Integral Transforms Math 2025

Gestur Olafsson

Mathematics Department

Louisiana State University

Chapter 1

Vector Spaces over \mathbb{R}

Vector Spaces Definition Immediate results Examples \mathbb{R}^n (columns) \mathbb{R}^n (rows) \mathbb{R}^A V^A Exercises

Vector Spaces over \mathbb{R}

Definition. vector space over \mathbb{R} is a set V with operations of addition + and scalar multiplication \cdot satisfying the following properties:

Vector Spaces Definition Immediate results Examples \mathbb{R}^n (columns) \mathbb{R}^n (rows) \mathbb{R}^A V^A Exercises

Vector Spaces over \mathbb{R}

Definition. vector space over \mathbb{R} is a set V with operations of addition + and scalar multiplication \cdot satisfying the following properties:

A1 (Closure of addition)

For all $u, v \in V, u + v$ is defined and $u + v \in V$.

Vector Spaces Definition Immediate results Examples \mathbb{R}^n (columns) \mathbb{R}^n (rows) \mathbb{R}^A V^A Exercises

Definition. vector space over \mathbb{R} is a set V with operations of addition + and scalar multiplication \cdot satisfying the following properties:

A1 (Closure of addition)

For all $u, v \in V, u + v$ is defined and $u + v \in V$.

A2 (Commutativity for addition)

u + v = v + u for all $u, v \in V$.

Vector Spaces Definition Immediate results Examples \mathbb{R}^n (columns) \mathbb{R}^n (rows) \mathbb{R}^A V^A Exercises

Definition. vector space over \mathbb{R} is a set V with operations of addition + and scalar multiplication \cdot satisfying the following properties:

A1 (Closure of addition)

For all $u, v \in V, u + v$ is defined and $u + v \in V$.

A2 (Commutativity for addition)

u + v = v + u for all $u, v \in V$.

A3 (Associativity for addition)

 $u + (v + w) = (u + v) + w \text{ for all } u, v, w \in V.$

Vector SpacesDefinitionImmediate resultsExamples \mathbb{R}^n (columns) \mathbb{R}^n (rows) \mathbb{R}^A V^A Exercises

Definition. vector space over \mathbb{R} is a set V with operations of addition + and scalar multiplication \cdot satisfying the following properties:

A1 (Closure of addition)

For all $u, v \in V, u + v$ is defined and $u + v \in V$.

A2 (Commutativity for addition)

u + v = v + u for all $u, v \in V$.

- A3 (Associativity for addition) u + (v + w) = (u + v) + w for all $u, v, w \in V$.
- A4 (Existence of additive identity) There exists an element $\vec{0}$ such that $u + \vec{0} = u$ for all $u \in V$.

Vector Spaces Definition Immediate results Examples \mathbb{R}^n (columns) \mathbb{R}^n (rows) \mathbb{R}^A V^A Exercises

Definition. vector space over \mathbb{R} is a set V with operations of addition + and scalar multiplication \cdot satisfying the following properties:

A1 (Closure of addition)

For all $u, v \in V, u + v$ is defined and $u + v \in V$.

A2 (Commutativity for addition)

u + v = v + u for all $u, v \in V$.

- A3 (Associativity for addition) u + (v + w) = (u + v) + w for all $u, v, w \in V$.
- A4 (Existence of additive identity) There exists an element $\vec{0}$ such that $u + \vec{0} = u$ for all $u \in V$.
- A5 (Existence of additive inverse) For each $u \in V$, there exists an element -denoted by -u-such that $u + (-u) = \vec{0}$.

Vector Spaces Definition Immediate results Examples \mathbb{R}^n (columns) \mathbb{R}^n (rows) \mathbb{R}^A V^A Exercises

Vector Spaces over \mathbb{R}

Integral Transforms - p. 3/38

000000

Definition. A vector space over \mathbb{R} is a set V with operations of addition + and scalar multiplication \cdot satisfying the following properties:

Vector Spaces Definition Immediate results Examples \mathbb{R}^n (columns) \mathbb{R}^n (rows) \mathbb{R}^A V^A Exercises

Vector Spaces over \mathbb{R}

Definition. A vector space over \mathbb{R} is a set V with operations of addition + and scalar multiplication \cdot satisfying the following properties:

M1 (Closure for scalar multiplication)
For each number r and each $u \in V$, $r \cdot u$ is defined and $r \cdot u \in V$.

Vector Spaces Definition Immediate results Examples \mathbb{R}^n (columns) \mathbb{R}^n (rows) \mathbb{R}^A V^A Exercises

Definition. A vector space over \mathbb{R} is a set V with operations of addition + and scalar multiplication \cdot satisfying the following properties:

- M1 (Closure for scalar multiplication)
 For each number r and each $u \in V$, $r \cdot u$ is defined and $r \cdot u \in V$.
- M2 (Multiplication by 1) $1 \cdot u = u$ for all $u \in V$.

Vector SpacesDefinitionImmediate resultsExamples \mathbb{R}^n (columns) \mathbb{R}^n (rows) \mathbb{R}^A V^A Exercises

Definition. A vector space over \mathbb{R} is a set V with operations of addition + and scalar multiplication \cdot satisfying the following properties:

- M1 (Closure for scalar multiplication)
 For each number r and each $u \in V$, $r \cdot u$ is defined and $r \cdot u \in V$.
- M2 (Multiplication by 1)

 $1 \cdot u = u$ for all $u \in V$.

• M3 (Associativity for multiplication) $r \cdot (s \cdot u) = (r \cdot s) \cdot u$ for $r, s \in \mathbb{R}$ and all $u \in V$. Vector SpacesDefinitionImmediate resultsExamples \mathbb{R}^n (columns) \mathbb{R}^n (rows) \mathbb{R}^A V^A Exercises

Vector Spaces over \mathbb{R}

Definition. A vector space over \mathbb{R} is a set V with operations of addition + and scalar multiplication \cdot satisfying the following properties:

- M1 (Closure for scalar multiplication)
 For each number r and each $u \in V$, $r \cdot u$ is defined and $r \cdot u \in V$.
- M2 (Multiplication by 1)

 $1 \cdot u = u$ for all $u \in V$.

- M3 (Associativity for multiplication) $r \cdot (s \cdot u) = (r \cdot s) \cdot u$ for $r, s \in \mathbb{R}$ and all $u \in V$.
- D1 (First distributive property) $r \cdot (u + v) = r \cdot u + r \cdot v$ for all $r \in \mathbb{R}$ and all $u, v \in V$.

Vector SpacesDefinitionImmediate resultsExamples \mathbb{R}^n (columns) \mathbb{R}^n (rows) \mathbb{R}^A V^A Exercises

.....

Definition. A vector space over \mathbb{R} is a set V with operations of addition + and scalar multiplication \cdot satisfying the following properties:

- M1 (Closure for scalar multiplication)
 For each number r and each $u \in V$, $r \cdot u$ is defined and $r \cdot u \in V$.
- M2 (Multiplication by 1)

 $1 \cdot u = u$ for all $u \in V$.

- M3 (Associativity for multiplication) $r \cdot (s \cdot u) = (r \cdot s) \cdot u$ for $r, s \in \mathbb{R}$ and all $u \in V$.
- D1 (First distributive property) r ⋅ (u + v) = r ⋅ u + r ⋅ v for all r ∈ ℝ and all u, v ∈ V.
 D2 (Second distributive property)
 - $(r+s) \cdot u = r \cdot u + s \cdot u$ for all $r, s \in \mathbb{R}$ and all $u \in V$.

Vector Spaces Definition Immediate results Examples \mathbb{R}^n (columns) \mathbb{R}^n (rows) \mathbb{R}^A V^A Exercises

000000

Vector Spaces over \mathbb{R}

Remark. The zero element $\vec{0}$ is unique, i.e., if $\vec{0_1}, \vec{0_2} \in V$ are such that

$$u + \vec{0_1} = u + \vec{0_2} = u, \forall u \in V$$

then $\vec{0_1} = \vec{0_2}$.

Vector Spaces Definition Immediate results Examples \mathbb{R}^n (columns) \mathbb{R}^n (rows) \mathbb{R}^A V^A Exercises

Vector Spaces over \mathbb{R}

Remark. The zero element $\vec{0}$ is unique, i.e., if $\vec{0_1}, \vec{0_2} \in V$ are such that

$$u + \vec{0_1} = u + \vec{0_2} = u, \forall u \in V$$

then $\vec{0_1} = \vec{0_2}$.

Proof. We have $\vec{0_1} = \vec{0_1} + \vec{0_2} = \vec{0_2} + \vec{0_1} = \vec{0_2}$

Vector SpacesDefinitionImmediate resultsExamples \mathbb{R}^n (columns) \mathbb{R}^n (rows) \mathbb{R}^A V^A Exercises

Vector Spaces over \mathbb{R}

Remark. The zero element $\vec{0}$ is unique, i.e., if $\vec{0_1}, \vec{0_2} \in V$ are such that

$$u + \vec{0_1} = u + \vec{0_2} = u, \forall u \in V$$

then $\vec{0_1} = \vec{0_2}$. *Proof.* We have $\vec{0_1} = \vec{0_1} + \vec{0_2} = \vec{0_2} + \vec{0_1} = \vec{0_2}$ Lemma. Let $u \in V$, then $0 \cdot u = \vec{0}$. Vector SpacesDefinitionImmediate resultsExamples \mathbb{R}^n (columns) \mathbb{R}^n (rows) \mathbb{R}^A V^A Exercises

Vector Spaces over \mathbb{R}

Remark. The zero element $\vec{0}$ is unique, i.e., if $\vec{0_1}, \vec{0_2} \in V$ are such that

$$u + \vec{0_1} = u + \vec{0_2} = u, \forall u \in V$$

then $\vec{0_1} = \vec{0_2}$. *Proof.* We have $\vec{0_1} = \vec{0_1} + \vec{0_2} = \vec{0_2} + \vec{0_1} = \vec{0_2}$ **Lemma.** Let $u \in V$, then $0 \cdot u = \vec{0}$.

Proof.

$$u + 0 \cdot u = 1 \cdot u + 0 \cdot u$$
$$= (1 + 0) \cdot u$$
$$= 1 \cdot u$$
$$= u$$

Vector SpacesDefinitionImmediate resultsExamples \mathbb{R}^n (columns) \mathbb{R}^n (rows) \mathbb{R}^A V^A Exercises

Vector Spaces over \mathbb{R}

Remark. The zero element $\vec{0}$ is unique, i.e., if $\vec{0_1},\vec{0_2} \in V$ are such that

$$u + \vec{0_1} = u + \vec{0_2} = u, \forall u \in V$$

then $\vec{0_1} = \vec{0_2}$. *Proof.* We have $\vec{0_1} = \vec{0_1} + \vec{0_2} = \vec{0_2} + \vec{0_1} = \vec{0_2}$ **Lemma.** Let $u \in V$, then $0 \cdot u = \vec{0}$.

Proof.

Thus
$$\vec{0} = u + (-u) = (0 \cdot u + u) + (-u)$$

= $0 \cdot u + (u + (-u))$
= $0 \cdot u + \vec{0}$
= $0 \cdot u$

Vector SpacesDefinitionImmediate resultsExamples \mathbb{R}^n (columns) \mathbb{R}^n (rows) \mathbb{R}^A V^A Exercises

Integral Transforms - p. 5/38

00000

Vector Spaces over \mathbb{R}

Lemma. a) The element -u is unique. b) $-u = (-1) \cdot u$.

Vector SpacesDefinitionImmediate resultsExamples \mathbb{R}^n (columns) \mathbb{R}^n (rows) \mathbb{R}^A V^A Exercises

Vector Spaces over \mathbb{R}

Lemma. a) The element -u is unique. b) $-u = (-1) \cdot u$.

Proof of part (b).

$$u + (-1) \cdot u = 1 \cdot u + (-1) \cdot u$$
$$= (1 + (-1)) \cdot u$$
$$= 0 \cdot u$$
$$= \vec{0}$$

Vector Spaces Definition Immediate results Examples \mathbb{R}^n (columns) \mathbb{R}^n (rows) \mathbb{R}^A V^A Exercises

Vector Spaces over \mathbb{R}

Integral Transforms - p. 6/38

Examples

Vector SpacesDefinitionImmediate resultsExamples \mathbb{R}^n (columns) \mathbb{R}^n (rows) \mathbb{R}^A V^A Exercises

Vector Spaces over ${\mathbb R}$

Before examining the axioms in more detail, let us discuss two examples.

Vector Spaces Definition Immediate results Examples \mathbb{R}^n (columns) \mathbb{R}^n (rows) \mathbb{R}^A V^A Exercises

Vector Spaces over \mathbb{R}

Example. Let $V = \mathbb{R}^n$, considered as column vectors $\mathbb{R}^n = \left\{ \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} | x_1, x_2, \dots, x_n \in \mathbb{R} \right\}$

Vector SpacesDefinitionImmediate resultsExamples \mathbb{R}^n (columns) \mathbb{R}^n (rows) \mathbb{R}^A V^A Exercises

Vector Spaces over \mathbb{R}

Example. Let $V = \mathbb{R}^n$. Then for

$$u = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}, v = \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix} \in \mathbb{R}^n \text{ and } r \in \mathbb{R}:$$

Vector SpacesDefinitionImmediate resultsExamples \mathbb{R}^n (columns) \mathbb{R}^n (rows) \mathbb{R}^A V^A Exercises

Vector Spaces over \mathbb{R}

Example. Let $V = \mathbb{R}^n$. Then for

$$u = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}, v = \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix} \in \mathbb{R}^n \text{ and } r \in \mathbb{R}:$$

Define

$$u + v = \begin{pmatrix} x_1 + y_1 \\ \vdots \\ x_n + y_n \end{pmatrix} \text{ and } r \cdot u = \begin{pmatrix} rx_1 \\ \vdots \\ rx_n \end{pmatrix}$$

Vector SpacesDefinitionImmediate resultsExamples \mathbb{R}^n (columns) \mathbb{R}^n (rows) \mathbb{R}^A V^A Exercises

Vector Spaces over \mathbb{R}

Example. Let $V = \mathbb{R}^n$. Then for

$$u = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}, v = \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix} \in \mathbb{R}^n \text{ and } r \in \mathbb{R}:$$

Note that the zero vector and the additive inverse of u are given by:

 $\vec{0} = \begin{pmatrix} 0 \\ \vdots \\ 0 \end{pmatrix}, \quad -u = \begin{pmatrix} -x_1 \\ \vdots \\ -x_2 \end{pmatrix}$

Vector Spaces Definition Immediate results Examples \mathbb{R}^n (columns) \mathbb{R}^n (rows) \mathbb{R}^A V^A Exercises

Vector Spaces over \mathbb{R}

\mathbb{R}^n as row vectors

Remark. \mathbb{R}^n can be considered as the space of all row vectors.

$$\mathbb{R}^n = \{ (x_1, \dots, x_n) \mid x_1, \dots, x_n \in \mathbb{R} \}$$

Vector SpacesDefinitionImmediate resultsExamples \mathbb{R}^n (columns) \mathbb{R}^n (rows) \mathbb{R}^A V^A Exercises

\mathbb{R}^n as row vectors

Remark. \mathbb{R}^n can be considered as the space of all row vectors.

$$\mathbb{R}^n = \{ (x_1, \dots, x_n) \mid x_1, \dots, x_n \in \mathbb{R} \}$$

The addition and scalar multiplication is again given coordinate wise

$$(x_1, \dots, x_n) + (y_1, \dots, y_n) = (x_1 + y_1, \dots, x_n + y_n)$$

 $r \cdot (x_1, \dots, x_n) = (rx_1, \dots, rx_n)$

Vector SpacesDefinitionImmediate resultsExamples \mathbb{R}^n (columns) \mathbb{R}^n (rows) \mathbb{R}^A V^A Exercises

Vector Spaces over \mathbb{R}

Example. If
$$\vec{x} = (2, 1, 3), \vec{y} = (-1, 2, -2)$$
 and $r = -4$ find $\vec{x} + \vec{y}$ and $r \cdot \vec{x}$.

Vector SpacesDefinitionImmediate resultsExamples \mathbb{R}^n (columns) \mathbb{R}^n (rows) \mathbb{R}^A V^A Exercises

Vector Spaces over ${\mathbb R}$

Example. If $\vec{x} = (2, 1, 3)$, $\vec{y} = (-1, 2, -2)$ and r = -4 find $\vec{x} + \vec{y}$ and $r \cdot \vec{x}$.

Solution.

$$\vec{x} + \vec{y} = (2, 1, 3) + (-1, 2, -2)$$

= $(2 - 1, 1 + 2, 3 - 2)$
= $(1, 3, 1)$

 $\frac{\text{Vector Spaces}}{\text{Definition}} \\ \text{Immediate results} \\ \text{Examples} \\ \mathbb{R}^n \text{ (columns)} \\ \mathbb{R}^n \text{ (rows)} \\ \mathbb{R}^A \\ V^A \\ \text{Exercises} \\ \end{bmatrix}$

Vector Spaces over \mathbb{R}

Example. If $\vec{x} = (2, 1, 3)$, $\vec{y} = (-1, 2, -2)$ and r = -4 find $\vec{x} + \vec{y}$ and $r \cdot \vec{x}$.

Solution.

$$\vec{x} + \vec{y} = (2, 1, 3) + (-1, 2, -2)$$

= $(2 - 1, 1 + 2, 3 - 2)$
= $(1, 3, 1)$

$$r \cdot \vec{x} = -4 \cdot (2, 1, 3) = (-8, -4, -12).$$

 $\frac{\text{Vector Spaces}}{\text{Definition}}$ $\frac{\text{Immediate results}}{\text{Examples}}$ $\mathbb{R}^{n} \text{ (columns)}$ $\frac{\mathbb{R}^{n} \text{ (rows)}}{\mathbb{R}^{A}}$ $\frac{V^{A}}{V^{A}}$ Exercises

Vector Spaces over \mathbb{R}

Remark.

$$(x_1, \dots, x_n) + (0, \dots, 0) = (x_1 + 0, \dots, x_n + 0)$$

= (x_1, \dots, x_n)

So the additive identity is $\vec{0} = (0, \dots, 0)$.

Note also that

$$0 \cdot (x_1, \dots, x_n) = (0x_1, \dots, 0x_n)$$

= $(0, \dots, 0)$

for all $(x_1, \ldots, x_n) \in \mathbb{R}^n$.

 $\begin{array}{c} \text{Vector Spaces} \\ \text{Definition} \\ \text{Immediate results} \\ \text{Examples} \\ \mathbb{R}^n \text{ (columns)} \\ \\ \mathbb{R}^n \text{ (rows)} \\ \\ \mathbb{R}^A \\ V^A \\ \text{Exercises} \end{array}$

Vector Spaces over \mathbb{R}

Vector space of real-valued functions

Example. Let *A* be the interval [0, 1) and *V* be the space of functions $f : A \longrightarrow \mathbb{R}$, *i.e.*,

 $V = \{ f : [0, 1) \longrightarrow \mathbb{R} \}$

Define addition and scalar multiplication by

(f+g)(x) = f(x) + g(x)(r \cdot f)(x) = rf(x) Vector SpacesDefinitionImmediate resultsExamples \mathbb{R}^n (columns) \mathbb{R}^n (rows) \mathbb{R}^A V^A

Exercises

Vector Spaces over \mathbb{R}

Vector space of real-valued functions

Example. Let *A* be the interval [0, 1) and *V* be the space of functions $f : A \longrightarrow \mathbb{R}$, *i.e.*,

 $V = \{ f : [0, 1) \longrightarrow \mathbb{R} \}$

Define addition and scalar multiplication by

$$(f+g)(x) = f(x) + g(x)$$
$$(r \cdot f)(x) = rf(x)$$

For instance, the function $f(x) = x^4$ is an element of V and so are

$$g(x) = x + 2x^2, \qquad h(x) = \cos x, \qquad k(x) = e^x$$
 We have $(f+g)(x) = x + 2x^2 + x^4.$

Vector SpacesDefinitionImmediate resultsExamples \mathbb{R}^n (columns) \mathbb{R}^n (rows) \mathbb{R}^A V^A

Exercises

Vector Spaces over \mathbb{R}

Vector space of real-valued functions

Example. Let *A* be the interval [0, 1) and *V* be the space of functions $f : A \longrightarrow \mathbb{R}$, *i.e.*,

 $V = \{ f : [0, 1) \longrightarrow \mathbb{R} \}$

Define addition and scalar multiplication by

(f+g)(x) = f(x) + g(x) $(r \cdot f)(x) = rf(x)$

Remark. (a) The zero element is the function $\vec{0}$ which associates to each x the number 0:

 $\vec{0}(x) = 0$ for all $x \in [0, 1)$

Proof. $(f + \vec{0})(x) = f(x) + \vec{0}(x) = f(x) + 0 = f(x).$

Vector SpacesDefinitionImmediate resultsExamples \mathbb{R}^n (columns) \mathbb{R}^n (rows) \mathbb{R}^A V^A

Exercises

Vector Spaces over \mathbb{R}

Vector space of real-valued functions

Example. Let *A* be the interval [0, 1) and *V* be the space of functions $f : A \longrightarrow \mathbb{R}$, *i.e.*,

 $V = \{ f : [0, 1) \longrightarrow \mathbb{R} \}$

Define addition and scalar multiplication by

$$(f+g)(x) = f(x) + g(x)$$
$$(r \cdot f)(x) = rf(x)$$

Remark. (b) The additive inverse is the function $-f: x \mapsto -f(x).$ *Proof.* (f + (-f))(x) = f(x) - f(x) = 0 for all x. \Box Vector SpacesDefinitionImmediate resultsExamples \mathbb{R}^n (columns) \mathbb{R}^n (rows) \mathbb{R}^A V^A

Exercises

Vector Spaces over \mathbb{R}

The vector space V^A

Example. Instead of A = [0, 1) we can take any set $A \neq \emptyset$, and we can replace \mathbb{R} by any vector space V. We set

$$V^A = \{ f : A \longrightarrow V$$

and set

$$(f+g)(x) = f(x)+g(x)$$

(r \cdot f)(x) = r \cdot f(x)

Vector SpacesDefinitionImmediate resultsExamples \mathbb{R}^n (columns) \mathbb{R}^n (rows) \mathbb{R}^A V^A Exercises

Vector Spaces over \mathbb{R}

The vector space V^A

Example. Instead of A = [0, 1) we can take any set $A \neq \emptyset$, and we can replace \mathbb{R} by any vector space V. We set

$$V^A = \{ f : A \longrightarrow V$$

and set

$$\begin{array}{rcl} (f+g)(x) &=& f(x)+g(x)\\ (r\cdot f)(x) &=& r\cdot f(x) \end{array}$$
 multiplication in V addition in V

Vector SpacesDefinitionImmediate resultsExamples \mathbb{R}^n (columns) \mathbb{R}^n (rows) \mathbb{R}^A V^A

Exercises

Vector Spaces over \mathbb{R}

Integral Transforms - p. 13/38

The vector space V^A

Example. Instead of A = [0, 1) we can take any set $A \neq \emptyset$, and we can replace \mathbb{R} by any vector space V. We set

$$V^A = \{ f : A \longrightarrow V$$

and set

$$(f+g)(x) = f(x)+g(x)$$

(r \cdot f)(x) = r \cdot f(x)

Remark. (a) The zero element is the function which associates to each x the vector $\vec{0}$:

$$\begin{array}{l} :x\mapsto\vec{0}\\ \text{Proof}\\ (f+0)(x) &= f(x)+0(x)\\ &= f(x)+\vec{0}=f(x) \end{array} \end{array}$$

Vector Spaces Definition Immediate results Examples \mathbb{R}^n (columns) \mathbb{R}^n (rows) \mathbb{R}^A V^A Exercises

Vector Spaces over \mathbb{R}

()

Ρ

Remark.

(b) Here we prove that + is associative:

Proof. Let $f, g, h \in V^A$. Then

$$\begin{split} [(f+g)+h](x) &= (f+g)(x)+h(x) \\ &= (f(x)+g(x))+h(x) \\ &= f(x)+(g(x)+h(x)) \text{ associativity in} V \\ &= f(x)+(g+h)(x) \\ &= [f+(g+h)](x) \end{split}$$

Vector Spaces Definition Immediate results Examples \mathbb{R}^n (columns) \mathbb{R}^n (rows) \mathbb{R}^A V^A Exercises

Vector Spaces over \mathbb{R}

Exercises

Let $V = \mathbb{R}^4$. Evaluate the following: a) (2, -1, 3, 1) + (3, -1, 1, -1). b) (2, 1, 5, -1) - (3, 1, 2, -2). c) $10 \cdot (2, 0, -1, 1)$. d) $(1, -2, 3, 1) + 10 \cdot (1, -1, 0, 1) - 3 \cdot (0, 2, 1, -2)$. e) $x_1 \cdot (1, 0, 0, 0) + x_2 \cdot (0, 1, 0, 0) + x_3 \cdot (0, 0, 1, 0) + x_4 \cdot (0, 0, 0, 1)$.

Vector Spaces Definition Immediate results Examples \mathbb{R}^n (columns) \mathbb{R}^n (rows) \mathbb{R}^A V^A Exercises

Subspaces

Definition Examples Subspaces of \mathbb{R}^2 Subspaces of \mathbb{R}^3 Exercises

Chapter 2

Subspaces

In most applications we will be working with a subset W of a vector space V such that W itself is a vector space.

Subspaces Definition Examples Subspaces of \mathbb{R}^2 Subspaces of \mathbb{R}^3 Exercises

Subspaces

In most applications we will be working with a subset *W* of a vector space *V* such that *W* itself is a vector space.

Question: Do we have to test all the axioms to find out if *W* is a vector space?

Subspaces Definition Examples Subspaces of \mathbb{R}^2 Subspaces of \mathbb{R}^3 Exercises

In most applications we will be working with a subset W of a vector space V such that W itself is a vector space.

Question: Do we have to test all the axioms to find out if *W* is a vector space?

The answer is NO.

Subspaces Definition Examples Subspaces of \mathbb{R}^2 Subspaces of \mathbb{R}^3 Exercises

In most applications we will be working with a subset W of a vector space V such that W itself is a vector space.

Question: Do we have to test all the axioms to find out if *W* is a vector space?

The answer is NO.

Subspaces

Theorem. Let $W \neq \emptyset$ be a subset of a vector space V. Then W, with the addition and scalar multiplication as V, is a vector space if and only if:

• $u + v \in W$ for all $u, v \in W$ (or $W + W \subseteq W$)

• $r \cdot u \in W$ for all $r \in \mathbb{R}$ and all $u \in W$ (or $\mathbb{R}W \subseteq W$).

Subspaces Definition Examples Subspaces of \mathbb{R}^2 Subspaces of \mathbb{R}^3 Exercises

In most applications we will be working with a subset W of a vector space V such that W itself is a vector space.

Question: Do we have to test all the axioms to find out if *W* is a vector space?

The answer is NO.

Theorem. Let $W \neq \emptyset$ be a subset of a vector space V. Then W, with the addition and scalar multiplication as V, is a vector space if and only if:

• $u + v \in W$ for all $u, v \in W$ (or $W + W \subseteq W$)

• $r \cdot u \in W$ for all $r \in \mathbb{R}$ and all $u \in W$ (or $\mathbb{R}W \subseteq W$).

In this case we say that W is a subspace of V.

SubspacesDefinitionExamplesSubspaces of \mathbb{R}^2 Subspaces of \mathbb{R}^3 Exercises

00000

Integral Transforms - p. 17/38

Subspaces

Subspaces Definition Examples Subspaces of \mathbb{R}^2 Subspaces of \mathbb{R}^3 Exercises

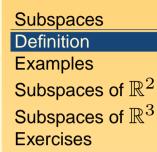
A1 (Commutativity of addition)

For $u, v \in W$, we have u + v = v + u. This is because u, v are also in V and commutativity holds in V.

SubspacesDefinitionExamplesSubspaces of \mathbb{R}^2 Subspaces of \mathbb{R}^3 Exercises

Subspaces

- A1 (Commutativity of addition) For $u, v \in W$, we have u + v = v + u. This is because u, v are also in V and commutativity holds in V.
- A4 (Existence of additive identity) Take any vector $u \in W$. Then by assumption $0 \cdot u = \vec{0} \in W$. Hence $\vec{0} \in W$.



- A1 (Commutativity of addition) For $u, v \in W$, we have u + v = v + u. This is because u, v are also in V and commutativity holds in V.
- A4 (Existence of additive identity) Take any vector $u \in W$. Then by assumption $0 \cdot u = \vec{0} \in W$. Hence $\vec{0} \in W$.
- A5 (Existence of additive inverse) If $u \in W$ then $-u = (-1) \cdot u \in W$.

SubspacesDefinitionExamplesSubspaces of \mathbb{R}^2 Subspaces of \mathbb{R}^3 Exercises

- A1 (Commutativity of addition) For $u, v \in W$, we have u + v = v + u. This is because u, v are also in V and commutativity holds in V.
- A4 (Existence of additive identity) Take any vector $u \in W$. Then by assumption $0 \cdot u = \vec{0} \in W$. Hence $\vec{0} \in W$.
- A5 (Existence of additive inverse) If $u \in W$ then $-u = (-1) \cdot u \in W$.
- One can check that the other axioms follow in the same way.

Subspaces Definition Examples Subspaces of \mathbb{R}^2 Subspaces of \mathbb{R}^3 Exercises

00000

Integral Transforms - p. 18/38

Subspaces

Usually the situation is that we are given a vector space V and a subset of vectors W satisfying some conditions and we need to see if W is a subspace of V.

SubspacesDefinitionExamplesSubspaces of \mathbb{R}^2 Subspaces of \mathbb{R}^3 Exercises

Examples

Subspaces

Usually the situation is that we are given a vector space V and a subset of vectors W satisfying some conditions and we need to see if W is a subspace of V.

 $W = \{v \in V : \underline{\text{some conditions}} \text{ on } v\}$

SubspacesDefinitionExamplesSubspaces of \mathbb{R}^2 Subspaces of \mathbb{R}^3 Exercises

Examples

Usually the situation is that we are given a vector space V and a subset of vectors W satisfying some conditions and we need to see if W is a subspace of V.

 $W = \{v \in V : \underline{\text{some conditions}} \text{ on } v\}$

We will then have to show that

$$\begin{array}{ccc} u, v \in W & u+v \\ r \in \mathbb{R} & r \cdot u \end{array} \right\}$$
 Satisfy the same conditions

Subspaces
Definition
Examples
Subspaces of \mathbb{R}^2
Subspaces of \mathbb{R}^3
Exercises

Examples

Integral Transforms - p. 19/38

Subspaces

Example.

$V = \mathbb{R}^{2},$ $W = \{(x, y) | y = kx\} \text{ for a given } k$ = line through (0, 0) with slope k.

SubspacesDefinitionExamplesSubspaces of \mathbb{R}^2 Subspaces of \mathbb{R}^3 Exercises

Example.

$$V = \mathbb{R}^{2},$$

$$W = \{(x, y) | y = kx\} \text{ for a given } k$$

$$= \text{ line through } (0, 0) \text{ with slope } k.$$

To see that W is in fact a subspace of \mathbb{R}^2 : Let $u = (x_1, y_1), v = (x_2, y_2) \in W$. Then $y_1 = kx_1$ and $y_2 = kx_2$ SubspacesDefinitionExamplesSubspaces of \mathbb{R}^2 Subspaces of \mathbb{R}^3 Exercises

Subspaces

Example.

$$V = \mathbb{R}^{2},$$

$$W = \{(x, y) | y = kx\} \text{ for a given } k$$

$$= \text{ line through } (0, 0) \text{ with slope } k.$$

To see that W is in fact a subspace of \mathbb{R}^2 : Let $u = (x_1, y_1), v = (x_2, y_2) \in W$. Then $y_1 = kx_1$ and $y_2 = kx_2$ and

$$u + v = (x_1 + x_2, y_1 + y_2)$$

= $(x_1 + x_2, kx_1 + kx_2)$
= $(x_1 + x_2, k(x_1 + x_2)) \in W$

Integral Transforms - p. 20/38

Subspaces

Example.

$$V = \mathbb{R}^{2},$$

$$W = \{(x, y) | y = kx\} \text{ for a given } k$$

$$= \text{ line through } (0, 0) \text{ with slope } k.$$

To see that W is in fact a subspace of \mathbb{R}^2 : Let $u = (x_1, y_1), v = (x_2, y_2) \in W$. Then $y_1 = kx_1$ and $y_2 = kx_2$ and

$$u + v = (x_1 + x_2, y_1 + y_2)$$

= $(x_1 + x_2, kx_1 + kx_2)$
= $(x_1 + x_2, k(x_1 + x_2)) \in W$

Similarly, $r \cdot u = (rx_1, ry_1) = (rx_1, krx_1) \in W$

Integral Transforms - p. 20/38

Subspaces

So what are the subspaces of \mathbb{R}^2 ?

Subspaces

Subspaces Definition Examples

Subspaces of \mathbb{R}^2

Subspaces of \mathbb{R}^3 Exercises

So what are the subspaces of \mathbb{R}^2 ? 1. $\{0\}$

Subspaces

SubspacesDefinitionExamplesSubspaces of \mathbb{R}^2

Subspaces of \mathbb{R}^3 Exercises

So what are the subspaces of R²? 1. {0} 2. Lines. But only those that contain (0,0). Why?

Subspaces

SubspacesDefinitionExamplesSubspaces of \mathbb{R}^2 Subspaces of \mathbb{R}^3 Exercises

So what are the subspaces of R²? 1. {0} 2. Lines. But only those that contain (0,0). Why?

SubspacesDefinitionExamplesSubspaces of \mathbb{R}^2 Subspaces of \mathbb{R}^3 Exercises

3. ℝ²

So what are the subspaces of \mathbb{R}^2 ? 1. $\{0\}$ 2. Lines. But only those that contain (0,0). Why? 3. \mathbb{R}^2

Remark (First test). If W is a subspace, then $\vec{0} \in W$. **Thus:** If $\vec{0} \notin W$, then W is not a subspace. SubspacesDefinitionExamplesSubspaces of \mathbb{R}^2 Subspaces of \mathbb{R}^3 Exercises

So what are the subspaces of \mathbb{R}^2 ? 1. $\{0\}$ 2. Lines. But only those that contain (0,0). Why? 3. \mathbb{R}^2

Remark (First test). If W is a subspace, then $\vec{0} \in W$. **Thus:** If $\vec{0} \notin W$, then W is not a subspace.

This is why a line not passing through (0,0) can not be a subspace of \mathbb{R}^2 .

SubspacesDefinitionExamplesSubspaces of \mathbb{R}^2 Subspaces of \mathbb{R}^3 Exercises

Warning. We can not conclude from the fact that $\vec{0} \in W$, that W is a subspace.

SubspacesDefinitionExamplesSubspaces of \mathbb{R}^2 Subspaces of \mathbb{R}^3 Exercises

Subspaces

Warning. We can not conclude from the fact that $\vec{0} \in W$, that W is a subspace.

Example. Lets consider the following subset of \mathbb{R}^2 :

$$W = \{(x, y) | x^2 - y^2 = 0\}$$

Is W a subspace of \mathbb{R}^2 ? Why?

SubspacesDefinitionExamplesSubspaces of \mathbb{R}^2 Subspaces of \mathbb{R}^3 Exercises

Warning. We can not conclude from the fact that $\vec{0} \in W$, that W is a subspace.

Example. Lets consider the following subset of \mathbb{R}^2 :

$$W = \{(x, y) | x^2 - y^2 = 0\}$$

Is W a subspace of \mathbb{R}^2 ? Why?

The answer is NO.

We have (1,1) and $(1,-1) \in W$ but $(1,1) + (1,-1) = (2,0) \notin W$. i.e., W is not closed under addition.

SubspacesDefinitionExamplesSubspaces of \mathbb{R}^2 Subspaces of \mathbb{R}^3 Exercises

Subspaces

Warning. We can not conclude from the fact that $\vec{0} \in W$, that W is a subspace.

Example. Lets consider the following subset of \mathbb{R}^2 :

$$W = \{(x, y) | x^2 - y^2 = 0\}$$

Is W a subspace of \mathbb{R}^2 ? Why?

The answer is NO.

We have (1,1) and $(1,-1) \in W$ but $(1,1) + (1,-1) = (2,0) \notin W$. i.e., W is not closed under addition.

Notice that $(0,0) \in W$ and W is closed under multiplication by scalars.

SubspacesDefinitionExamplesSubspaces of \mathbb{R}^2 Subspaces of \mathbb{R}^3 Exercises

Subspaces

What are the subspaces of \mathbb{R}^3 ?

Subspaces

SubspacesDefinitionExamplesSubspaces of \mathbb{R}^2 Subspaces of \mathbb{R}^3 Exercises

What are the subspaces of \mathbb{R}^3 ? 1. {0} and \mathbb{R}^3 .

Subspaces

Subspaces Definition Examples Subspaces of \mathbb{R}^2 Subspaces of \mathbb{R}^3 Exercises

Subspaces of \mathbb{R}^3

What are the subspaces of \mathbb{R}^3 ? 1. {0} and \mathbb{R}^3 .

2. Planes: A plane $W \subseteq \mathbb{R}^3$ is given by a normal vector (a, b, c) and its distance from (0, 0, 0) or

$$W = \{(x, y, z) | \underbrace{ax + by + cz = p}\}$$

condition on (x, y, z)

Subspaces Definition Examples Subspaces of \mathbb{R}^2 Subspaces of \mathbb{R}^3 Exercises

Subspaces of \mathbb{R}^3

What are the subspaces of \mathbb{R}^3 ? 1. {0} and \mathbb{R}^3 .

2. Planes: A plane $W \subseteq \mathbb{R}^3$ is given by a normal vector (a, b, c) and its distance from (0, 0, 0) or

$$W = \{(x, y, z) | \underbrace{ax + by + cz = p}_{\text{condition on } (x, y, z)} \}$$

For W to be a subspace, (0, 0, 0) must be in W by the *first test*. Thus

$$p = a \cdot 0 + b \cdot 0 + c \cdot 0 = 0$$

or

Subspaces

$$p = 0$$

Subspaces Definition Examples Subspaces of \mathbb{R}^2 Subspaces of \mathbb{R}^3 Exercises

A plane containing (0, 0, 0) is indeed a subspace of \mathbb{R}^3 .

Subspaces

SubspacesDefinitionExamplesSubspaces of \mathbb{R}^2 Subspaces of \mathbb{R}^3 Exercises

A plane containing (0, 0, 0) is indeed a subspace of \mathbb{R}^3 .

Proof. Let (x_1, y_1, z_1) and $(x_2, y_2, z_2) \in W$. Then

 $ax_1 + by_1 + cz_1 = 0$ $ax_2 + by_2 + cz_2 = 0$ SubspacesDefinitionExamplesSubspaces of \mathbb{R}^2 Subspaces of \mathbb{R}^3 Exercises

A plane containing (0, 0, 0) is indeed a subspace of \mathbb{R}^3 .

Proof. Let (x_1, y_1, z_1) and $(x_2, y_2, z_2) \in W$. Then

$$ax_1 + by_1 + cz_1 = 0 ax_2 + by_2 + cz_2 = 0$$

Then we have

$$a(x_1 + x_2) + b(y_1 + y_2) + c(z_1 + z_2)$$

$$= \underbrace{(ax_1 + by_1 + cz_1)}_{0} + \underbrace{(ax_2 + by_2 + cz_2)}_{0}$$

$$= 0$$

SubspacesDefinitionExamplesSubspaces of \mathbb{R}^2 Subspaces of \mathbb{R}^3 Exercises

A plane containing (0, 0, 0) is indeed a subspace of \mathbb{R}^3 .

Proof. Let (x_1, y_1, z_1) and $(x_2, y_2, z_2) \in W$. Then

$$ax_1 + by_1 + cz_1 = 0 ax_2 + by_2 + cz_2 = 0$$

Then we have

$$a(x_1 + x_2) + b(y_1 + y_2) + c(z_1 + z_2)$$

$$= \underbrace{(ax_1 + by_1 + cz_1)}_{0} + \underbrace{(ax_2 + by_2 + cz_2)}_{0}$$

$$= 0$$
and $a(rx_1) + b(ry_1) + c(rz_1) = r(ax_1 + by_1 + cz_1)$

$$= 0 \square$$

SubspacesDefinitionExamplesSubspaces of \mathbb{R}^2 Subspaces of \mathbb{R}^3 Exercises

Subspaces

Integral Transforms - p. 24/38

0000

Summary of subspaces of \mathbb{R}^3

- **1.** $\{0\}$ and \mathbb{R}^3 .
- **2.** Planes containing (0, 0, 0).

SubspacesDefinitionExamplesSubspaces of \mathbb{R}^2 Subspaces of \mathbb{R}^3 Exercises

Subspaces

Summary of subspaces of \mathbb{R}^3

- **1.** $\{0\}$ and \mathbb{R}^3 .
- **2.** Planes containing (0, 0, 0).
- 3. Lines containing (0, 0, 0). (Intersection of two planes containing (0, 0, 0))

Subspaces Definition Examples Subspaces of \mathbb{R}^2 Subspaces of \mathbb{R}^3 Exercises

Subspaces

Exercises

Determine whether the given subset of \mathbb{R}^n is a subspace or not (Explain):

a)
$$W = \{(x, y) \in \mathbb{R}^2 | xy = 0\}.$$

b) $W = \{(x, y, z) \in \mathbb{R}^3 | 3x + 2y^2 + z = 0\}.$
c) $W = \{(x, y, z) \in \mathbb{R}^3 | 2x + 3y - z = 0\}.$

d) The set of all vectors (x_1, x_2, x_3) satisfying

$$2x_3 = x_1 - 10x_2$$

Subspaces Definition Examples Subspaces of \mathbb{R}^2 Subspaces of \mathbb{R}^3 Exercises

Subspaces

Exercises

Determine whether the given subset of \mathbb{R}^n is a subspace or not (Explain):

e) The set of all vectors in \mathbb{R}^4 satisfying the system of linear equations

$$2x_1 + 3x_2 + 5x_4 = 0$$
$$x_1 + x_2 - 3x_3 = 0$$

f) The set of all points $(x_1, x_2, x_3, x_4) \in \mathbb{R}^4$ satisfying

Subspaces

$$x_1 + 2x_2 + 3x_3 + x_4 = -1$$

SubspacesDefinitionExamplesSubspaces of \mathbb{R}^2 Subspaces of \mathbb{R}^3 Exercises

Chapter 3

Vector Spaces of Functions

Spaces of Functions C(I) $C^{1}(I)$ $C^{r}(I)$ PC(I)Indicator functions $\chi_{A \cap B}$ $\chi_{A \cup B}$ (disjoint) $\chi_{A \cup B}$

Vector Spaces of Functions

Let $I \subseteq \mathbb{R}$ be an interval.

Spaces of Functions C(I) $C^{1}(I)$ $C^{r}(I)$ PC(I)Indicator functions $\chi_{A \cap B}$ $\chi_{A \cup B}$ (disjoint) $\chi_{A \cup B}$

Vector Spaces of Functions

Let $I \subseteq \mathbb{R}$ be an interval. Then I is of the form (for some a < b) $I = \begin{cases} \{x \in \mathbb{R} | \ a < x < b\}, & \text{an open interval;} \\ \{x \in \mathbb{R} | \ a \le x \le b\}, & \text{a closed interval;} \\ \{x \in \mathbb{R} | \ a \le x < b\}, \\ \{x \in \mathbb{R} | \ a < x \le b\}. \end{cases}$

Spaces of Functions

C(I) $C^{1}(I)$ $C^{r}(I)$ PC(I)Indicator functions $\chi_{A \cap B}$ $\chi_{A \cup B}$ (disjoint) $\chi_{A \cup B}$

Vector Spaces of Functions

Let $I \subseteq \mathbb{R}$ be an interval. Then recall that the space of <u>all</u> functions $f : I \longrightarrow \mathbb{R}$ is a vector space. We will now list some important subspaces:

Spaces of Functions

C(I) $C^{1}(I)$ $C^{r}(I)$ PC(I)Indicator functions $\chi_{A \cap B}$ $\chi_{A \cup B}$ (disjoint) $\chi_{A \cup B}$

Vector Spaces of Functions

Let $I \subseteq \mathbb{R}$ be an interval. Then recall that the space of <u>all</u> functions $f : I \longrightarrow \mathbb{R}$ is a vector space. We will now list some important subspaces:

Example (1). Let C(I) be the space of continuous functions. If f and g are continuous, so are the functions f + g and rf $(r \in \mathbb{R})$. Hence C(I) is a vector space. **Spaces of Functions**

C(I) $C^{1}(I)$ $C^{r}(I)$ PC(I)Indicator functions $\chi_{A \cap B}$ $\chi_{A \cup B}$ (disjoint) $\chi_{A \cup B}$

Vector Spaces of Functions

Let $I \subseteq \mathbb{R}$ be an interval. Then recall that the space of <u>all</u> functions $f : I \longrightarrow \mathbb{R}$ is a vector space. We will now list some important subspaces:

Example (1). Let C(I) be the space of continuous functions. If f and g are continuous, so are the functions f + g and rf $(r \in \mathbb{R})$. Hence C(I) is a vector space.

Recall, that a function is continuous, if the graph has no gaps. This can be formulated in different ways: **Spaces of Functions**

C(I) $C^{1}(I)$ $C^{r}(I)$ PC(I)Indicator functions $\chi_{A \cap B}$ $\chi_{A \cup B}$ (disjoint) $\chi_{A \cup B}$

Vector Spaces of Functions

Let $I \subseteq \mathbb{R}$ be an interval. Then recall that the space of <u>all</u> functions $f : I \longrightarrow \mathbb{R}$ is a vector space. We will now list some important subspaces:

Example (1). Let C(I) be the space of continuous functions. If f and g are continuous, so are the functions f + g and rf $(r \in \mathbb{R})$. Hence C(I) is a vector space.

Recall, that a function is continuous, if the graph has no gaps. This can be formulated in different ways:

a) Let $x_0 \in I$ and let $\epsilon > 0$. Then there exists a $\delta > 0$ such that for all $x \in I \cap (x_0 - \delta, x_0 + \delta)$ we have

 $|f(x) - f(x_0)| < \epsilon$

This tells us that the value of f at nearby points is arbitrarily close to the value of f at x_0 .

Spaces of Functions

C(I) $C^{1}(I)$ $C^{r}(I)$ PC(I)Indicator functions $\chi_{A \cap B}$ $\chi_{A \cup B}$ (disjoint) $\chi_{A \cup B}$

Vector Spaces of Functions

Let $I \subseteq \mathbb{R}$ be an interval. Then recall that the space of <u>all</u> functions $f : I \longrightarrow \mathbb{R}$ is a vector space. We will now list some important subspaces:

Example (1). Let C(I) be the space of continuous functions. If f and g are continuous, so are the functions f + g and rf $(r \in \mathbb{R})$. Hence C(I) is a vector space.

Recall, that a function is continuous, if the graph has no gaps. This can be formulated in different ways:

b) A reformulation of (a) is:

$$\lim_{x \to x_0} f(x) = f(x_0)$$

Spaces of Functions

C(I) $C^{1}(I)$ $C^{r}(I)$ PC(I)Indicator functions $\chi_{A \cap B}$ $\chi_{A \cup B}$ (disjoint) $\chi_{A \cup B}$

0000000

Vector Spaces of Functions

Example (2). The space $C^1(I)$. Here we assume that I is open.

Spaces of Functions C(I) $C^{1}(I)$ $C^{r}(I)$ PC(I)Indicator functions $\chi_{A \cap B}$ $\chi_{A \cup B}$ (disjoint) $\chi_{A \cup B}$

Vector Spaces of Functions

Example (2). The space $C^1(I)$. Here we assume that I is open. Recall that f is differentiable at x_0 if

$$\lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} = \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h} =: f'(x_0)$$

exists.

Spaces of Functions C(I) $C^{1}(I)$ $C^{r}(I)$ PC(I)Indicator functions $\chi_{A \cap B}$ $\chi_{A \cup B}$ (disjoint) $\chi_{A \cup B}$

Vector Spaces of Functions

Example (2). The space $C^1(I)$. Here we assume that I is open. Recall that f is differentiable at x_0 if

$$\lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} = \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h} =: f'(x_0)$$

exists. If $f'(x_0)$ exists for all $x_0 \in I$, then we say that f is <u>differentiable</u> on I. In this case we get a new function on I

$$x \mapsto f'(x)$$

We say that f is continuously differentiable on I if f' exists and is continuous on I.

Spaces of Functions C(I) $C^{1}(I)$ $C^{r}(I)$ PC(I)Indicator functions $\chi_{A \cap B}$ $\chi_{A \cup B}$ (disjoint) $\chi_{A \cup B}$

Vector Spaces of Functions

Example (2). The space $C^1(I)$. Here we assume that I is open. Recall that f is differentiable at x_0 if

$$\lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} = \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h} =: f'(x_0)$$

exists. We say that f is continuously differentiable on I if f' exists and is continuous on I. Recall that if f and g are differentiable, then so are

$$f+g$$
 and rf $(r\in\mathbb{R})$

moreover

$$(f+g)' = f' + g'; (rf)' = rf'$$

Spaces of Functions C(I) $C^{1}(I)$ $C^{r}(I)$ PC(I)Indicator functions $\chi_{A \cap B}$ $\chi_{A \cup B}$ (disjoint) $\chi_{A \cup B}$

Vector Spaces of Functions

Example (2). The space $C^1(I)$. Here we assume that I is open. Recall that f is differentiable at x_0 if

$$\lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} = \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h} =: f'(x_0)$$

exists. We say that f is continuously differentiable on I if f' exists and is continuous on I. Recall that if f and g are differentiable, then so are

$$f+g$$
 and rf $(r\in\mathbb{R})$

moreover

$$(f+g)' = f' + g'; (rf)' = rf'$$

As $f' + g'$ and rf' are continuous by Example (1), it follows that $C^1(I)$ is a vector space.

Spaces of Functions C(I) $C^{1}(I)$ $C^{r}(I)$ PC(I)Indicator functions $\chi_{A \cap B}$ $\chi_{A \cup B}$ (disjoint) $\chi_{A \cup B}$

00000

Vector Spaces of Functions

Let f(x) = |x| for $x \in \mathbb{R}$. Then f is continuous on \mathbb{R} but it is not differentiable on \mathbb{R} .

Spaces of Functions C(I) $C^{1}(I)$ $C^{r}(I)$ PC(I)Indicator functions $\chi_{A \cap B}$ $\chi_{A \cup B}$ (disjoint) $\chi_{A \cup B}$

Vector Spaces of Functions

Let f(x) = |x| for $x \in \mathbb{R}$. Then f is continuous on \mathbb{R} but it is not differentiable on \mathbb{R} . We show that f is not differentiable at $x_0 = 0$.

Spaces of Functions C(I) $C^{1}(I)$ $C^{r}(I)$ PC(I)Indicator functions $\chi_{A \cap B}$ $\chi_{A \cup B}$ (disjoint) $\chi_{A \cup B}$

Vector Spaces of Functions

Let f(x) = |x| for $x \in \mathbb{R}$. Then f is continuous on \mathbb{R} but it is not differentiable on \mathbb{R} . We show that f is not differentiable at $x_0 = 0$. For h > 0 we have

$$\frac{f(x_0+h) - f(x_0)}{h} = \frac{|h| - 0}{h} = \frac{h}{h} = 1$$

Spaces of Functions C(I) $C^{1}(I)$ $C^{r}(I)$ PC(I)Indicator functions $\chi_{A \cap B}$ $\chi_{A \cup B}$ (disjoint) $\chi_{A \cup B}$

hence

$$\lim_{h \to 0^+} \frac{f(x_0 + h) - f(x_0)}{h} = 1$$

Vector Spaces of Functions

Let f(x) = |x| for $x \in \mathbb{R}$. Then f is continuous on \mathbb{R} but it is not differentiable on \mathbb{R} . We show that f is not differentiable at $x_0 = 0$. For h > 0 we have

$$\frac{f(x_0+h) - f(x_0)}{h} = \frac{|h| - 0}{h} = \frac{h}{h} = 1$$

hence

$$\lim_{h \to 0^+} \frac{f(x_0 + h) - f(x_0)}{h} = 1$$

But if h < 0, then

$$\frac{f(x_0+h) - f(x_0)}{h} = \frac{|h| - 0}{h} = \frac{-h}{h} = -1$$

hence

$$\lim_{h \to 0^{-}} \frac{f(x_0 + h) - f(x_0)}{h} = -1$$

Spaces of Functions C(I) $C^{1}(I)$ $C^{r}(I)$ PC(I)Indicator functions $\chi_{A \cap B}$ $\chi_{A \cup B}$ (disjoint) $\chi_{A \cup B}$

Integral Transforms - p. 30/38

Vector Spaces of Functions

Let f(x) = |x| for $x \in \mathbb{R}$. Then f is continuous on \mathbb{R} but it is not differentiable on \mathbb{R} . We show that f is not differentiable at $x_0 = 0$. Therefore,

$$\lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h}$$

Spaces of Functions C(I) $C^{1}(I)$ $C^{r}(I)$ PC(I)Indicator functions $\chi_{A \cap B}$ $\chi_{A \cup B}$ (disjoint) $\chi_{A \cup B}$

does not exist.

00000

Vector Spaces of Functions

Space of r-times continuously diff. functs.

Example (3). The space $C^r(I)$ Let I = (a, b) be an open interval. and let $r \in \mathbb{N} = \{1, 2, 3, \dots\}.$

Definition. The function $f: I \longrightarrow \mathbb{R}$ is said to be <u>*r*-times continuously differentiable</u> if all the derivatives $f', f'', \cdots, f^{(r)}$ exist and $f^{(r)}: I \longrightarrow \mathbb{R}$ is continuous.

We denote by $C^{r}(I)$ the space of r-times continuously differentiable functions on I. $C^{r}(I)$ is a subspace of C(I).

Space of r-times continuously diff. functs.

Example (3). The space $C^r(I)$ Let I = (a, b) be an open interval. and let $r \in \mathbb{N} = \{1, 2, 3, \dots\}.$

Definition. The function $f: I \longrightarrow \mathbb{R}$ is said to be <u>*r*-times continuously differentiable</u> if all the derivatives $f', f'', \cdots, f^{(r)}$ exist and $f^{(r)}: I \longrightarrow \mathbb{R}$ is continuous.

We denote by $C^{r}(I)$ the space of r-times continuously differentiable functions on I. $C^{r}(I)$ is a subspace of C(I).

We have

$$C^{r}(I) \subsetneqq C^{r-1}(I) \subsetneq \cdots \subsetneqq C^{1}(I) \subsetneqq C(I).$$

Spaces of Functions C(I) $C^{1}(I)$ $C^{r}(I)$ PC(I)Indicator functions $\chi_{A \cap B}$ $\chi_{A \cup B}$ (disjoint) $\chi_{A \cup B}$

Vector Spaces of Functions

 $C^r(I) \neq C^{r-1}(I)$

We have seen that $C^1(I) \neq C(I)$. Let us try to find a function that is in $C^1(I)$ but not in $C^2(I)$.

Spaces of Functions C(I) $C^{1}(I)$ $C^{r}(I)$ PC(I)Indicator functions $\chi_{A \cap B}$ $\chi_{A \cup B}$ (disjoint) $\chi_{A \cup B}$

Vector Spaces of Functions

 $C^r(I) \neq C^{r-1}(I)$

We have seen that $C^1(I) \neq C(I)$. Let us try to find a function that is in $C^1(I)$ but not in $C^2(I)$.

Assume $0 \in I$ and let $f(x) = x^{\frac{5}{3}}$. Then f is differentiable and

$$f'(x) = \frac{5}{3}x^{\frac{2}{3}}$$

which is continuous.

Spaces of Functions C(I) $C^{1}(I)$ $C^{r}(I)$ PC(I)Indicator functions $\chi_{A \cap B}$ $\chi_{A \cup B}$ (disjoint) $\chi_{A \cup B}$

Vector Spaces of Functions

 $C^r(I) \neq C^{r-1}(I)$

We have seen that $C^1(I) \neq C(I)$. Let us try to find a function that is in $C^1(I)$ but not in $C^2(I)$.

Assume $0 \in I$ and let $f(x) = x^{\frac{5}{3}}$. Then f is differentiable and

$$f'(x) = \frac{5}{3}x^{\frac{2}{3}}$$

which is continuous.

If $x \neq 0$, then f' is differentiable and

$$f''(x) = \frac{10}{3}x^{-\frac{1}{3}}$$

Spaces of Functions C(I) $C^{1}(I)$ $C^{r}(I)$ PC(I)Indicator functions $\chi_{A \cap B}$ $\chi_{A \cup B}$ (disjoint) $\chi_{A \cup B}$

Vector Spaces of Functions

 $C^r(I) \neq C^{r-1}(I)$

But for x = 0 we have

$$\lim_{h \to 0} \frac{f'(h) - 0}{h} = \lim_{h \to 0} \frac{5}{3} \frac{h^{\frac{2}{3}}}{h} = \lim_{h \to 0} \frac{5}{3} h^{-\frac{1}{3}}$$

which does not exist.

Spaces of Functions C(I) $C^{1}(I)$ $C^{r}(I)$ PC(I)Indicator functions $\chi_{A \cap B}$ $\chi_{A \cup B}$ (disjoint) $\chi_{A \cup B}$

Vector Spaces of Functions

 $C^r(I) \neq C^{r-1}(I)$

But for x = 0 we have

$$\lim_{h \to 0} \frac{f'(h) - 0}{h} = \lim_{h \to 0} \frac{5}{3} \frac{h^{\frac{2}{3}}}{h} = \lim_{h \to 0} \frac{5}{3} h^{-\frac{1}{3}}$$

which does not exist.

Remark. One can show that the function

$$f(x) = x^{\frac{3r-1}{3}}$$

is in $C^{r-1}(\mathbb{R})$, but not in $C^r(\mathbb{R})$.

Spaces of Functions C(I) $C^{1}(I)$ $C^{r}(I)$ PC(I)Indicator functions $\chi_{A \cap B}$ $\chi_{A \cup B}$ (disjoint) $\chi_{A \cup B}$

Vector Spaces of Functions

 $C^r(I) \neq C^{r-1}(I)$

But for x = 0 we have

$$\lim_{h \to 0} \frac{f'(h) - 0}{h} = \lim_{h \to 0} \frac{5}{3} \frac{h^{\frac{2}{3}}}{h} = \lim_{h \to 0} \frac{5}{3} h^{-\frac{1}{3}}$$

which does not exist.

Remark. One can show that the function

$$f(x) = x^{\frac{3r-1}{3}}$$
 is in $C^{r-1}(\mathbb{R}),$ but not in $C^r(\mathbb{R}).$

Thus, as stated before, we have

 $C^{r}(I) \subsetneqq C^{r-1}(I) \subsetneq \cdots \subsetneqq C^{1}(I) \subsetneqq C(I).$

Spaces of Functions C(I) $C^{1}(I)$ $C^{r}(I)$ PC(I)Indicator functions $\chi_{A \cap B}$ $\chi_{A \cup B}$ (disjoint) $\chi_{A \cup B}$

Vector Spaces of Functions

Piecewise-continuous functions

Example (4). Piecewise-continuous functions **Definition.** Let I = [a, b). A function $f : I \longrightarrow \mathbb{R}$ is called piecewise-continuous if there exists finitely many points

 $a = x_0 < x_1 < \dots < x_n = b$

such that f is continuous on each of the sub-intervals (x_i, x_{i+1}) for $i = 0, 1, \dots, n-1$.

Spaces of Functions C(I) $C^{1}(I)$ $C^{r}(I)$ PC(I)Indicator functions $\chi_{A \cap B}$ $\chi_{A \cup B}$ (disjoint) $\chi_{A \cup B}$

Vector Spaces of Functions

Piecewise-continuous functions

Example (4). Piecewise-continuous functions **Definition.** Let I = [a, b). A function $f : I \longrightarrow \mathbb{R}$ is called piecewise-continuous if there exists finitely many points

 $a = x_0 < x_1 < \dots < x_n = b$

such that f is continuous on each of the sub-intervals (x_i, x_{i+1}) for $i = 0, 1, \dots, n-1$.

Remark. If f and g are both piecewise-continuous, then $f+g \text{ and } rf \ (r \in \mathbb{R})$

are piecewise-continuous.

Spaces of Functions C(I) $C^{1}(I)$ $C^{r}(I)$ PC(I)Indicator functions $\chi_{A \cap B}$ $\chi_{A \cup B}$ (disjoint) $\chi_{A \cup B}$

Piecewise-continuous functions

Example (4). Piecewise-continuous functions **Definition.** Let I = [a, b). A function $f : I \longrightarrow \mathbb{R}$ is called piecewise-continuous if there exists finitely many points

 $a = x_0 < x_1 < \dots < x_n = b$

such that f is continuous on each of the sub-intervals (x_i, x_{i+1}) for $i = 0, 1, \dots, n-1$.

Remark. If f and g are both piecewise-continuous, then $f+g \text{ and } rf \ (r \in \mathbb{R})$

are piecewise-continuous.

Hence the space of piecewise-continuous functions is a vector space. Denote this vector space by PC(I).

Spaces of Functions C(I) $C^{1}(I)$ $C^{r}(I)$ PC(I)Indicator functions $\chi_{A \cap B}$ $\chi_{A \cup B}$ (disjoint) $\chi_{A \cup B}$

Vector Spaces of Functions

Important elements of PC(I) are the indicator functions χ_A , where $A \subseteq I$ a sub-interval.

Spaces of Functions C(I) $C^{1}(I)$ $C^{r}(I)$ PC(I)Indicator functions $\chi_{A \cup B}$ (disjoint) $\chi_{A \cup B}$

Vector Spaces of Functions

Important elements of PC(I) are the indicator functions χ_A , where $A \subseteq I$ a sub-interval.

Let $A \subseteq \mathbb{R}$ be a set. Define

$$\chi_A(x) = \begin{cases} 1, & \text{if } x \in A \\ 0, & \text{if } x \notin A \end{cases}$$

Spaces of Functions C(I) $C^{1}(I)$ $C^{r}(I)$ PC(I)Indicator functions $\chi_{A \cap B}$ $\chi_{A \cup B}$ (disjoint) $\chi_{A \cup B}$

Vector Spaces of Functions

Important elements of PC(I) are the indicator functions χ_A , where $A \subseteq I$ a sub-interval.

Let $A \subseteq \mathbb{R}$ be a set. Define

$$\chi_A(x) = \begin{cases} 1, & \text{if } x \in A \\ 0, & \text{if } x \notin A \end{cases}$$

So the values of χ_A tell us whether x is in A or not.

If $x \in A$, then $\chi_A(x) = 1$ and if $x \notin A$, then $\chi_A(x) = 0$.

Spaces of Functions C(I) $C^{1}(I)$ $C^{r}(I)$ PC(I)Indicator functions $\chi_{A \cup B}$ (disjoint) $\chi_{A \cup B}$

Vector Spaces of Functions

Important elements of PC(I) are the indicator functions χ_A , where $A \subseteq I$ a sub-interval.

Let $A \subseteq \mathbb{R}$ be a set. Define

$$\chi_A(x) = \begin{cases} 1, & \text{if } x \in A \\ 0, & \text{if } x \notin A \end{cases}$$

Spaces of Functions C(I) $C^{1}(I)$ $C^{r}(I)$ PC(I)Indicator functions $\chi_{A \cap B}$ $\chi_{A \cup B}$ (disjoint) $\chi_{A \cup B}$

So the values of χ_A tell us whether x is in A or not.

If $x \in A$, then $\chi_A(x) = 1$ and if $x \notin A$, then $\chi_A(x) = 0$.

We will work a lot with indicator functions so let us look at some of their properties.

Vector Spaces of Functions

Lemma. Let $A, B \subseteq I$. Then

$$\chi_{A \cap B}(x) = \chi_A(x) \ \chi_B(x)$$

Spaces of Functions C(I) $C^{1}(I)$ $C^{r}(I)$ PC(I)Indicator functions $\chi_{A \cup B}$ (disjoint) $\chi_{A \cup B}$

(*)

Vector Spaces of Functions

Lemma. Let $A, B \subseteq I$. Then $\chi_{A \cap B}(x) = \chi_A(x) \chi_B(x)$ Proof. We have to show that the two functions $x \mapsto \chi_{A \cap B}(x)$ and $x \mapsto \chi_A(x)\chi_B(x)$

take the same values at every point $x \in I$. So lets evaluate both functions:

Spaces of Functions C(I) $C^{1}(I)$ $C^{r}(I)$ PC(I)Indicator functions $\chi_{A \cup B}$ (disjoint) $\chi_{A \cup B}$

(*)

Vector Spaces of Functions

 $\chi_{A\cap B}(x) = \chi_A(x) \chi_B(x)$ (*Proof.* We have to show that the two functions $x \mapsto \chi_{A\cap B}(x)$ and $x \mapsto \chi_A(x)\chi_B(x)$ take the same values at every point $x \in I$. So lets evaluate both functions:

If $x \in A$ and $x \in B$, that is $x \in A \cap B$, then $\chi_{A \cap B}(x) = 1$ and,

Lemma. Let $A, B \subseteq I$. Then

Spaces of Functions
C(I)
$C^1(I)$
$C^r(I)$
PC(I)
Indicator functions
$\chi_{A\cap B}$
$\chi_{A\cup B}$ (disjoint)
$\chi_{A\cup B}$

(*)

Lemma. Let $A, B \subseteq I$. Then

$$\chi_{A\cap B}(x) = \chi_A(x) \chi_B(x)$$

Proof. We have to show that the two functions

$$x \mapsto \chi_{A \cap B}(x)$$
 and $x \mapsto \chi_A(x)\chi_B(x)$

take the same values at every point $x \in I$. So lets evaluate both functions:

If $x \in A$ and $x \in B$, that is $x \in A \cap B$, then $\chi_{A \cap B}(x) = 1$ and,

since $\chi_A(x) = 1$ and $\chi_B(x) = 1$, we also have $\chi_A(x)\chi_B(x) = 1$.

Thus, the left and the right hand sides of (*) agree.

Spaces of Functions C(I) $C^{1}(I)$ $C^{r}(I)$ PC(I)Indicator functions $\chi_{A \cup B}$ (disjoint) $\chi_{A \cup B}$

(*)

Lemma. Let $A, B \subseteq I$. Then $\chi_{A \cap B}(x) = \chi_A(x) \chi_B(x)$ Proof. We have to show that the two functions $x \mapsto \chi_{A \cap B}(x)$ and $x \mapsto \chi_A(x)\chi_B(x)$

take the same values at every point $x \in I$. So lets evaluate both functions:

On the other hand, if $x \notin A \cap B$, then there are two possibilities:

Spaces of Functions
C(I)
$C^1(I)$
$C^r(I)$
PC(I)
Indicator functions
$\chi_{A\cap B}$
$\chi_{A\cup B}$ (disjoint)
$\chi_{A\cup B}$

(*)

Lemma. Let $A, B \subseteq I$. Then $\chi_{A \cap B}(x) = \chi_A(x) \chi_B(x)$ *Proof.* We have to show that the two functions $x \mapsto \chi_{A \cap B}(x)$ and $x \mapsto \chi_A(x)\chi_B(x)$

take the same values at every point $x \in I$. So lets evaluate both functions:

On the other hand, if $x \notin A \cap B$, then there are two possibilities:

•
$$x \notin A$$
 then $\chi_A(x) = 0$, so $\chi_A(x)\chi_B(x) = 0$.

Spaces of Functions
C(I)
$C^1(I)$
$C^r(I)$
PC(I)
Indicator functions
$\chi_{A\cap B}$
$\chi_{A\cup B}$ (disjoint)
$\chi_{A\cup B}$

(*)

Lemma. Let $A, B \subseteq I$. Then $\chi_{A \cap B}(x) = \chi_A(x) \chi_B(x)$ *Proof.* We have to show that the two functions

$$x \mapsto \chi_{A \cap B}(x)$$
 and $x \mapsto \chi_A(x)\chi_B(x)$

take the same values at every point $x \in I$. So lets evaluate both functions:

On the other hand, if $x \notin A \cap B$, then there are two possibilities:

- $x \notin A$ then $\chi_A(x) = 0$, so $\chi_A(x)\chi_B(x) = 0$.
- $x \notin B$ then $\chi_B(x) = 0$, so $\chi_A(x)\chi_B(x) = 0$.

It follows that

$$0 = \chi_{A \cap B}(x) = \chi_A(x)\chi_B(x) \quad \Box$$

Spaces of Functions C(I) $C^{1}(I)$ $C^{r}(I)$ PC(I)Indicator functions $\chi_{A \cup B}$ (disjoint) $\chi_{A \cup B}$

Vector Spaces of Functions

Integral Transforms - p. 36/38

(*)

What about $\chi_{A\cup B}$? Can we express it in terms of χ_A , χ_B ?

Spaces of Functions C(I) $C^{1}(I)$ $C^{r}(I)$ PC(I)Indicator functions $\chi_{A \cap B}$ $\chi_{A \cup B}$ (disjoint) $\chi_{A \cup B}$

Vector Spaces of Functions

What about $\chi_{A\cup B}$? Can we express it in terms of χ_A , χ_B ? If *A* and *B* are disjoint, that is $A \cap B = \emptyset$ then

 $\chi_{A\cup B}(x) = \chi_A(x) + \chi_B(x).$

Spaces of FunctionsC(I) $C^1(I)$ $C^r(I)$ PC(I)Indicator functions $\chi_{A \cap B}$ $\chi_{A \cup B}$ (disjoint) $\chi_{A \cup B}$

Vector Spaces of Functions

What about $\chi_{A\cup B}$? Can we express it in terms of χ_A , χ_B ? If *A* and *B* are disjoint, that is $A \cap B = \emptyset$ then

 $\chi_{A\cup B}(x) = \chi_A(x) + \chi_B(x).$

Let us prove this:

If $x \notin A \cup B$, then $x \notin A$ and $x \notin B$. Thus the LHS (left hand side) and the RHS (right hand side) are both zero.

Spaces of Functions C(I) $C^{1}(I)$ $C^{r}(I)$ PC(I)Indicator functions $\chi_{A \cap B}$ $\chi_{A \cup B}$ (disjoint) $\chi_{A \cup B}$

What about $\chi_{A\cup B}$? Can we express it in terms of χ_A , χ_B ? If *A* and *B* are disjoint, that is $A \cap B = \emptyset$ then

 $\chi_{A\cup B}(x) = \chi_A(x) + \chi_B(x).$

Let us prove this:

- If $x \notin A \cup B$, then $x \notin A$ and $x \notin B$. Thus the LHS (left hand side) and the RHS (right hand side) are both zero.
- If $x \in A \cup B$ then either

Spaces of Functions C(I) $C^{1}(I)$ $C^{r}(I)$ PC(I)Indicator functions $\chi_{A \cap B}$ $\chi_{A \cup B}$ (disjoint) $\chi_{A \cup B}$

What about $\chi_{A\cup B}$? Can we express it in terms of χ_A , χ_B ? If *A* and *B* are disjoint, that is $A \cap B = \emptyset$ then

 $\chi_{A\cup B}(x) = \chi_A(x) + \chi_B(x).$

Let us prove this:

- If $x \notin A \cup B$, then $x \notin A$ and $x \notin B$. Thus the LHS (left hand side) and the RHS (right hand side) are both zero.
- If $x \in A \cup B$ then either
 - x is in A but not in B. In this case $\chi_{A\cup B}(x) = 1$ and $\chi_A(x) + \chi_B(x) = 1 + 0 = 1$

```
Spaces of Functions

C(I)

C^{1}(I)

C^{r}(I)

PC(I)

Indicator functions

\chi_{A \cap B}

\chi_{A \cup B} (disjoint)

\chi_{A \cup B}
```

Vector Spaces of Functions

What about $\chi_{A\cup B}$? Can we express it in terms of χ_A , χ_B ? If *A* and *B* are disjoint, that is $A \cap B = \emptyset$ then

 $\chi_{A\cup B}(x) = \chi_A(x) + \chi_B(x).$

Let us prove this:

- If $x \notin A \cup B$, then $x \notin A$ and $x \notin B$. Thus the LHS (left hand side) and the RHS (right hand side) are both zero.
- If $x \in A \cup B$ then either
 - x is in A but not in B. In this case $\chi_{A\cup B}(x) = 1$ and $\chi_A(x) + \chi_B(x) = 1 + 0 = 1$

or

• x is in B but not in A. In this case

 $\chi_{A\cup B}(x) = 1 \text{ and } \chi_A(x) + \chi_B(x) = 0 + 1 = 1 \square$

Vector Spaces of Functions

Spaces of Functions

Indicator functions

(ALIR (disioint)

C(I)

 $C^1(I)$

 $\frac{C^r(I)}{PC(I)}$

 $\chi_{A\cap B}$

 $\chi_{A\cup B}$

Thus we have, If $A \cap B = \emptyset$, then $\chi_{A \cup B}(x) = \chi_A(x) + \chi_B(x)$.

Spaces of Functions C(I) $C^{1}(I)$ $C^{r}(I)$ PC(I)Indicator functions $\chi_{A \cap B}$ $\chi_{A \cup B}$ (disjoint) $\chi_{A \cup B}$

Vector Spaces of Functions

Thus we have, If $A \cap B = \emptyset$, then $\chi_{A \cup B}(x) = \chi_A(x) + \chi_B(x)$. Now, what if $A \cap B \neq \emptyset$?

Spaces of Functions C(I) $C^{1}(I)$ $C^{r}(I)$ PC(I)Indicator functions $\chi_{A \cap B}$ $\chi_{A \cup B}$ (disjoint) $\chi_{A \cup B}$

Vector Spaces of Functions

Thus we have, If $A \cap B = \emptyset$, then $\chi_{A \cup B}(x) = \chi_A(x) + \chi_B(x)$. Now, what if $A \cap B \neq \emptyset$? Lemma. $\chi_{A \cup B}(x) = \chi_A(x) + \chi_B(x) - \chi_{A \cap B}(x)$.

Spaces of Functions C(I) $C^{1}(I)$ $C^{r}(I)$ PC(I)Indicator functions $\chi_{A \cap B}$ $\chi_{A \cup B}$ (disjoint) $\chi_{A \cup B}$

Vector Spaces of Functions

Thus we have,

- If $A \cap B = \emptyset$, then $\chi_{A \cup B}(x) = \chi_A(x) + \chi_B(x)$.
- Now, what if $A \cap B \neq \emptyset$?

Lemma. $\chi_{A\cup B}(x) = \chi_A(x) + \chi_B(x) - \chi_{A\cap B}(x).$ *Proof.*

If $x \notin A \cup B$, then both of the LHS and the RHS take the value 0.

Spaces of Functions C(I) $C^{1}(I)$ $C^{r}(I)$ PC(I)Indicator functions $\chi_{A \cap B}$ $\chi_{A \cup B}$ (disjoint) $\chi_{A \cup B}$

Vector Spaces of Functions

Thus we have,

- If $A \cap B = \emptyset$, then $\chi_{A \cup B}(x) = \chi_A(x) + \chi_B(x)$.
- Now, what if $A \cap B \neq \emptyset$?

Lemma. $\chi_{A\cup B}(x) = \chi_A(x) + \chi_B(x) - \chi_{A\cap B}(x).$ *Proof.*

- If $x \notin A \cup B$, then both of the LHS and the RHS take the value 0.
- If $x \in A \cup B$, then we have the following possibilities:

Spaces of Functions C(I) $C^{1}(I)$ $C^{r}(I)$ PC(I)Indicator functions $\chi_{A \cap B}$ $\chi_{A \cup B}$ (disjoint) $\chi_{A \cup B}$

Vector Spaces of Functions

1

Thus we have,

If $A \cap B = \emptyset$, then $\chi_{A \cup B}(x) = \chi_A(x) + \chi_B(x)$.

Now, what if $A \cap B \neq \emptyset$?

Lemma. $\chi_{A\cup B}(x) = \chi_A(x) + \chi_B(x) - \chi_{A\cap B}(x).$ *Proof.*

- If $x \notin A \cup B$, then both of the LHS and the RHS take the value 0.
- If $x \in A \cup B$, then we have the following possibilities:

1. If
$$x \in A$$
, $x \notin B$, then
 $\chi_{A \cup B}(x) = 1$
 $\chi_A(x) + \chi_B(x) - \chi_{A \cap B} = 1 + 0 - 0 =$

Spaces of Functions C(I) $C^{1}(I)$ $C^{r}(I)$ PC(I)Indicator functions $\chi_{A \cap B}$ $\chi_{A \cup B}$ (disjoint) $\chi_{A \cup B}$

Vector Spaces of Functions

Thus we have,

- If $A \cap B = \emptyset$, then $\chi_{A \cup B}(x) = \chi_A(x) + \chi_B(x)$.
- Now, what if $A \cap B \neq \emptyset$?

Lemma.
$$\chi_{A\cup B}(x) = \chi_A(x) + \chi_B(x) - \chi_{A\cap B}(x).$$

Proof.

- If $x \notin A \cup B$, then both of the LHS and the RHS take the value 0.
- If $x \in A \cup B$, then we have the following possibilities:

1. If
$$x \in A$$
, $x \notin B$, then
 $\chi_{A \cup B}(x) = 1$
 $\chi_A(x) + \chi_B(x) - \chi_{A \cap B} = 1 + 0 - 0 = 1$

2. Similarly for the case $x \in B$, $x \notin A$: LHS equals the RHS.

Spaces of Functions C(I) $C^{1}(I)$ $C^{r}(I)$ PC(I)Indicator functions $\chi_{A \cap B}$ $\chi_{A \cup B}$ (disjoint) $\chi_{A \cup B}$

Vector Spaces of Functions

Thus we have,

- If $A \cap B = \emptyset$, then $\chi_{A \cup B}(x) = \chi_A(x) + \chi_B(x)$.
- Now, what if $A \cap B \neq \emptyset$?

Lemma.
$$\chi_{A\cup B}(x) = \chi_A(x) + \chi_B(x) - \chi_{A\cap B}(x).$$

Proof.

- If $x \notin A \cup B$, then both of the LHS and the RHS take the value 0.
- If x ∈ A ∪ B, then we have the following possibilities:
 3. If x ∈ A ∩ B, then

 $\chi_{A\cup B}(x) = 1$ $\chi_A(x) + \chi_B(x) - \chi_{A\cap B} = 1 + 1 - 1 = 1$ Spaces of Functions C(I) $C^{1}(I)$ $C^{r}(I)$ PC(I)Indicator functions $\chi_{A \cap B}$ $\chi_{A \cup B}$ (disjoint) $\chi_{A \cup B}$

Vector Spaces of Functions

Thus we have,

If $A \cap B = \emptyset$, then $\chi_{A \cup B}(x) = \chi_A(x) + \chi_B(x)$.

Now, what if $A \cap B \neq \emptyset$?

Lemma. $\chi_{A\cup B}(x) = \chi_A(x) + \chi_B(x) - \chi_{A\cap B}(x).$ *Proof.*

- If $x \notin A \cup B$, then both of the LHS and the RHS take the value 0.
- If x ∈ A ∪ B, then we have the following possibilities:
 3. If x ∈ A ∩ B, then

 $\chi_{A\cup B}(x) = 1$ $\chi_A(x) + \chi_B(x) - \chi_{A\cap B} = 1 + 1 - 1 = 1$

As we have checked all possibilities, we have shown that the statement in the lemma is correct

Spaces of Functions C(I) $C^{1}(I)$ $C^{r}(I)$ PC(I)Indicator functions $\chi_{A \cup B}$ (disjoint) $\chi_{A \cup B}$

000000000

Vector Spaces of Functions