )mi - (2Px\ + 2^2)^2, which gives
p(r)(x!) - dq F /dx 2 and p(r)(x 2 ) = ~dq F /dx l . D

COROLLARY 4.3.

(24)

where Gf is as in (5).

Remark 4.4. If we further assume that Cisan étale algebra, then as we
hâve remarked, p maps C onto a Cartan subalgebra of End#(M) ~ gt(2, K).
This algebra décomposes as

where the first factor is the center, consisting of scalar matrices, and the second
factor is the intersection f)c n5((2,n 5((2, K), consisting of matrices of trace 0. As
the formulas in the proof of the preceding lemma show that r acts on M
with trace 0, we see that tyc — Kr .



THEOREM 4.5. Let C/R be a quadratic algebra such that C®K is étale

over K. Let M be a projective rank-one C-module and let F G S 3 (M*) be

such that the determining mapping q F is not 0. Then the following conditions

are équivalent:
(a) F is a C-form
(b) (M,^,D(M)) isoftype C

(c) p(c)p(c)F = 9n(c)F for ail ceC.

Proof. (a)=>(b). If Tis the trilinear form attached to F, then, using the

symmetry of T(cx,y, z), we hâve

which proves the claim. In fact, this implication does not dépend on C <g> K

being étale.

It is enough to prove the theorem for the case where R = K is a separably
closed field. We can assume in this case C= K[a] with a satisfying a2a

2
— 1

.

We will make thèse assumptions for the rest of the proof.

(b)=>(c). Let {mi,m 2 } be a basis of M over K with ami =mi and

(jm 2 = — m 2 . With respect to this basis, the form q F , being of type C, must
hâve the shape

where et/0. To see that this is so, note that because g? is of type C, we
hâve q F (ami) = n(a)q F (mi) = —q F (m{) 9

which shows that q F (mi) = 0.

One sees similarly that q F (m 2 ) — 0. Then the coefficients of F(x) =
<2o*i + 3a\x 2X22

X2 + 3a2*i*2 + a3a 3 x 2 satisfy the relations: a\ — a§ai —0,
a\a2 — a^a^ =a and a\ — a\a^ =0. Since a 0, it follows at once that
a x =a2=o,soFisof the form F(x) = \x\ + \jlx\. Since q F 0 (in fact
nondegenerate under the étaleness hypothesis), the algebra C can be identified
with the even Clifford algebra C + (M,q Fi T)(M)) by Proposition 2.8. Under
that identification we hâve r = aa , where r is defined as in Lemma 4.2. From
that lemma we get p{a) — x\d/dx\ — x 2 d jdx 2 , which can be seen directly,
since both sides agrée on x u x 2 . Hence p(a)o^-~V2 ) =(3— 2î)x 3

{~
l

x
iIL.i

lL . In

particular, for F(x) = Ajc^ + \xx\ we hâve



The more gênerai identity p(c)p(c)F — 9n(c)F for c G C follows from this

particular case by noting that, from Lemma 4.1, p(l)F = 3F .

(c)^(a). Suppose that p(a) 2 F = 9F. Then F must hâve the form F=
Xx\ + \ix\ . This is because, as we saw in the discussion above, the monomials
x\~ l x\ are eigenvectors for the operator p(a) 2 with eigenvalue (3— 2i) 2

, which
equals 9 only for i — 0 and i = 3

. Hence the associated trilinear form is

r(x,y,z) = A^i^izi + (J,x 2 y2Z2- Thus 7(ox,y,z) = Axiyizi -/i* 2;2 ;y 2 z 2 , which
is visibly symmetric in x,y,z. D

REMARK 4.6. It is interesting to notice that the syzygy (6) can be

recovered from Part (c) of Theorem 4.5. Assume for simplicity that R = K
is a field and Cisan étale i^-algebra. Let {mi,m 2 } be a basis of
M. Let r= mim 2 — m 2 mi e C= C+(q F ) as in Lemma 4.2. As

we noted in Remark 4.4, r générâtes the trace 0 part of the Cartan
subalgebra defined by C. Using the dérivation property and Corollary 4.3, we
see p(r)(G 2F2

F - DF 2
) = (2/3)(p(r) 2 F - 9DF)G F . From the above theorem,

p(r) 2 F = 9DF, so this is 0. On the other hand, p(r)q F =0, also by

Corollary 4.3, which implies that p(r)q 3F3

F =0. Hence both q\ and Gp — DF 2

lie in the subspace on weight 0 (for the action of the Cartan subalgebra
t)'c C sI(2,K)) of S 6 (M*). As S 6 (M*) is an irreducible représentation of

sI(2,K), this is one-dimensional. Hence qq
3

F and GG 2
F — DFD F F 2 differ by a

constant multiple. A priori, this constant could dépend on F (e.g., D). That
this is not so can be seen by noting that both sides are of the same degree
in the coefficients of F.

COROLLARY 4.7. Let M be a projective R-module of rank 2, and let

F G S 3 (M*).
(i) Let C = C + (M,q F ,T>(M)) and suppose that C (g) K is étale, and that

q F is primitive. Then F is a C-form.

(ii) If F is a C-form for a quadratic R-algebra C and (M,q F ,T)(M)) is

primitive, then C C + (M,q F , D(M)).

Proof (i) By Proposition 2.8, (M,q Fi V(M)) is of type C. We conclude
by Theorem 4.5.

(ii) If F is a C-form, then by Theorem 4.5, the quadratic mapping
(M,q F ,T)(M)) is type C. But assuming furthermore that (M,g F ,D(M)) is

primitive, we see that C is isomorphic with C+(M,q F ,T)(M)) by Proposi
tion2.8.



LEMMA 4.8. Suppose that C®K is étale over K and let (M, F) and

(M f ,F f
) be cubic C-forms. Assume that the determining mappings qF,qF'

are nonzero. Then every R-linear isomorphism f: (M, F) -» {Ml,M
1 ,F f

) is either

C-linear or C-sesquilinear.

Proof. The map / will induce an isomorphism of determining quadratic

mappings of type C. We conclude by Proposition 2.3.

5. Structure of the cubic C-forms

We shall describe below the C-module structure of SS
3

C (M*) and the

corresponding C-isomorphism classes.

THEOREM 5.1. Let M be a rank-one projective C-module. For each

4> e Hom c (Mf 3

, C*) we define a cubic form by F0(x)F

0 (x) = <£(x <g> x <g> x)(l).
Then

(i) The correspondence <j) \-> F<f> is an isomorphism of C-modules
Hom c (M® 3 ,C*)-^5 3

c (M*).

(ii) The determining mapping q F(j} is primitive if and only if <j) is an

isomorphism.

(iii) Two cubic C-forms F and F\ on M are équivalent over C if and only
if there exists cGCx such that F\ = c

3 F.

Proof (i) This is a restatement of Proposition 3.7. The map <j) i— > F<f> is

a C-isomorphism by définition of the structure of C-module on S^(M*) in
Section 3.

(ii) It is enough to prove our assertion locally, so we assume that M is

free over C. Write M = Cm for some m G M. Let À = o(m®m®m). Then
we hâve (f)(xm <g> ym (g) zm) = \(xyz). Let /3(ym,zm) = \(yz) and observe that
À is a basis of C* over C if and only if the symmetric bilinear form /? is

unimodular. We hâve

It follows from this equality that q Fcj} is primitive if and only if /? is unimodular,
that is, if and only if (j> is an isomorphism.



(iii) Let F and F\ be cubic C-forms on M. Suppose that they are

C-isomorphic. Then there exists cGCx such that F x = Fol c . Let rbe the

symmetric trilinear forai associated to F. Since 7(cx,cy,cz) — T(c 3 x,y,z),
we get F\ = c

3 F. Conversely, if F\ = c
3 F we may reverse thèse steps to

conclude that Fi=Fol c

We shall henceforth dénote by Cubic c (M) the set of C-isomorphism classes
of cubic C-forms on M with primitive determining mapping. Recall that when
M is an invertible C-module, there is a unique primitive quadratic mapping
(M,q,N) of type C on M ([11]). If F G Cubic c (M), then necessarily

(M, q F , <D(M)) = (M, g, N) in tf (Q, and C- C+(M, q F , ?)(M)) ,

by Corollary 4.7 (ii) ; in particular, ail members of Cubicc(M) hâve isomorphic
determining mappings.

THEOREM 5.2. Let M be a projective C-module of rank one.

(i) The set Cubic c (M) is nonempty if and only if'3[M] = [C*] in Pic(C).
(ii) // 3[M] - [C*] in Pic(C), then the group C x /C x3 acts simply

transitively on the set Cubic^(M).

F roof (i) By Part (ii) of Theorem 5.1, the module M admits a cubic
C-form with primitive determining mapping if and only if there is an

isomorphism Mq — » C* .

(ii) Since Mf 3 and C* are invertible C-modules, Isom c (M^ 3 ,C*) is

either empty or it is a torsor for C x (i.e., a simply transitive C x -set). It is

nonempty if and only if Cubicc(M) is nonempty, by Part (i). Suppose this is

so, and choose an isomorphism <j> : MM 3
C — > C* . Each cubic C-form on M with

primitive determining mapping is uniquely of the shape F C(^ with cGCx by
Parts (i) and (ii) of Theorem 5.1. By Part (iii) of Theorem 5.1, the form FCF

C(f>

will be isomorphic with F^ if and only if c G (C x )
3

.

We discuss next the relation between J?-isomorphism and C-homomorphism
of cubic forms.

Let CubiCfl(Af) be the set of /?-isomorphism classes of binary Gaussian
cubic forms on M with primitive determining mapping of type C. Set

where [M] runs over the éléments of Pic(C) satisfying 3 [M] = [C*] and ]J
means disjoint union.



The set S(C) cames a natural involution given by

where M is defined as follows : M = M as with C acting by

c • x = ex, where c i-> c is the canonical involution of C. This is well
definedbecause q F dépends only on the structure of M, and it

will be of type C for M if and only if it is so for M sihee n(c) = n(c) .

Note that [M, F] = [M, F] if and only if (M, F) possesses a C-sesquilinear
automorphism.

PROPOSITION 5.3. With the previous notation we hâve

(i) S*(C) = S(Q/ ~, where ~ identifies [M, F] with [M, F].

(ii) // [M] = [M] and 3 [M] = [C*], then Cubic c (M) has an élément [Af,F 0 ]

fixed under the involution.

(iii) // [M] ± [M] and 3 [M] = [C*] in Pic(C), then Cubic c (M) -
Cubïc R (M). In particular, Cubic^(M) is a simply transitive (C x / C x )-set.

Proof. (i) Let ip: (M, F) -> (M',F') be an #-isomorphism. Then ip is

an isomorphism of quadratic mappings (M,q F ,T){M)) -> {M 1 ,F f

, D(M')). By
Proposition 2.3, the map tp is either C-linear or C-sesquilinear. Hence either
[M, F] = [M',F f

] or [M, F] = W^î-
(ii) We start out with an élément [M, F] G §(C) , which exists by hypothesis

on M and by Theorem 5.2(i), and we choose a C-sesquilinear automorphism
a: M — * M . We know by Theorem 5.2 that ail the C-forms on M are of the

form wF with w£Cx .In particular Foa —wF for some w6C x
. An easy

computation using (21) shows (wF)oa = w(Foa), so Foa 2 — wwF. Since
a 2a

2 is C-linear, it follows from Theorem 5.2 that ww e C x3
. Using the fact

that the cohomology of Z/2Z with coefficients in a group of odd exponent
(in this case C x /C x with Z/2Z acting via the canonical involution of C) is

trivial, we conclude that w= û~ 1

uv 3 for some u,v G C x
. Let Fo = uF . By

direct computation we hâve FooaF
0 oa — v3v

3 F 0 ; thus [M, F] = [M, Foa] = [M, F]
as claimed.

(iii) If [M] / [M] , by Part (i), no two distinct éléments of Cubic c (M) can
be identified in Cubic^(M), that is, the canonical projection

is a bijection. The second assertion follows from Theorem 5.2.



COROLLARY 5.4. Let [M] £ Pic(C) be as in Part (U) of Theorem 5.3.
Let [M, Fq] € Cubicc(M) be a the fixed point of the involution. Then the

map (C x /C x )—> Cubicc(M) given by u *-> [M, uFq] is an isomorphism of
Z/2Z -sets. In particular, this correspondent induces a bijection Cubic^(M) ~
(C x /C x )/^, where ~ identifies c with c.

Proof By Theorem 5.2, it is enough to show that the map u i->

[M, uFo] commutes with the action of Z/2Z via the involutions. Let
a: (M,Fo) — » (M,Fo) be a C-isomorphism and let uG C x

. Since (uFo)oa —

ïïOFo o cr), we hâve [M, mF 0 ] = [M, mF 0 ] = [M, (mF 0 ) oa]= [M, w(F 0 o a)] =
[M,wF o ]. D

The above proposition applies in particular to the case of fields. We can
summarize our results in this case as follows :

PROPOSITION 5.5. Let K be afield of characteristic not 20r3. Let § K

be the set of K -isomorphism classes of ail binary cubic forms over K with
nonzero discriminant. Then there is a natural partition

(25)

where C ranges over the quadratic étale K-algebras and each Cubic^(C) is

in one-to-one correspondence with the quotient of C x /(C x )
3 by the involution

c \->-"c'.

Proof- If K is a field then Pic(C) =0 for ail quadratic £"-algebras C.
Each cubic form with nonzero discriminant will be a C-form for a unique
quadratic étale algebra, namely the even Clifford algebra of its determining
form, by Proposition 2.8 and Theorem 4.5. We finish by applying Proposi
tion5.3. D

As an illustration of thèse ideas, we prove a resuit known to L. E. Dickson
[5, page 23] :

PROPOSITION 5.6. Let K=Fq be a finite field with q éléments, not of
characteristic 2 or 3. Then the number of GL 2 (F^) -équivalence classes of
binary cubic forms over F

q
with nonzero discriminant is 3 if q=2 mod 3

,

and is 9 if q= 1 mod 3.



Proof. The étale quadratic algebras over ¥
q are

1. C= F
q xF q

2. C- F,2 .

If q = 2 mod 3, then CX/(C
X /(C X )

3 is trivial in the first case and is Z/3Z
in the second case since q2q

2 = 1 mod 3. In the second case the involution
c—>c fixes the identity élément of C x /{C x f and interchanges the other

two éléments, giving 2 orbits on this. This gives I+2 orbits in total, so

by Proposition 5.5, we hâve 3 isomorphism classes of binary cubic forms. If

q = 1 mod 3, then Cx/(C x /(C x )
3 is Z/3Z x Z/3Z in the first case and is Z/3 in

the second case. In the second case, the Galois involution acts trivially, since
Fx/(F x /(F g

x
)

3 = CX/(C
X /(C X

)
3

. This gives 3 orbits. In the first case, the involution
flips the two factors, and there are clearly 6 orbits. This gives a total of 9

orbits, and hence 9 cubic forms.

Remark 5.7. When R=Kisa field of characteristic not 20r3, one can

give an alternate description of S#. Since GL2 acts threefold transitively on
Pl,P

1

, any binary cubic form with nonzero discriminant is équivalent over the

separable closure of K with <D = xy(x — y) . Therefore, by the usual descent

yoga, there is a canonical bijection

(26)

where Aut(O) is the K-group scheme of automorphisms of O. The structure
of Aut(O) is easily worked out:

where S3S
3 is the symmetric group on 3 letters as a trivial Galois module; it

corresponds to the stabilizer in PGL2 of the set of zéros of O in Pl.P
1

.

The signature S 3S
3 — > jj. 2 induces a homomorphism 6: Aut(O) — >> jLt 2 , which

in turn induces a map in Galois cohomology

(27)

Using (4) and the identification (26), we can show that

Thus we can interpret the partition (25) as the partition on HI(K,H
l (K, Aut(O)) given

by the fibers of <s*
,

the set Cubic^C) corresponding to the fiber 6~ l(whereD is the discriminant of C.



When R is a PID we can give a more précise version of Theorem 5.2. In thîs

case, C is a free i?-module, and since i?l is a direct factor, C = R(BRw — R\w\
is a monogenic 7?-algebra. Therefore C* is free of rank one over C (see
Section 7), so the condition 3 [M] = [C*] of Theorem 5.2 reads simply
3 [M] = 0. Furthermore, since Pic OR) = 0, the exact séquence (13) induces
an isomorphism

(28)

(note that R x /n(C x ) is an elementary abelian 2-group).
The isomorphism (28) suggests that when R is a PID, it should be possible

to use quadratic forms instead of quadratic mappings and develop a theory for
binary cubic forms that is completely parallel to Eisenstein's theory over Z.
As we mentioned above, any projective i?-module is free, so that a quadratic
form (M, q) is the same thing as a quadratic form classically understood: a

homogeneous polynomial of degree two. If q is of type C then M = R2R
2

becomes an invertible C-module. This C-module is said to be associated to q .

We begin by proving an easy technical lemma.

LEMMA 5.8. Suppose that R is a UFD and let C= R[t]/(t 2 +ht+ c).
Let D = b2b

2 —Ac and let uj be the class of t in C. Set S = b+ 2a; (note
that 626

2 =D) and let £=x +yô with x,y G R. If n(Q = 0 (mod 4R), then

£ecO (mod2Q.

Proof It is enough to prove x=by (mod 2R) . Let pGßbean irreducible
élément. For z G R — {0} we dénote by ord p (z) the largest power of p

occurring in the factorization of z- Set m = ord^x — by). If m < ord^(2)
then, since ord p

is a valuation, ord p (x + by) = ord p (x —by+ 2by) =m. Hence
oxd p (x 2

— b2b
2

y
2

) =2m< ord p (4), which contradicts our assumption (since
b2b

2 =D (mod 4R)). Therefore ord p (x - by) > ord^(2) for ail irreducible p,
which proves the lemma. D

Now we can prove:

PROPOSITION 5.9. Let R be a PID and let F be a cubic form on M=R2
given in the natural basis by (1), with coefficients ai G R. Suppose that its

Eisenstein determining form x ) = ax\ J rbx\X2 J ccx\, as in (2), is primitive
of discriminant D 0 and let C:= C + (q F ) = R[t]/(t 2 +bt+ ac). Then

3[M,q F ]=o in G(Q.

Proof. By the syzygy (7) we hâve



where X and Y are symmetric forais in x, y, z. Applying the lemma

to the rings R' := R[x u x 2 ,y u y2,zuz 2 ] and C := C (g>* fl' with £ = X + 6Y

(with 5 as in the lemma; the lemma applies since R, hence R'
,

is a UFD),
we hâve

(29)

where T= £/2 G C , by the lemma. Note that T is symmetric trilinear in

x, y, z; hence the identity (29) shows that the triplication of q F is the trivial
forai, as desired.

The results below were essentially known in the case R = Z to Eisenstein
[6] and [7], Aradt [I], Pépin [13], Cayley [3] and Hermite [B].

THEOREM 5.10. Let R be a PID. Let q = ax\ 4- bx\x 2 + cx\ be a

primitive binary quadratic form over Rof discriminant D—b2 — 4ac 0.

Let C— C+(q) be the even Clifford algebra of q and let M:=R2 be endowed
with the natural C-module structure. Let r G C be such that r -\-r = 0 and
t2t

2 =D. With this notation we hâve

(i) There exists a Gaussian binary cubic form F such that q F =q (where
g? is given by (2)) if and only if 3 [M, q] =oin the group G(C) of
C-isomorphism classes of quadratic forms of type C.

(ii) If F and F' are Gaussian binary cubic forms with qp = qq F > =q,
then there exists a unit c=a+brGCx with n{c) —1 such that
F f

— cF = aF + bGp, where Gf is the cubic covariant defined in (5).

(iii) Let two cubic forms F and F r with qp — qF' — q be given. The

following conditions are équivalent:
(a) There exists dGCx with n(d) =1 such that F f = d 3 F.

(b) There exists dGCx such that F' = d 3 F.

(c) F and F' are SL2CR) -équivalent.

Proof (i) By Proposition 5.9 the condition 3[M,q] =ois necessary. We
shall see that it is sufficient. Suppose 3[M,q] = 0 in G(C) ; in particular

thus by virtue of Theorem 5.2, Part (i), there exists a Gaussian cubic form F
such that [M, q F , R] = [M, g, R] in H(C) . By Proposition 5.9, the class [M, q F ]

is in G(C)[3] ; hence, by the isomorphism (28), we conclude [M, q F ] = [M, q]
in G(C).



(ii) Suppose that q F = qq F > —q. C®K is an étale £ -algebra since D 0.

Hence by Corollary 4.7 both F and F 7F
7

are C-forms and by Theorem 5.2,
Part (ii), there exists cGCx such that F=cF= (p(c)/3)F (in the notation
of (23)). Writing c = a+6r we get F 1 = aF + (b/3)(p(r)F). By (24) we
hâve p(r)F = 3G f (changing the sign of r if needed) and direct computation
shows qq F > — n{c)q F . Thus n(c) =1 as required. Note that in gênerai, the

coefficients a, b will hâve a 2 in the denominator since t = b -\-2uj for a

generator a; of the algebra C (see Lemma 5.8).

(iii) a)=^>b) is trivial.

b)=>c). If F' = d 3 F with rfGC x then, by Part (ii) of Theorem 5.2, F
and F' are C-equivalent, the isomorphism being x—> <ix . We hâve rc( d) 3 =1
by the proof of Part (ii) of this theorem, so replacing d by n(d)d we can
assume n(d) =1; that is, F and F' are SL 2 (J?) -équivalent, and this also
establishes the implication b)=^a).

c)=»a). If F'(x) = F(dx), where d G SL 2 CR), then d is in the orthogonal
group of q—qF = qq F >

. Since àzt(d) —1, it is in the spécial orthogonal
group of this form, hence given by multiplication by an élément d G Cf by

Corollary 2.4. But F(dx) = (d 3 F)(x) .

COROLLARY 5.11. Now let R = Z, and let D be a nonzero integer
congruent to 0 or 1 modulo 4. Let F be an intégral Gaussian binary cubic
form with primitive determining form of discriminant D.

(i) Suppose D < —3. If F' is another Gaussian binary cubic form with
qq F > —qF then F' is SL 2 (Z) -équivalent to F.

(ii) Suppose D > 0 or D = —3. Then there are exactly three SL 2(Z)
equivalenceclasses of Gaussian binary cubic forms F 1 such that qq F > = q F .

Proof We hâve that C+(q F ) = Cn, the unique quadratic Z -algebra of

discriminant D. Note that (C D )
IX/(1

X /(C D )
1

X is trivial when D < -3 and is

cyclic of order 3 when D = —3 or D > 0. The corollary follows immediately
from this and Parts (ii) and (iii) of Theorem 5.10.

COROLLARY 5.12. Let D be a nonzero integer congruent to 0 or 1

modulo 4. Let h?>{D) be the number of SL 2 (Z) -équivalence classes if binary
Gaussian cubic forms with primitive determining form of discriminant D.

Then h 3 (D) = |Pic(C D )[3]| if D < -3 and h 3 (D) = 3|Pic(C D )[3]| if D = -3
or D > 0.



Proof. Follows immediately from Corollary 5.11, équation (28) and Part

(i) of Theorem 5.10.

6. COHOMOLOGICAL INTERPRETATION

Let G m be the multiplicative group regarded as an affine group scheme

over X:— SpecC and let |U3U 3 CGm be the kernel of multiplication by 3. Ail
the cohomology groups below are with respect to the flat topology on X.

THEOREM 6.1. Suppose [C*] is divisible by 3 in Pic(C). Then the group
Hfi(X, JX3) acts simply transitively on the set S(C) of C-equivalence classes

of cubic C-forms with primitive determining mapping.

Proof Recall that the group H^(X, can be interpreted concretely as the
set of isomorphism classes of pairs (L, î/j), where L is an invertible C -module
and where ijj\ L^ 3

— > C is an isomorphism (see Milne [14, Chap. 111, §4]).
Let [L, ip] be an élément of //fI(X, m) and let (M, F) be a cubic C-form. By
Theorem 5.1, Part (i), we can assume F= F<£, where <f>: M® 3

— > C* is an

isomorphism. We define an action of Hg(X, ji 3 ) on S(C) by

(30)

noting that

is an isomorphism. Let us show first that this action is simple. Suppose
[L<g)M,F^®o] = [M.F^]. Then, L=C. Choosing an isomorphism L-^L -^ C

,

we hâve ip(x ®y®z) = uxyz, where u G C x
. Hence [M,F^] = [M,F u<i> ],

and by Part (iii) of Theorem 5.1 we conclude that u=c3 for some cGCx .

But then c: C — » C provides an isomorphism of (C,ip) with (C, 1), thus
[L,V] = [C,l].

We show now that the action is transitive. Let [M^F^.] (i = 1,2) be
éléments of S(Q. Let M* = Hom c (M 2 ,C) and let </>• : (C*) # -> (Mf 3

) 0

be the dual of </> 2 . Let L=Mi OM* and let ip =0! (g) ç!)*"
1

. One vérifies
immediately that [L,^] • [M 2 ,F^] = [M^F^J, which proves that the action
is transitive.



Note that, under the hypothesis of (6.1),

where M o is any invertible module such that M^ 3

= C* . Each Cubic c (M)
is a torsor for Cx/(C x /(C x )

3 by Theorem 5.2.

Consider now the short exact séquence of group schemes over X

and the associated Kummer long exact séquence in flat cohomology

Using the canonical isomorphisms (see [14, Chap. 111, §4])

we obtain a short exact séquence

(31)

By what we hâve proved, §(Q will be empty unless [C*] is divisible by 3

in Pic(C). By the Kummer séquence, [C*] is divisible by 3 if and only if

Assume that this holds and consider the group H{C) of binary quadratic
mappings as defined by Kneser in [11]. The determining form construction
(14) gives a well-defined map

We fix a "base point" [Mq,Fq] G §(C) and we modify the map e slightly
so that it becomes a map of pointed sets. We define

We also define a map /: H\(X, pi 3 ) -> S(C) by f(x) =x [M o ,
F o ] , where

• is the action defined in (30). Note that by virtue of Theorem 6.1, the map
/ is bijective.



With this notation we hâve a commutative square

(32)

where j: H(Q — > Pic(Q is the natural homomorphism [M,q,N] >-> [M].
Kneser [11, §6] has shown that j is an isomorphism (see also Section 2),

so the two vertical maps in (32) are bijections and the horizontal maps are

surjections.
Note that because of the exact séquence (31), the fibers of e' are in one

to-onecorrespondence with the éléments of the group C x /C x
. This is, of

course, équivalent to Theorem 5.2, Part (ii).

7. EXPLICIT COMPUTATIONS AND CUBIC TRACE FORMS

In this section we assume that A := C (g) K is a quadratic étale algebra
over K. In this case the trace form (x,y) —> Tr A / K (xy) is nondegenerate and

gives rise to a natural isomorphism between the codifièrent

and the dual C*. If M is a fractional C-ideal with M3M
3 ~ C\ then, by

Theorem 5.1, the cubic forms on M with primitive determining form are
given by

(33)

where a eA is a fixed élément with aM 3
— C

,
and u is a unit of C.

Moreover, by Theorem 5.1, two such forms F u and F v are C-isomorphic if
and only if u and v represent the same élément of CX/(C

X /(C X
)

3
.

We shall compute explicitly some examples f or R=Z using (33). In this
case we hâve C = Z[t]/(f(t)), where / is a monic degree-two polynomial
with distinct roots and coefficients in Z.

Let lu be the class of t in C. It is well-known, and easy to prove, that the
codifièrent C" is a principal fractional C-ideal generated by f'(cj)~ l

, where
/' is the derivative of /. Hence, [C*] is trivial in Pic(C) (note that this holds
more generally provided Pic(R) = 0).



EXAMPLE 7.1. Let C= Z[ l+y^] (note that 23 is the smallest square
freepositive integer N such that A = Q(\/—N) has class number divisible
by 3 ; in fact Pic(Q ~ Z/3Z (see [2]). The class group Pic(C) is generated
by the class of

where eu = I+^~^ . Thus the three classes of Pic(C) are représentée by
the ideals C, M and M. The quadratic forms attached to C, M and M are

respectively

One vérifies also that 0 = cj-2 satisfies M3M
3 = OC, thus (l/6>v /= 23)M 3 = C".

Hence, by (33), the cubic C-form on M is given by

where x — 2x\ + X2o; . Similar computations can be done for M (taking
0 = -1 -uj and the Z-basis {2, -1 +w}) and for C (with the basis {l,u}).
The following table summarizes the results of thèse computations :

EXAMPLE 7.2. Let C= Z[ V79] . Hère also Pic (Q - Z/3Z (see [2]) (in
fact 79 is the smallest square-free positive integer N such that Q(VN) has

class number divisible by 3).
The class group Pic(C) is generated by the class of

Thus the three classes of Pic(C) are represented by the ideals C, M
and M . One vérifies also that a = 52 — s\/79 satisfies M3M

3 = aC, thus

(l/2av / 79)M 3 = C. The fondamental unit of C is r = 80-f-9\/79; hence,
by (33), the three nonisomorphic cubic C-forms on M are given by



where x= 9x x +(4+ \/Ï9)x 2 and k= -1,0, 1. Similar computations can

be done for M (taking the Z-basis {9, -4+ and C (with the natural

basis {1,V79}).
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