Math 2057, Section 5

Test \#1 is on Tuesday, Sept. 27. Material: Section 14.1-14.5, everything except partial differential equations.

Material covered until Sept. 13-22
Section 14.4: Tangent Planes and Linear Approximations.

- For function of one variable: Recall that the tangent line at the point (a, b) is given by $y-b=f^{\prime}(a)(x-a)$.
- This can also be read as linear approximation

$$
f(x) \sim b+f^{\prime}(a)(x-a)
$$

- In two variables we need to replace line by plane. The equation of a plane, containing the point $\left(x_{0}, y_{0}, z_{0}\right)$ in three dimensions is given by

$$
A\left(x-x_{0}\right)+B\left(y-y_{0}\right)+C\left(z-z_{0}\right)=0 .
$$

If $C \neq 0$ then we can solve for $z-z_{0}$ and write

$$
z-z_{0}=a\left(x-x_{0}\right)+b\left(y-y_{0}\right) .
$$

Definition 0.1. Suppose the function f has continuous partial derivatives. An equation of the tangent plane to the surface $z=f(x, y)$ at the point $P\left(x_{0}, y_{0}, z_{0}\right)$ is given by

$$
z-z_{0}=f_{x}\left(x_{0}, y_{0}\right)\left(x-x_{0}\right)+f_{y}\left(x_{0}, y_{0}\right)\left(y-y_{0}\right) .
$$

The tangent plane at the point $\left(x_{0}, y_{0}, f\left(x_{0}, y_{0}\right)\right)$ is close to the graph of the function $f(x, y)$ as long as (x, y) is close to $\left(x_{0}, y_{0}\right)$.
We therefore call the function

$$
(x, y) \mapsto z_{0}+f_{x}\left(x_{0}, y_{0}\right)\left(x-x_{0}\right)+f_{y}\left(x_{0}, y_{0}\right)\left(y-y_{0}\right)
$$

the linear approximation to $f(x, y)$.
The change in z is

$$
\Delta z=z-z_{0}=f(x, y)-f(a, b)
$$

The differential is the change in the linear approximation and is given by

$$
d z=\partial f / \partial x d x+\partial f / \partial y
$$

Note also the definition of differentiable on p. 926 and the similar definition for functions of more than two variables (p. 929).

Excersises from Section 14.4: 1-5, 11-19, 29-33 odd.
Section 14.5 The chain rule:
Recall first the chain rule in one variable: If y is a function of the variable u and u is a function of x, then $y(u)$ depends on x and the derivative with respect to x is given by:

$$
\frac{d}{d x} y=\frac{d y}{d u} \cdot \frac{d u}{d x}
$$

or

$$
\begin{gathered}
x \xrightarrow[\longrightarrow]{d u / d x} u \xrightarrow{d y / d u} y \\
x \xrightarrow{\frac{d u}{d x}=\frac{d u}{d u} \frac{d u}{d x}} y
\end{gathered}
$$

We can have similar situation in several variables.
Case $1 z$ depends on x and y, and x and y depend on the variable t. Then

$$
z(x, y)=z(x(t), y(t))
$$

depends only on the variable t. If z is differentiable then we get

$$
\Delta z=\frac{\partial z}{\partial x} \Delta x+\frac{\partial z}{\partial y} \Delta y+\epsilon_{1} \Delta x+\epsilon_{2} \Delta y
$$

where $\epsilon_{1}, \epsilon_{2} \rightarrow 0$ if $\Delta x, \Delta y \rightarrow 0$. Now, inserting for Δx and Δy (if differentiable) we get

$$
\Delta x=\frac{d x}{d t} \Delta t+\epsilon_{2} \Delta t
$$

and

$$
\Delta y=\frac{d y}{d t} \Delta t+\epsilon_{2} \Delta t
$$

Dividing by Δt and taking the limit $\Delta t \rightarrow 0$ we get

$$
\frac{d z}{d t}=\lim _{t \rightarrow 0} \frac{\Delta z}{\Delta t}=\frac{\partial z}{\partial x} \frac{d x}{d t}+\frac{\partial z}{\partial y} \frac{d y}{d t} .
$$

Case 2 If z depends on x and y and x and y depend on two variables s and $t, z(x, y)=z(x(s, t), y(s, t))$ depends on s and t and we have

$$
\begin{aligned}
\frac{\partial z}{\partial s} & =\frac{\partial z}{\partial x} \frac{\partial x}{\partial s}+\frac{\partial z}{\partial y} \frac{\partial y}{\partial s} \\
\frac{\partial z}{\partial t} & =\frac{\partial z}{\partial x} \frac{\partial x}{\partial t}+\frac{\partial z}{\partial y} \frac{\partial y}{\partial t}
\end{aligned}
$$

Case 3, the general case: If z depends on the variables x_{1}, \ldots, x_{n} and each of the variables x_{j} depends on t_{1}, \ldots, t_{m}. Then we have for each $j=1, \ldots, m$:

$$
\frac{\partial z}{\partial t_{j}}=\sum_{k=1}^{n} \frac{\partial z}{\partial x_{k}} \frac{\partial x_{k}}{\partial t_{j}} .
$$

Implicit differentiation: The book list two forms of this.
Asssume that the function F is differentiable and that $F(a, b)=0$ and $F_{y}(a, b) \neq 0$. Then we can (in principle) solve the equation $F(x, y)=0$ for y around $x=a$ such that $y(a)=b$ to define y as a function of x. Note, that in most cases it is impossible to write an explict formula for the function y. In this case the function y is differentiable and we have

$$
\frac{d y}{d x}=-\frac{F_{x}}{F_{x}} .
$$

If F depends on three variables x, y, z and $F_{z} \neq 0$. Then we can (in principle) solve for z (depending on x and y) and we get:

$$
\begin{aligned}
& \frac{\partial z}{\partial x}=-\frac{F_{x}}{F_{z}} \\
& \frac{\partial z}{\partial y}=-\frac{F_{y}}{F_{z}}
\end{aligned}
$$

Excersises from Section 14. 5: 1-11, 19-25 odd and 27,31, and 43.
We did discuss Section 4.6, Directional Derivatives and the gradient vector on Thursday, Sept. 22. We will discuss that material next time.

