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ABSTRACT. This paper shows that the Hasse invariant of the trace form of a central simple algebra A is 
related by a simple formula to the class of A in the Br&uer group. 

1. INTRODUCTION 

Trace forms of central simple algebras have been studied recently by Rowen [4] and Formanek 
[1] in connection with Brauer factor sets. Also, in [3], the déterminant and signatures of these 
trace forms were calculated in général. In a few spécial cases the Clifford invariant was calculated 
but a calculation in général seemed inaccessible. However, by using algebraic groups and Galois 
cohomology, we are able in this paper to determine in général the Hasse invariant of the trace form 
of a central simple algebra. The Hasse invariant happens to coincide with the Clifford invariant for 
these trace forms. Our viewpoint also yields a simple, alternative way of calculating the déterminant 
of a trace form. 

Our formula (2) is the analogue for central simple algebras of Serre's formula 
[7, Théorème 1] for étale algebras. In Serre's proof, the two-fold cover <3„ of the symmetric group 
©„ plays a crucial rôle. The group <5n is characterized by the fact that the natural orthogonal 
représentation <5n —> On can be lifted to a "spinorial" représentation ©„ —• On, where O n is a 
two-fold cover of On containing the spinor group Spinn as a subgroup of index 2. In the case of 
central simple algebras, we use the analogous fact that the adjoint représentation PGLn —• SOn2 
can be lifted to a spinorial représentation SL„ —• Spinni. 

Addendum. After writing this paper, Jean-Pierre Tignol pointed out to us that Theorem 1 had 
been announced by Saltman at a 1987 Berkeley mini-conference on Division Algebras and Quadratic 
Forms. Saltman's proof uses generic splitting fields and seems to be completely différent to ours. To 
the best of our knowledge, Saltman did not publish his proof. 

It was also pointed out to us that Serre had proved the same resuit in his 1990-1991 lectures at 
the Collège de France. The undetailed outline that Serre provides in [8] suggests that our proof is 
on the same lines as his. 

We must therefore acknowledge that the main resuit of this paper is not new. We would like 
to state unambiguously that we do not have any priority claims. Several colleagues have asked us 
to publish this paper in despite of the facts mentioned above, as a service to the mathematical 
community. Jean-Pierre Tignol is providing a différent proof in the same issue of this journal. 
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2. TRACE FORMS OF CENTRAL SIMPLE ALGEBRAS 

The following notation will be in force throughout this paper: 

K 
K, 
Br(K) 
Brm(K) 
Mn{K) 
T 
A 

M 
TA 

oT 
SOT 
Spiiir 

a field of characteristic ^ 2 
a separable closure of K 
the Brauer group of K 
the subgroup of Br(K) of elements of order dividing m 
the algebra of n x n matrices over K 
the trace form of M n , that is T{x,y) = Tr(xy) 
a finite-dimensional central simple algebra over K 
the class of A in Br(K) 
the trace form of A, that is TA(x,y) = tr(xy), 
where tr is the reduced trace of A 
the multiplicative group over K 
the group of n-th roots of unity over K 
the orthogonal group of T 
the spécial orthogonal group of T 
the spinor group of T 

Let B be a nondegenerate symmetric bilinear form over K and let 
< aj , fl2> • • • > be a diagonalization of B. Recall that the déterminant of B is defined by 

d{B) = I i f c ) € K * / K x 2 = Hl{K,n7), 
»=I 

and that the Hasse invariant of B is 

KB) = 0 6 Br2(K) = H2(K, M2). 
1 <i<j<m 

It is a standard fact that the above définitions do not depend upon the particular diagonalization 
chosen for B (see, for instance, [5, Chap. 1, 3.17 and Chap 2, 12.5]). 

Our goal is to compute h(TA.) and, incidentally, d(TA) for the trace form TA of a central simple 
algebra A over K . 

If A is the split algebra Mn(K), an elementary computation using the standard basis { e . j } shows 

ef(T) = ( _ I ) " ( " - D / 2 and h{T) = 
-1 _ i \ (n-2)(n~1)n(n + l)/8 

(1 ) 

It is also easy to see, using the formulae in [5, page 81], that for an arbitrary A, the Hasse invariant 
h{TA) coïncides with the Clifford invariant C(TA). 

Suppose now that A has dimension n 2 over K and let L C A be a maximal commutative subfield. 
It is well known that L has degree n over K and that it is a splitting field for A. Thus, if n is odd 
then, by Springer's Theorem (see [5, Chap. 2, 5.4]), TA is isometric to the trace form T of Mn(K). 
Hence the interesting case is when n is even. 

Here is our main resuit: 



T h e o r e m 1. Let A be a central simple algebra over K of even dimension n2. Then 

= (2) 

(recall that [A] dénotés the class of A in the Brauer group Br(K)). 

Before proving this theorem we shall recall a few elementary facts about Galois cohomology and 
the theory of descent. It is well-known (see, for instance, [6, Chapter X, §5]) that the cohomology 
set H1(K,Aut(Mn)) classifies the central simple algebras of dimension n 2 over K. The short exact 
sequence 

1 — Gm — GLn — Aut(Mn) - 1, 

where Inn(a) is the inner automorphism Inn(a)(x) = a x a ' 1 , induces an injective map in cohomology 

Hl{K,Aut{Mn)) H\K,Gm) = Br(K). 

The map d takes every simple central algebra over K of dimension n 2 to its class in the Brauer 
group Br(K). 

The cohomology set H1(K,OT) classifies the symmetric bilinear forms B over K that are iso-
metric to T over the separable closure K,. The class of T corresponds to the "neutral element" in 
H1(K,OT)- We have two short exact sequences related to the orthogonal group 

1 — SOT — OT M2 -» 1, 

and 
1 t*2 Spinr —• SOT 1. 

From these sequences one obtains maps 

d e t , : H \ K , O T ) -V H1{K,H2) = K * / K X \ 

and 

D : HL{K,SOT) — H2(K,/U2) = BT2{K). 

These maps are related to the déterminant d and the Hasse invariant k by the following formulae: 
d(B)= det. (B)d(T), (3) 

and 
h(B) = d(B)h(T). (4) 

(Identity (3) is obvious from the définition and (4) can be easily deduced from [9, Theorem 4.4 and 
(4-7)]). 

The group Aut(Mn) ~ PGLn acts by isometries on ( M n , T ) , that is Aut(Mn) is a subgroup of 
Ot- Let t : Aut(Mn) —* Ot be the natural inclusion and let 

t. : H1{K,Aut(M„)) —• Hl{K,0T) 

be the map induced by t in cohomology. 



P r o p o s i t i o n 2. Let A be a central simple algebra over K and let TA be its trace form. Then 
l M ) = Ta-

Proof. Let 0 : M„(K,) —» A <g> K, be an algebra isomorphism. The class of A in the cohomology 
set Hl{K,Aut{M„)) is represented by the 1-cocycle cA{u) = <j>~1 o "<j> (w € Gal(KJK)). Since <j> 
is an algebra isomorphism, it must preserve the trace forms, hence IOC^ represents the class of TA 
in H1 (K,OT). • 

Proposition 2 can be used to give another proof of Theorem 1.3 of [3]: 

C o r o l l a r y 3. d(TA) = d{T) = ( _ i ) » < » - 0 / » . 

Proof. Since Aut(MN) is a connected algebraic group, it is contained in SOT, i.e. the composite 
homomorphism 

Aut(Mn) 0T 

is trivial. Thus d e t . ^ ) = det . = 1. We conclude from (3) that d(TA) - d{T). By (1), 
d(T) = (-l)n(n-1)/2. • 

Since Spinr is the universal cover of SOT and SLn is simply connected, there exists a homomor-
phism T: SL„ —* Spinr s u c h that the diagram 

1 > /in • SLn Aut(Mn) 

'1 'I •! 
1 • H2 • Spinr • SOt 

(5) 

commutes. 

L e m m a 4. For n even, the induced map T : fin fj.2 is non-trivial 

Proof. It is sufficient to show that the map T : y.n —• fi2 is non-trivial over some extension of 
K. Replacing K if necessary by the rational function field K(t) we may assume that K is not 
quadratically closed. Consider the following portion of the diagram arising from the cohomology 
exact sequences 

Aut(Mn(K)) — H l ( K l f i n ) 

•I h 
SOT(K) » 

The map SOR(K) —» HL{K,N2) is known to be the spinor norm (see [2, page 133]). To prove the 
lemma it suffices to show that 7", is non-trivial. By virtue of the diagram above, it is enough to 
produce a matrix a e GLn(K) such that the spinor norm of Inn(a) is a non-square in K. 

Let a = Diag(d, 1 , 1 , . . . , 1), where d is in K* \ Kx (recall that we are assuming that K is not 
quadratically closed). Let x = ( x t j ) be an element of Mn(K). We have, by direct computation, 

Inn(a)(x) = 

( xn dx 12 . dx i„ 
à~xx2X X22 • x2n 

\d~lxnl Xn2 • 



Recall that for an an anisotropic vector v G Mn(K), the reflection r„ with respect to the hyperplane 
orthogonal to v is given by 

, s. ÇT{V,W) Tv(wj = w — l— r f . T(v,v) 
Let {eij} be the standard basis of Mn{K) and set 

= «a - deu 
Wi = e.i ~ eu 

for » = 2 , 3 , . . . ,n . By direct computation we have 

/ xn . dxu . • xln \ 
j? II d~lx« . xu . lin 

x" / 

Hence 

Inn(a) = rV3rW3rV3rW3 . ..rVnrWn. 

This identity allows us to compute the spinor norm of Inn(a): 

Spinor norm of Inn(a) = JJ T(vi, Vi)T{wi,Wi ) (mod Kx ) 
i= 2 

n 

= Yl(-2d)n~1{-2)n-1 (mod K*2) 
i—2 

=d (mod K*2). 

Since d was chosen to be a non-square in K, the above computation finishes the proof of the 
lemma. • 

We are now ready to prove Theorem 1. 

Proof of Theorem, 1. By Lemma 4, the map T : pn —• /x2 is given by f ( | ) = £ n / 2 . Hence the map 
T, : H2(K,nn) —• H2(K,fi2) induced in cohomology is given by Z,[A] = [A]"/2 (note that the 
natural inclusion fj,2 - * Un induces an injection H2(K,[i2) -* / f 2 ( / f , /*„) ) • From (5) we obtain a 
commutative diagram in cohomology 

H1{K,Aut(Mn)) 

- l 
HHK,soT) 

— H2(K,n „) 

—• H2(K,H2). 

By Proposition 2 and the diagram above we have 3(TA) = T,D(A) = [A]N^2. We conclude by using 
identities (4) and (1). • 
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