Math 7370, Exercises \#2. Due in class October 10

1) Let $H \subset G L(n, \mathbb{R})$ a closed subgroup. Let $G=H \rtimes \mathbb{R}^{n}$ where the product is defined by the inclusion in the group of bijections on \mathbb{R}^{n} by

$$
(h, v)(x)=h(x)+v .
$$

a) Work out the product and the inverse in G.
b) Identify \mathbb{R}^{n} with the affine subspace of \mathbb{R}^{n+1}

$$
\mathbb{R}^{n} \simeq\left\{(x, 1)^{T} \mid x \in \mathbb{R}^{n}\right\}
$$

Show that G is isomorphic to the subgroup of $\operatorname{GL}(n+1, \mathbb{R})$ given by

$$
\left\{\left.\left(\begin{array}{cc}
h & v \\
0 & 1
\end{array}\right) \right\rvert\, h \in H \text { and } v \in \mathbb{R}^{n}\right\}
$$

2) Let \mathfrak{g} be a Lie algebra (ower \mathbb{R} or \mathbb{C}) Define

$$
\mathcal{D} \mathfrak{g}=[\mathfrak{g}, \mathfrak{g}]:=\{[X, Y] \mid X, Y \in \mathfrak{g}\} .
$$

a) Show that $\mathcal{D} \mathfrak{g}$ is an ideal in \mathfrak{g} and $\mathfrak{g} / \mathcal{D} \mathfrak{g}$ is abelian.
b) Show that if \mathfrak{a} is an ideal in \mathfrak{g} such that $\mathfrak{g} / \mathfrak{a}$ is abelian, then $\mathcal{D} \subseteq \mathfrak{a}$.
c) Let \mathfrak{h}_{n} be the Heisenberg Lie algebra

$$
\mathfrak{h}_{n}=\left\{\left.\left(\begin{array}{ccc}
0 & x & t \\
0_{n}^{T} & 0_{n, n} & y^{T} \\
0 & 0_{n} & 0
\end{array}\right) \right\rvert\, x, y \in \mathbb{R}^{n}, t \in \mathbb{R}\right\}
$$

Here 0_{n} stands for the zero vector in \mathbb{R}^{n} and $0_{n, n}$ is the zero $n \times n$ matrix.
Find $\mathcal{D h}_{n}$.
d) Show that $\mathcal{D s l}(2, \mathbb{R})=\mathfrak{s l}(2, \mathbb{R})$ and $\mathcal{D g l}(2, \mathbb{R})=\mathfrak{s l}(2, \mathbb{R})$.
3) Let $G_{j}, j \in J$ be a family of linear Lie groups. Denote the Lie algebra of G_{j} by \mathfrak{g}_{j}. Show that $G:=\bigcap_{j \in J}$ is a linear Lie group and that the Lie algebra of G is $\bigcap_{j \in J} \mathfrak{g}_{j}$.

