Math 7370, Exercises #2. Due in class October 10

1) Let $H \subset \operatorname{GL}(n,\mathbb{R})$ a closed subgroup. Let $G = H \rtimes \mathbb{R}^n$ where the product is defined by the inclusion in the group of bijections on \mathbb{R}^n by

$$(h,v)(x) = h(x) + v \,.$$

a) Work out the product and the inverse in G.

b) Identify \mathbb{R}^n with the affine subspace of \mathbb{R}^{n+1}

$$\mathbb{R}^n \simeq \{ (x, 1)^T \mid x \in \mathbb{R}^n \}$$

Show that G is isomorphic to the subgroup of $GL(n+1,\mathbb{R})$ given by

$$\left\{ \begin{pmatrix} h & v \\ 0 & 1 \end{pmatrix} \middle| h \in H \text{ and } v \in \mathbb{R}^n \right\}.$$

2) Let \mathfrak{g} be a Lie algebra (over \mathbb{R} or \mathbb{C}) Define

$$\mathcal{D}\mathfrak{g} = [\mathfrak{g},\mathfrak{g}] := \{ [X,Y] \mid X, Y \in \mathfrak{g} \}.$$

- a) Show that $\mathcal{D}\mathfrak{g}$ is an ideal in \mathfrak{g} and $\mathfrak{g}/\mathcal{D}\mathfrak{g}$ is abelian.
- b) Show that if \mathfrak{a} is an ideal in \mathfrak{g} such that $\mathfrak{g}/\mathfrak{a}$ is abelian, then $\mathcal{D} \subseteq \mathfrak{a}$.

c) Let \mathfrak{h}_n be the Heisenberg Lie algebra

$$\mathfrak{h}_n = \left\{ \left. \begin{pmatrix} 0 & x & t \\ 0_n^T & 0_{n,n} & y^T \\ 0 & 0_n & 0 \end{pmatrix} \right| x, y \in \mathbb{R}^n, \ t \in \mathbb{R} \right\} \,.$$

Here 0_n stands for the zero vector in \mathbb{R}^n and $0_{n,n}$ is the zero $n \times n$ matrix. Find $\mathcal{D}\mathfrak{h}_n$.

d) Show that $\mathcal{D}\mathfrak{sl}(2,\mathbb{R}) = \mathfrak{sl}(2,\mathbb{R})$ and $\mathcal{D}\mathfrak{gl}(2,\mathbb{R}) = \mathfrak{sl}(2,\mathbb{R})$.

3) Let G_j , $j \in J$ be a family of linear Lie groups. Denote the Lie algebra of G_j by \mathfrak{g}_j . Show that $G := \bigcap_{i \in J} \mathfrak{g}_i$ is a linear Lie group and that the Lie algebra of G is $\bigcap_{i \in J} \mathfrak{g}_j$.