Math 7370, Exercises \# 1. Fall 2013

We will discuss the solution to those problems in class on Tuesday, Sept 23. Please turn in the solution to TWO of the problems in class on Thursday, Sept 19.

1) Let $\operatorname{SL}(n, \mathbb{R})=\{g \in \operatorname{GL}(n, \mathbb{R}) \mid \operatorname{det} g=1\}$. Show that $\operatorname{SL}(n, \mathbb{R})$ is a Lie group and its Lie algebra is given by

$$
\mathfrak{s l}(n, \mathbb{R})=\{X \in \mathrm{M}(n, \mathbb{R}) \mid \operatorname{Tr} X=0\}
$$

2) Show that any matrix in $\operatorname{SL}(2, \mathbb{R})$ is conjugate to a multiple of a matrix of the following form

$$
\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right) \quad\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) \quad \text { or } \quad\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right)
$$

(The first give the elliptic orbits, the second the hyperbolic orbits and the third the nilpotent orbits.) Use that to show that the image of $\exp : \mathfrak{s l}(2, \mathbb{R}) \rightarrow \mathrm{SL}(2, \mathbb{R})$ is the set of matrices

$$
\{a \in \operatorname{SL}(2, \mathbb{R}) \mid \operatorname{Tr} a>-2\} \cup\{-\mathrm{I}\}
$$

3) Classify all Lie algebras of dimensions 1,2 and 3 .
4) Let \mathfrak{s}_{n} be the space of symmetric $n \times n$-matrices and let P_{n}^{+}denote the space of positive definite $n \times n$-matrices. Thus $a \in P_{n}^{+}$if and only if for all $u \in \mathbb{R}^{n}, u \neq 0,(a(u), u)>0$ (note that it follows that a is symmetric). Show that $\exp : \mathfrak{s}_{n} \rightarrow P_{n}^{+}$is a diffeomorphsim.
5) Let $G \subset \mathrm{GL}(n, \mathbb{R})$ be a closed subgroup with Lie algebra \mathfrak{g}. The center $Z(G)$ of G is

$$
Z(G)=\{a \in G \mid(\forall b \in G) a b=b a\}
$$

The center of the Lie algebra $\mathfrak{z}(\mathfrak{g})$ is given by

$$
\mathfrak{z}(\mathfrak{g})=\{X \in \mathfrak{g} \mid(\forall Y \in \mathfrak{g})[X, Y]=\{0\}\}
$$

(1) Assume that G is connected. Show that $Z(G)$ is a closed subgroup with Lie algebra $\mathfrak{z}(\mathfrak{g})$.
(2) Find $\mathfrak{z}(\mathfrak{g l}(n, \mathbb{R})$ and $Z(\operatorname{GL}(n, \mathbb{R})$.
(3) Show that by an example that the statement in (1) is not necessarily correct if G is not connected.

