Integral Transforms Math 2025

Gestur Olafsson

Mathematics Department
Louisiana State University

Integral Transforms - p. 1/38

Chapter 1

Vector Spaces
Definition
Immediate results
Examples
\mathbb{R}^{n} (columns)
\mathbb{R}^{n} (rows)
\mathbb{R}^{A}
V^{A}
Exercises

Vector Spaces over \mathbb{R}

Vector Spaces over \mathbb{R}

Definition. vector space over \mathbb{R} is a set V with operations of addition + and scalar multiplication \cdot satisfying the following properties:

Vector Spaces

Definition

Immediate results
Examples
\mathbb{R}^{n} (columns)
\mathbb{R}^{n} (rows)
\mathbb{R}^{A}
V^{A}
Exercises

Vector Spaces over \mathbb{R}

Definition. vector space over \mathbb{R} is a set V with operations of addition + and scalar multiplication \cdot satisfying the following properties:

- A1 (Closure of addition)

For all $u, v \in V, u+v$ is defined and $u+v \in V$.

Vector Spaces

Definition

Immediate results
Examples
\mathbb{R}^{n} (columns)
\mathbb{R}^{n} (rows)
\mathbb{R}^{A}
V^{A}
Exercises

Vector Spaces over \mathbb{R}

Definition. vector space over \mathbb{R} is a set V with operations of addition + and scalar multiplication \cdot satisfying the following properties:

- A1 (Closure of addition)

For all $u, v \in V, u+v$ is defined and $u+v \in V$.

- A2 (Commutativity for addition)

$$
u+v=v+u \text { for all } u, v \in V
$$

Vector Spaces

Definition

Immediate results
Examples
\mathbb{R}^{n} (columns)
\mathbb{R}^{n} (rows)
\mathbb{R}^{A}
V^{A}
Exercises

Vector Spaces over \mathbb{R}

Definition. vector space over \mathbb{R} is a set V with operations of addition + and scalar multiplication \cdot satisfying the following properties:

- A1 (Closure of addition)

For all $u, v \in V, u+v$ is defined and $u+v \in V$.

- A2 (Commutativity for addition)

$$
u+v=v+u \text { for all } u, v \in V
$$

- A3 (Associativity for addition)

$$
u+(v+w)=(u+v)+w \text { for all } u, v, w \in V
$$

Vector Spaces

Definition

Immediate results
Examples
\mathbb{R}^{n} (columns)
\mathbb{R}^{n} (rows)
\mathbb{R}^{A}
V^{A}
Exercises

Vector Spaces over \mathbb{R}

Definition. vector space over \mathbb{R} is a set V with operations of addition + and scalar multiplication \cdot satisfying the following properties:

- A1 (Closure of addition)

For all $u, v \in V, u+v$ is defined and $u+v \in V$.

- A2 (Commutativity for addition)

$$
u+v=v+u \text { for all } u, v \in V
$$

- A3 (Associativity for addition)

$$
u+(v+w)=(u+v)+w \text { for all } u, v, w \in V
$$

- A4 (Existence of additive identity) There exists an element $\overrightarrow{0}$ such that $u+\overrightarrow{0}=u$ for all $u \in V$.

Vector Spaces

Definition

Immediate results
Examples
\mathbb{R}^{n} (columns)
\mathbb{R}^{n} (rows)
\mathbb{R}^{A}
V^{A}
Exercises

Vector Spaces over \mathbb{R}

Definition. vector space over \mathbb{R} is a set V with operations of addition + and scalar multiplication \cdot satisfying the following properties:

- A1 (Closure of addition)

For all $u, v \in V, u+v$ is defined and $u+v \in V$.

- A2 (Commutativity for addition) $u+v=v+u$ for all $u, v \in V$.
- A3 (Associativity for addition)

$$
u+(v+w)=(u+v)+w \text { for all } u, v, w \in V
$$

- A4 (Existence of additive identity) There exists an element $\overrightarrow{0}$ such that $u+\overrightarrow{0}=u$ for all $u \in V$.
- A5 (Existence of additive inverse)

For each $u \in V$, there exists an element -denoted by $-u$ such that $u+(-u)=\overrightarrow{0}$.

Vector Spaces

Definition

Immediate results
Examples
\mathbb{R}^{n} (columns)
\mathbb{R}^{n} (rows)
\mathbb{R}^{A}
V^{A}
Exercises

Vector Spaces over \mathbb{R}

Definition. A vector space over \mathbb{R} is a set V with operations of addition + and scalar multiplication • satisfying the following properties:

Vector Spaces

Definition

Immediate results
Examples
\mathbb{R}^{n} (columns)
\mathbb{R}^{n} (rows)
\mathbb{R}^{A}
V^{A}
Exercises

Vector Spaces over \mathbb{R}

Definition. A vector space over \mathbb{R} is a set V with operations of addition + and scalar multiplication • satisfying the following properties:

- M1 (Closure for scalar multiplication)

For each number r and each $u \in V, r \cdot u$ is defined and $r \cdot u \in V$.

Vector Spaces

Definition

Immediate results
Examples
\mathbb{R}^{n} (columns)
\mathbb{R}^{n} (rows)
\mathbb{R}^{A}
V^{A}
Exercises

Vector Spaces over \mathbb{R}

Definition. A vector space over \mathbb{R} is a set V with operations of addition + and scalar multiplication • satisfying the following properties:

- M1 (Closure for scalar multiplication)

For each number r and each $u \in V, r \cdot u$ is defined and $r \cdot u \in V$.

Vector Spaces

Definition

Immediate results
Examples
\mathbb{R}^{n} (columns)
\mathbb{R}^{n} (rows)
\mathbb{R}^{A}
V^{A}
Exercises

- M2 (Multiplication by 1)
$1 \cdot u=u$ for all $u \in V$.

Vector Spaces over \mathbb{R}

Definition. A vector space over \mathbb{R} is a set V with operations of addition + and scalar multiplication • satisfying the following properties:

- M1 (Closure for scalar multiplication)

For each number r and each $u \in V, r \cdot u$ is defined and $r \cdot u \in V$.

Vector Spaces

Definition

Immediate results
Examples
\mathbb{R}^{n} (columns)
\mathbb{R}^{n} (rows)
\mathbb{R}^{A}
V^{A}
Exercises

- M2 (Multiplication by 1)
$1 \cdot u=u$ for all $u \in V$.
- M3 (Associativity for multiplication)
$r \cdot(s \cdot u)=(r \cdot s) \cdot u$ for $r, s \in \mathbb{R}$ and all $u \in V$.

Vector Spaces over \mathbb{R}

Definition. A vector space over \mathbb{R} is a set V with operations of addition + and scalar multiplication \cdot satisfying the following properties:

- M1 (Closure for scalar multiplication)

For each number r and each $u \in V, r \cdot u$ is defined and $r \cdot u \in V$.

- M2 (Multiplication by 1)
$1 \cdot u=u$ for all $u \in V$.
- M3 (Associativity for multiplication)
$r \cdot(s \cdot u)=(r \cdot s) \cdot u$ for $r, s \in \mathbb{R}$ and all $u \in V$.
- D1 (First distributive property)
$r \cdot(u+v)=r \cdot u+r \cdot v$ for all $r \in \mathbb{R}$ and all $u, v \in V$.

Vector Spaces
Definition
Immediate results
Examples
\mathbb{R}^{n} (columns)
\mathbb{R}^{n} (rows)
\mathbb{R}^{A}
V^{A}
Exercises

Vector Spaces over \mathbb{R}

Definition. A vector space over \mathbb{R} is a set V with operations of addition + and scalar multiplication • satisfying the following properties:

- M1 (Closure for scalar multiplication)

For each number r and each $u \in V, r \cdot u$ is defined and $r \cdot u \in V$.

- M2 (Multiplication by 1)
$1 \cdot u=u$ for all $u \in V$.
- M3 (Associativity for multiplication)
$r \cdot(s \cdot u)=(r \cdot s) \cdot u$ for $r, s \in \mathbb{R}$ and all $u \in V$.
- D1 (First distributive property)
$r \cdot(u+v)=r \cdot u+r \cdot v$ for all $r \in \mathbb{R}$ and all $u, v \in V$.
- D2 (Second distributive property)

$$
(r+s) \cdot u=r \cdot u+s \cdot u \text { for all } r, s \in \mathbb{R} \text { and all } u \in V
$$

Some immediate results

Remark. The zero element $\overrightarrow{0}$ is unique, i.e., if $\overrightarrow{0_{1}}, \overrightarrow{0_{2}} \in V$ are such that

$$
u+\overrightarrow{0_{1}}=u+\overrightarrow{0_{2}}=u, \forall u \in V
$$

$$
\text { then } \overrightarrow{0_{1}}=\overrightarrow{0_{2}}
$$

Vector Spaces
Definition
Immediate results
Examples
\mathbb{R}^{n} (columns)
\mathbb{R}^{n} (rows)
\mathbb{R}^{A}
V^{A}
Exercises

Some immediate results

Remark. The zero element $\overrightarrow{0}$ is unique, i.e., if $\overrightarrow{0_{1}}, \overrightarrow{0_{2}} \in V$ are such that

$$
u+\overrightarrow{0_{1}}=u+\overrightarrow{0_{2}}=u, \forall u \in V
$$

then $\overrightarrow{0_{1}}=\overrightarrow{0_{2}}$.
Proof. We have $\overrightarrow{0_{1}}=\overrightarrow{0_{1}}+\overrightarrow{0_{2}}=\overrightarrow{0_{2}}+\overrightarrow{0_{1}}=\overrightarrow{0_{2}}$

Vector Spaces
Definition
Immediate results
Examples
\mathbb{R}^{n} (columns)
\mathbb{R}^{n} (rows)
\mathbb{R}^{A}
V^{A}
Exercises

Some immediate results

Remark. The zero element $\overrightarrow{0}$ is unique, i.e., if $\overrightarrow{0_{1}}, \overrightarrow{0_{2}} \in V$ are such that

$$
u+\overrightarrow{0_{1}}=u+\overrightarrow{0_{2}}=u, \forall u \in V
$$

then $\overrightarrow{0_{1}}=\overrightarrow{0_{2}}$.
Proof. We have $\overrightarrow{0_{1}}=\overrightarrow{0_{1}}+\overrightarrow{0_{2}}=\overrightarrow{0_{2}}+\overrightarrow{0_{1}}=\overrightarrow{0_{2}}$

Vector Spaces
Definition
Immediate results
Examples
\mathbb{R}^{n} (columns)
\mathbb{R}^{n} (rows)
\mathbb{R}^{A}
V^{A}
Exercises

Lemma. Let $u \in V$, then $0 \cdot u=\overrightarrow{0}$.

Some immediate results

Remark. The zero element $\overrightarrow{0}$ is unique, i.e., if $\overrightarrow{0_{1}}, \overrightarrow{O_{2}} \in V$ are such that

$$
u+\overrightarrow{0_{1}}=u+\overrightarrow{0_{2}}=u, \forall u \in V
$$

then $\overrightarrow{0_{1}}=\overrightarrow{0_{2}}$.
Proof. We have $\overrightarrow{0_{1}}=\overrightarrow{0_{1}}+\overrightarrow{0_{2}}=\overrightarrow{0_{2}}+\overrightarrow{0_{1}}=\overrightarrow{0_{2}}$
Lemma. Let $u \in V$, then $0 \cdot u=\overrightarrow{0}$.
Proof.

$$
\begin{aligned}
u+0 \cdot u & =1 \cdot u+0 \cdot u \\
& =(1+0) \cdot u \\
& =1 \cdot u \\
& =u
\end{aligned}
$$

Some immediate results

Remark. The zero element $\overrightarrow{0}$ is unique, i.e., if $\overrightarrow{0_{1}}, \overrightarrow{0_{2}} \in V$ are such that

$$
u+\overrightarrow{0_{1}}=u+\overrightarrow{0_{2}}=u, \forall u \in V
$$

then $\overrightarrow{0_{1}}=\overrightarrow{0_{2}}$.
Proof. We have $\overrightarrow{0_{1}}=\overrightarrow{0_{1}}+\overrightarrow{0_{2}}=\overrightarrow{0_{2}}+\overrightarrow{0_{1}}=\overrightarrow{0_{2}}$
Lemma. Let $u \in V$, then $0 \cdot u=\overrightarrow{0}$.
Proof.
Thus

$$
\begin{aligned}
\overrightarrow{0}=u+(-u) & =(0 \cdot u+u)+(-u) \\
& =0 \cdot u+(u+(-u)) \\
& =0 \cdot u+\overrightarrow{0} \\
& =0 \cdot u
\end{aligned}
$$

Lemma. a) The element $-u$ is unique.
b) $-u=(-1) \cdot u$.

Vector Spaces
Definition
Immediate results
Examples
\mathbb{R}^{n} (columns)
\mathbb{R}^{n} (rows)
\mathbb{R}^{A}
V^{A}
Exercises

Lemma. a) The element $-u$ is unique.
b) $-u=(-1) \cdot u$.

Proof of part (b).

$$
\begin{aligned}
u+(-1) \cdot u & =1 \cdot u+(-1) \cdot u \\
& =(1+(-1)) \cdot u \\
& =0 \cdot u \\
& =\overrightarrow{0}
\end{aligned}
$$

Vector Spaces
Definition
Immediate results
Examples
\mathbb{R}^{n} (columns)
\mathbb{R}^{n} (rows)
\mathbb{R}^{A}
V^{A}
Exercises

Examples

\mathbb{R}^{n} (rows)
\mathbb{R}^{A}
V^{A}
Exercises

\mathbb{R}^{n} as column vectors

Before examining the axioms in more detail, let us discuss two examples.

Vector Spaces
Definition
Immediate results
Examples
\mathbb{R}^{n} (columns)
\mathbb{R}^{n} (rows)
\mathbb{R}^{A}
V^{A}
Exercises

\mathbb{R}^{n} as column vectors

$$
\begin{aligned}
& \text { Example. Let } V=\mathbb{R}^{n}, \text { considered as column vectors } \\
& \mathbb{R}^{n}=\left\{\left.\left(\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right) \right\rvert\, x_{1}, x_{2}, \ldots, x_{n} \in \mathbb{R}\right\} \\
& \begin{array}{l}
\text { Vector Spaces } \\
\text { Definition } \\
\text { Immediate results } \\
\text { Examples }
\end{array} \\
& \mathbb{R}^{n} \text { (columns) } \\
& \mathbb{R}^{n} \text { (rows) } \\
& \mathbb{R}^{A} \\
& V^{A} \\
& \text { Exercises }
\end{aligned}
$$

\mathbb{R}^{n} as column vectors

Example. Let $V=\mathbb{R}^{n}$.Then for

$$
u=\left(\begin{array}{c}
x_{1} \\
\vdots \\
x_{n}
\end{array}\right), v=\left(\begin{array}{c}
y_{1} \\
\vdots \\
y_{n}
\end{array}\right) \in \mathbb{R}^{n} \quad \text { and } r \in \mathbb{R}:
$$

Vector Spaces
Definition Immediate results
Examples
\mathbb{R}^{n} (columns)
\mathbb{R}^{n} (rows)
\mathbb{R}^{A}
V^{A}
Exercises

\mathbb{R}^{n} as column vectors

Example. Let $V=\mathbb{R}^{n}$.Then for

$$
u=\left(\begin{array}{c}
x_{1} \\
\vdots \\
x_{n}
\end{array}\right), v=\left(\begin{array}{c}
y_{1} \\
\vdots \\
y_{n}
\end{array}\right) \in \mathbb{R}^{n} \quad \text { and } r \in \mathbb{R}:
$$

Vector Spaces
Definition Immediate results
Examples
\mathbb{R}^{n} (columns)
\mathbb{R}^{n} (rows)
\mathbb{R}^{A}
V^{A}
Exercises

Define

$$
u+v=\left(\begin{array}{c}
x_{1}+y_{1} \\
\vdots \\
x_{n}+y_{n}
\end{array}\right) \quad \text { and } \quad r \cdot u=\left(\begin{array}{c}
r x_{1} \\
\vdots \\
r x_{n}
\end{array}\right)
$$

\mathbb{R}^{n} as column vectors

Example. Let $V=\mathbb{R}^{n}$.Then for

$$
u=\left(\begin{array}{c}
x_{1} \\
\vdots \\
x_{n}
\end{array}\right), v=\left(\begin{array}{c}
y_{1} \\
\vdots \\
y_{n}
\end{array}\right) \in \mathbb{R}^{n} \quad \text { and } r \in \mathbb{R}:
$$

Vector Spaces
Definition Immediate results
Examples
\mathbb{R}^{n} (columns)
\mathbb{R}^{n} (rows)
\mathbb{R}^{A}
V^{A}
Exercises

Note that the zero vector and the additive inverse of u are given by:

$$
\overrightarrow{0}=\left(\begin{array}{c}
0 \\
\vdots \\
0
\end{array}\right), \quad-u=\left(\begin{array}{c}
-x_{1} \\
\vdots \\
-x_{2}
\end{array}\right)
$$

\mathbb{R}^{n} as row vectors

Remark. \mathbb{R}^{n} can be considered as the space of all row vectors.

$$
\mathbb{R}^{n}=\left\{\left(x_{1}, \ldots, x_{n}\right) \mid x_{1}, \ldots, x_{n} \in \mathbb{R}\right\}
$$

\mathbb{R}^{n} as row vectors

Remark. \mathbb{R}^{n} can be considered as the space of all row vectors.

$$
\mathbb{R}^{n}=\left\{\left(x_{1}, \ldots, x_{n}\right) \mid x_{1}, \ldots, x_{n} \in \mathbb{R}\right\}
$$

The addition and scalar multiplication is again given coordinate wise

$$
\begin{gathered}
\left(x_{1}, \ldots, x_{n}\right)+\left(y_{1}, \ldots, y_{n}\right)=\left(x_{1}+y_{1}, \ldots, x_{n}+y_{n}\right) \\
r \cdot\left(x_{1}, \ldots, x_{n}\right)=\left(r x_{1}, \ldots, r x_{n}\right)
\end{gathered}
$$

Example. If $\vec{x}=(2,1,3), \vec{y}=(-1,2,-2)$ and $r=-4$ find $\vec{x}+\vec{y}$ and $r \cdot \vec{x}$.

Vector Spaces
Definition
Immediate results
Examples
\mathbb{R}^{n} (columns)
\mathbb{R}^{n} (rows)
\mathbb{R}^{A}
V^{A}
Exercises

Example. If $\vec{x}=(2,1,3), \vec{y}=(-1,2,-2)$ and $r=-4$ find $\vec{x}+\vec{y}$ and $r \cdot \vec{x}$.

Solution.

$$
\begin{aligned}
\vec{x}+\vec{y} & =(2,1,3)+(-1,2,-2) \\
& =(2-1,1+2,3-2) \\
& =(1,3,1)
\end{aligned}
$$

Example. If $\vec{x}=(2,1,3), \vec{y}=(-1,2,-2)$ and $r=-4$ find $\vec{x}+\vec{y}$ and $r \cdot \vec{x}$.

Solution.

$$
\begin{aligned}
\vec{x}+\vec{y} & =(2,1,3)+(-1,2,-2) \\
& =(2-1,1+2,3-2) \\
& =(1,3,1) \\
r \cdot \vec{x}=-4 & \cdot(2,1,3)=(-8,-4,-12) .
\end{aligned}
$$

Remark.

$$
\begin{aligned}
\left(x_{1}, \ldots, x_{n}\right)+(0, \ldots, 0) & =\left(x_{1}+0, \ldots, x_{n}+0\right) \\
& =\left(x_{1}, \ldots, x_{n}\right)
\end{aligned}
$$

So the additive identity is $\overrightarrow{0}=(0, \ldots, 0)$.

Vector Spaces Definition Immediate results Examples
\mathbb{R}^{n} (columns)
\mathbb{R}^{n} (rows)
\mathbb{R}^{A}
V^{A}
Exercises

Note also that

$$
\begin{aligned}
0 \cdot\left(x_{1}, \ldots, x_{n}\right) & =\left(0 x_{1}, \ldots, 0 x_{n}\right) \\
& =(0, \ldots, 0)
\end{aligned}
$$

for all $\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n}$.

Vector space of real-valued functions

Example. Let A be the interval $[0,1)$ and V be the space of functions $f: A \longrightarrow \mathbb{R}$,i.e.,

$$
V=\{f:[0,1) \longrightarrow \mathbb{R}\}
$$

Define addition and scalar multiplication by

$$
\begin{aligned}
(f+g)(x) & =f(x)+g(x) \\
(r \cdot f)(x) & =r f(x)
\end{aligned}
$$

Vector Spaces Definition Immediate results Examples
\mathbb{R}^{n} (columns)
\mathbb{R}^{n} (rows)
$\mathbb{R}^{\text {A }}$
V^{A}
Exercises

Vector space of real-valued functions

Example. Let A be the interval $[0,1)$ and V be the space of functions $f: A \longrightarrow \mathbb{R}$,i.e.,

$$
V=\{f:[0,1) \longrightarrow \mathbb{R}\}
$$

Define addition and scalar multiplication by

$$
\begin{aligned}
(f+g)(x) & =f(x)+g(x) \\
(r \cdot f)(x) & =r f(x)
\end{aligned}
$$

For instance, the function $f(x)=x^{4}$ is an element of V and so are

$$
g(x)=x+2 x^{2}, \quad h(x)=\cos x, \quad k(x)=e^{x}
$$

We have $(f+g)(x)=x+2 x^{2}+x^{4}$.

Vector space of real-valued functions

Example. Let A be the interval $[0,1)$ and V be the space of functions $f: A \longrightarrow \mathbb{R}$,i.e.,

$$
V=\{f:[0,1) \longrightarrow \mathbb{R}\}
$$

Define addition and scalar multiplication by

$$
\begin{aligned}
(f+g)(x) & =f(x)+g(x) \\
(r \cdot f)(x) & =r f(x)
\end{aligned}
$$

Remark. (a) The zero element is the function $\overrightarrow{0}$ which associates to each x the number 0 :

$$
\overrightarrow{0}(x)=0 \text { for all } x \in[0,1)
$$

Proof.

$$
(f+\overrightarrow{0})(x)=f(x)+\overrightarrow{0}(x)=f(x)+0=f(x)
$$

Vector space of real-valued functions

Example. Let A be the interval $[0,1)$ and V be the space of functions $f: A \longrightarrow \mathbb{R}$,i.e.,

$$
V=\{f:[0,1) \longrightarrow \mathbb{R}\}
$$

Define addition and scalar multiplication by

$$
\begin{aligned}
(f+g)(x) & =f(x)+g(x) \\
(r \cdot f)(x) & =r f(x)
\end{aligned}
$$

Remark. (b) The additive inverse is the function

$$
\begin{aligned}
& -f: x \mapsto-f(x) \\
& \text { Proof. }(f+(-f))(x)=f(x)-f(x)=0 \text { for all } x
\end{aligned}
$$

The vector space V^{A}

Example. Instead of $A=[0,1)$ we can take any set $A \neq \emptyset$, and we can replace \mathbb{R} by any vector space V. We set

$$
V^{A}=\{f: A \longrightarrow V\}
$$

and set

$$
\begin{aligned}
(f+g)(x) & =f(x)+g(x) \\
(r \cdot f)(x) & =r \cdot f(x)
\end{aligned}
$$

Vector Spaces Definition Immediate results Examples \mathbb{R}^{n} (columns) \mathbb{R}^{n} (rows) \mathbb{R}^{A}

Exercises

The vector space V^{A}

Example. Instead of $A=[0,1)$ we can take any set $A \neq \emptyset$, and we can replace \mathbb{R} by any vector space V. We set

$$
V^{A}=\{f: A \longrightarrow V\}
$$

and set

$$
\begin{aligned}
(f+g)(x) & =f(x)+g(x) \\
(r \cdot f)(x) & =r \cdot f(x)
\end{aligned}
$$

Vector Spaces Definition Immediate results Examples
\mathbb{R}^{n} (columns)
\mathbb{R}^{n} (rows)
\mathbb{R}^{A}
Exercises

The vector space V^{A}

Example. Instead of $A=[0,1)$ we can take any set $A \neq \emptyset$, and we can replace \mathbb{R} by any vector space V. We set

$$
V^{A}=\{f: A \longrightarrow V\}
$$

and set

$$
\begin{aligned}
(f+g)(x) & =f(x)+g(x) \\
(r \cdot f)(x) & =r \cdot f(x)
\end{aligned}
$$

Vector Spaces Definition Immediate results Examples
\mathbb{R}^{n} (columns)
\mathbb{R}^{n} (rows)
\mathbb{R}^{A}
V^{A}
Exercises

Remark. (a) The zero element is the function which associates to each x the vector $\overrightarrow{0}$:
$0: x \mapsto \overrightarrow{0}$
Proof

$$
\begin{aligned}
(f+0)(x) & =f(x)+0(x) \\
& =f(x)+\overrightarrow{0}=f(x)
\end{aligned}
$$

Remark.

(b) Here we prove that + is associative:

Proof. Let $f, g, h \in V^{A}$. Then

$$
\begin{aligned}
{[(f+g)+h](x) } & =(f+g)(x)+h(x) \\
& =(f(x)+g(x))+h(x) \\
& =f(x)+(g(x)+h(x)) \text { associativity in } V \\
& =f(x)+(g+h)(x) \\
& =[f+(g+h)](x)
\end{aligned}
$$

Exercises

Let $V=\mathbb{R}^{4}$. Evaluate the following:
a) $(2,-1,3,1)+(3,-1,1,-1)$.
b) $(2,1,5,-1)-(3,1,2,-2)$.
c) $10 \cdot(2,0,-1,1)$.
d) $(1,-2,3,1)+10 \cdot(1,-1,0,1)-3 \cdot(0,2,1,-2)$.
e) $x_{1} \cdot(1,0,0,0)+x_{2} \cdot(0,1,0,0)+x_{3} \cdot(0,0,1,0)+$ $x_{4} \cdot(0,0,0,1)$.

Vector Spaces
Definition Immediate results Examples
\mathbb{R}^{n} (columns)
\mathbb{R}^{n} (rows)
\mathbb{R}^{A}
V^{A}
Exercises

Chapter 2

Subspaces

Subspace of a vector space

In most applications we will be working with a subset W of a vector space V such that W itself is a vector space.

Subspaces
Definition
Examples
Subspaces of \mathbb{R}^{2}
Subspaces of \mathbb{R}^{3}
Exercises

Subspace of a vector space

In most applications we will be working with a subset W of a vector space V such that W itself is a vector space.

Question: Do we have to test all the axioms to find out if W is a vector space?

Subspaces
Definition
Examples
Subspaces of \mathbb{R}^{2}
Subspaces of \mathbb{R}^{3}
Exercises

Subspace of a vector space

In most applications we will be working with a subset W of a vector space V such that W itself is a vector space.

Question: Do we have to test all the axioms to find out if W is a vector space?

The answer is NO.
Subspaces
Definition
Examples
Subspaces of \mathbb{R}^{2}
Subspaces of \mathbb{R}^{3}
Exercises

Subspace of a vector space

In most applications we will be working with a subset W of a vector space V such that W itself is a vector space.

Question: Do we have to test all the axioms to find out if W is a vector space?

The answer is NO.
Theorem. Let $W \neq \emptyset$ be a subset of a vector space V. Then W, with the addition and scalar multiplication as V, is a vector space if and only if:

- $u+v \in W$ for all $u, v \in W \quad$ (or $W+W \subseteq W$)

■ $r \cdot u \in W$ for all $r \in \mathbb{R}$ and all $u \in W \quad$ (or $\mathbb{R} W \subseteq W$).

Subspaces
Definition
Examples
Subspaces of \mathbb{R}^{2}
Subspaces of \mathbb{R}^{3}
Exercises

Subspace of a vector space

In most applications we will be working with a subset W of a vector space V such that W itself is a vector space.

Question: Do we have to test all the axioms to find out if W is a vector space?

The answer is NO.
Theorem. Let $W \neq \emptyset$ be a subset of a vector space V. Then W, with the addition and scalar multiplication as V, is a vector space if and only if:

- $u+v \in W$ for all $u, v \in W \quad$ (or $W+W \subseteq W$)
- $r \cdot u \in W$ for all $r \in \mathbb{R}$ and all $u \in W$ (or $\mathbb{R} W \subseteq W$).

In this case we say that W is a subspace of V.

Definition
Examples
Subspaces of \mathbb{R}^{2}

Proof. Assume that $W+W \subseteq W$ and $\mathbb{R} W \subseteq W$.
To show that W is a vector space we have to show that all the 10 axioms hold for W. But that follows because the axioms hold for V and W is a subset of V :

Subspaces
Definition
Examples
Subspaces of \mathbb{R}^{2}
Subspaces of \mathbb{R}^{3}
Exercises

Proof. Assume that $W+W \subseteq W$ and $\mathbb{R} W \subseteq W$.
To show that W is a vector space we have to show that all the 10 axioms hold for W. But that follows because the axioms hold for V and W is a subset of V :

- A1 (Commutativity of addition)

For $u, v \in W$, we have $u+v=v+u$. This is because u, v are also in V and commutativity holds in V.

Subspaces
Definition
Examples
Subspaces of \mathbb{R}^{2}
Subspaces of \mathbb{R}^{3}
Exercises

Proof. Assume that $W+W \subseteq W$ and $\mathbb{R} W \subseteq W$.
To show that W is a vector space we have to show that all the 10 axioms hold for W. But that follows because the axioms hold for V and W is a subset of V :

- A1 (Commutativity of addition)

For $u, v \in W$, we have $u+v=v+u$. This is because u, v are also in V and commutativity holds in V.

- A4 (Existence of additive identity)

Take any vector $u \in W$. Then by assumption
$0 \cdot u=\overrightarrow{0} \in W$. Hence $\overrightarrow{0} \in W$.

Proof. Assume that $W+W \subseteq W$ and $\mathbb{R} W \subseteq W$.

To show that W is a vector space we have to show that all the 10 axioms hold for W. But that follows because the axioms hold for V and W is a subset of V :

- A1 (Commutativity of addition)

For $u, v \in W$, we have $u+v=v+u$. This is because u, v are also in V and commutativity holds in V.

- A4 (Existence of additive identity)

Take any vector $u \in W$. Then by assumption
$0 \cdot u=\overrightarrow{0} \in W$. Hence $\overrightarrow{0} \in W$.

- A5 (Existence of additive inverse)

If $u \in W$ then $-u=(-1) \cdot u \in W$.

Proof. Assume that $W+W \subseteq W$ and $\mathbb{R} W \subseteq W$.

To show that W is a vector space we have to show that all the 10 axioms hold for W. But that follows because the axioms hold for V and W is a subset of V :

- A1 (Commutativity of addition)

For $u, v \in W$, we have $u+v=v+u$. This is because u, v are also in V and commutativity holds in V.

- A4 (Existence of additive identity)

Take any vector $u \in W$. Then by assumption
$0 \cdot u=\overrightarrow{0} \in W$. Hence $\overrightarrow{0} \in W$.

- A5 (Existence of additive inverse) If $u \in W$ then $-u=(-1) \cdot u \in W$.
- One can check that the other axioms follow in the same way.

Examples

Usually the situation is that we are given a vector space V and a subset of vectors W satisfying some conditions and we need to see if W is a subspace of V.

Subspaces
Definition
Examples
Subspaces of \mathbb{R}^{2}
Subspaces of \mathbb{R}^{3}
Exercises

Examples

 subspace of V.Usually the situation is that we are given a vector space V and a subset of vectors W satisfying some conditions and we need to see if W is a

Subspaces
Definition
Examples
Subspaces of \mathbb{R}^{2}
Subspaces of \mathbb{R}^{3}
Exercises

$$
W=\{v \in V: \text { some conditions on } v\}
$$

Examples

Usually the situation is that we are given a vector space V and a subset of vectors W satisfying some conditions and we need to see if W is a subspace of V.

$$
W=\{v \in V: \text { some conditions on } v\}
$$

We will then have to show that

$$
\begin{array}{cc}
u, v \in W \\
r \in \mathbb{R} & \left.\begin{array}{c}
u+v \\
r \cdot u
\end{array}\right\} \text { Satisfy the same conditions. }
\end{array}
$$

Subspaces
Definition
Examples
Subspaces of \mathbb{R}^{2}
Subspaces of \mathbb{R}^{3}
Exercises

Lines through the origin as subspaces of \mathbb{R}^{2}

Example.

$$
\begin{aligned}
V & =\mathbb{R}^{2}, \\
W & =\{(x, y) \mid y=k x\} \quad \text { for a given } k \\
& =\text { line through }(0,0) \text { with slope } k .
\end{aligned}
$$

Subspaces Definition Examples

Subspaces of \mathbb{R}^{2}
Subspaces of \mathbb{R}^{3}
Exercises

Lines through the origin as subspaces of \mathbb{R}^{2}

Example.

$$
\begin{aligned}
V & =\mathbb{R}^{2}, \\
W & =\{(x, y) \mid y=k x\} \quad \text { for a given } k \\
& =\text { line through }(0,0) \text { with slope } k .
\end{aligned}
$$

Subspaces Definition Examples

Subspaces of \mathbb{R}^{2}
Subspaces of \mathbb{R}^{3}
Exercises

To see that W is in fact a subspace of \mathbb{R}^{2} :
Let $u=\left(x_{1}, y_{1}\right), v=\left(x_{2}, y_{2}\right) \in W$. Then $y_{1}=k x_{1}$ and $y_{2}=k x_{2}$

Lines through the origin as subspaces of \mathbb{R}^{2}

Example.

$$
\begin{aligned}
V & =\mathbb{R}^{2}, \\
W & =\{(x, y) \mid y=k x\} \quad \text { for a given } k \\
& =\text { line through }(0,0) \text { with slope } k .
\end{aligned}
$$

To see that W is in fact a subspace of \mathbb{R}^{2} :
Let $u=\left(x_{1}, y_{1}\right), v=\left(x_{2}, y_{2}\right) \in W$. Then $y_{1}=k x_{1}$ and $y_{2}=k x_{2}$
and

$$
\begin{aligned}
u+v & =\left(x_{1}+x_{2}, y_{1}+y_{2}\right) \\
& =\left(x_{1}+x_{2}, k x_{1}+k x_{2}\right) \\
& =\left(x_{1}+x_{2}, k\left(x_{1}+x_{2}\right)\right) \in W
\end{aligned}
$$

Subspaces Definition Examples
Subspaces of \mathbb{R}^{2} Subspaces of \mathbb{R}^{3} Exercises

Lines through the origin as subspaces of \mathbb{R}^{2}

Example.

$$
\begin{aligned}
V & =\mathbb{R}^{2}, \\
W & =\{(x, y) \mid y=k x\} \quad \text { for a given } k \\
& =\text { line through }(0,0) \text { with slope } k .
\end{aligned}
$$

Subspaces Definition Examples
Subspaces of \mathbb{R}^{2} Subspaces of \mathbb{R}^{3} Exercises

To see that W is in fact a subspace of \mathbb{R}^{2} :
Let $u=\left(x_{1}, y_{1}\right), v=\left(x_{2}, y_{2}\right) \in W$. Then $y_{1}=k x_{1}$ and $y_{2}=k x_{2}$
and

$$
\begin{aligned}
u+v & =\left(x_{1}+x_{2}, y_{1}+y_{2}\right) \\
& =\left(x_{1}+x_{2}, k x_{1}+k x_{2}\right) \\
& =\left(x_{1}+x_{2}, k\left(x_{1}+x_{2}\right)\right) \in W
\end{aligned}
$$

Similarly, $r \cdot u=\left(r x_{1}, r y_{1}\right)=\left(r x_{1}, k r x_{1}\right) \in W$

Subspaces of \mathbb{R}^{2}

So what are the subspaces of \mathbb{R}^{2} ?

Subspaces
Definition
Examples
Subspaces of \mathbb{R}^{2}
Subspaces of \mathbb{R}^{3}
Exercises

Subspaces of \mathbb{R}^{2}

So what are the subspaces of \mathbb{R}^{2} ?
 1. $\{0\}$

Subspaces
Definition
Examples
Subspaces of \mathbb{R}^{2}
Subspaces of \mathbb{R}^{3}
Exercises

Subspaces of \mathbb{R}^{2}

So what are the subspaces of \mathbb{R}^{2} ?

1. $\{0\}$
2. Lines. But only those that contain $(0,0)$. Why?

Subspaces
Definition
Examples
Subspaces of \mathbb{R}^{2}
Subspaces of \mathbb{R}^{3}
Exercises

Subspaces of \mathbb{R}^{2}

So what are the subspaces of \mathbb{R}^{2} ?

1. $\{0\}$
2. Lines. But only those that contain $(0,0)$. Why?
3. \mathbb{R}^{2}

Subspaces
Definition
Examples
Subspaces of \mathbb{R}^{2}
Subspaces of \mathbb{R}^{3}
Exercises

Subspaces of \mathbb{R}^{2}

So what are the subspaces of \mathbb{R}^{2} ?

1. $\{0\}$
2. Lines. But only those that contain $(0,0)$. Why?
3. \mathbb{R}^{2}

Remark (First test). If W is a subspace, then $\overrightarrow{0} \in W$. Thus: If $\overrightarrow{0} \notin W$, then W is not a subspace.

Subspaces
Definition
Examples
Subspaces of \mathbb{R}^{2}
Subspaces of \mathbb{R}^{3}
Exercises

Subspaces of \mathbb{R}^{2}

So what are the subspaces of \mathbb{R}^{2} ?

1. $\{0\}$
2. Lines. But only those that contain $(0,0)$. Why?
3. \mathbb{R}^{2}

Remark (First test). If W is a subspace, then $\overrightarrow{0} \in W$. Thus: If $\overrightarrow{0} \notin W$, then W is not a subspace.

This is why a line not passing through $(0,0)$ can not be a subspace of \mathbb{R}^{2}.

Subspaces
Definition
Examples
Subspaces of \mathbb{R}^{2}
Subspaces of \mathbb{R}^{3}
Exercises

A subset of \mathbb{R}^{2} that is not a subspace

Warning. We can not conclude from the fact that $\overrightarrow{0} \in W$, that W is a subspace.

Subspaces
Definition
Examples
Subspaces of \mathbb{R}^{2}
Subspaces of \mathbb{R}^{3}
Exercises

A subset of \mathbb{R}^{2} that is not a subspace

Warning. We can not conclude from the fact that $\overrightarrow{0} \in W$, that W is a subspace.

Example. Lets consider the following subset of \mathbb{R}^{2} :

$$
W=\left\{(x, y) \mid x^{2}-y^{2}=0\right\}
$$

Is W a subspace of \mathbb{R}^{2} ? Why?

Subspaces
Definition
Examples
Subspaces of \mathbb{R}^{2}
Subspaces of \mathbb{R}^{3}
Exercises

A subset of \mathbb{R}^{2} that is not a subspace

Warning. We can not conclude from the fact that $\overrightarrow{0} \in W$, that W is a subspace.

Example. Lets consider the following subset of \mathbb{R}^{2} :

$$
W=\left\{(x, y) \mid x^{2}-y^{2}=0\right\}
$$

Is W a subspace of \mathbb{R}^{2} ? Why?
The answer is NO.
We have $(1,1)$ and $(1,-1) \in W$ but
$(1,1)+(1,-1)=(2,0) \notin W$. i.e., W is not closed under addition.

Subspaces
Definition
Examples
Subspaces of \mathbb{R}^{2}
Subspaces of \mathbb{R}^{3}
Exercises

A subset of \mathbb{R}^{2} that is not a subspace

Warning. We can not conclude from the fact that $\overrightarrow{0} \in W$, that W is a subspace.

Example. Lets consider the following subset of \mathbb{R}^{2} :

$$
W=\left\{(x, y) \mid x^{2}-y^{2}=0\right\}
$$

Is W a subspace of \mathbb{R}^{2} ? Why?
The answer is NO.
We have $(1,1)$ and $(1,-1) \in W$ but
$(1,1)+(1,-1)=(2,0) \notin W$. i.e., W is not closed under addition.

Notice that $(0,0) \in W$ and W is closed under multiplication by scalars.

Subspaces
Definition
Examples
Subspaces of \mathbb{R}^{2}
Subspaces of \mathbb{R}^{3}
Exercises

Subspaces of \mathbb{R}^{3}

What are the subspaces of \mathbb{R}^{3} ?

Subspaces
Definition
Examples
Subspaces of \mathbb{R}^{2}
Subspaces of \mathbb{R}^{3}
Exercises

Subspaces of \mathbb{R}^{3}

What are the subspaces of \mathbb{R}^{3} ?

1. $\{0\}$ and \mathbb{R}^{3}.

Subspaces
Definition
Examples
Subspaces of \mathbb{R}^{2}
Subspaces of \mathbb{R}^{3}
Exercises

Subspaces of \mathbb{R}^{3}

What are the subspaces of \mathbb{R}^{3} ?

1. $\{0\}$ and \mathbb{R}^{3}.
2. Planes: A plane $W \subseteq \mathbb{R}^{3}$ is given by a normal vector (a, b, c) and its distance from $(0,0,0)$ or

$$
W=\{(x, y, z) \mid \underbrace{a x+b y+c z=p}_{\text {condition on }(x, y, z)}\}
$$

Subspaces of \mathbb{R}^{3}

What are the subspaces of \mathbb{R}^{3} ?

1. $\{0\}$ and \mathbb{R}^{3}.
2. Planes: A plane $W \subseteq \mathbb{R}^{3}$ is given by a normal vector (a, b, c) and its distance from $(0,0,0)$ or

$$
W=\{(x, y, z) \mid \underbrace{a x+b y+c z=p}_{\text {condition on }(x, y, z)}\}
$$

For W to be a subspace, $(0,0,0)$ must be in W by the first test. Thus

$$
p=a \cdot 0+b \cdot 0+c \cdot 0=0
$$

or

$$
p=0
$$

Subspaces
Definition
Examples
Subspaces of \mathbb{R}^{2}
Subspaces of \mathbb{R}^{3}
Exercises

Planes containing the origin

A plane containing $(0,0,0)$ is indeed a subspace of \mathbb{R}^{3}.

Subspaces
Definition
Examples
Subspaces of \mathbb{R}^{2}
Subspaces of \mathbb{R}^{3}
Exercises

Planes containing the origin

A plane containing $(0,0,0)$ is indeed a subspace of \mathbb{R}^{3}.

Proof. Let $\left(x_{1}, y_{1}, z_{1}\right)$ and $\left(x_{2}, y_{2}, z_{2}\right) \in W$. Then

$$
\begin{aligned}
& a x_{1}+b y_{1}+c z_{1}=0 \\
& a x_{2}+b y_{2}+c z_{2}=0
\end{aligned}
$$

Subspaces
Definition
Examples
Subspaces of \mathbb{R}^{2}
Subspaces of \mathbb{R}^{3}
Exercises

Planes containing the origin

A plane containing $(0,0,0)$ is indeed a subspace of \mathbb{R}^{3}.

Proof. Let $\left(x_{1}, y_{1}, z_{1}\right)$ and $\left(x_{2}, y_{2}, z_{2}\right) \in W$. Then

$$
\begin{aligned}
& a x_{1}+b y_{1}+c z_{1}=0 \\
& a x_{2}+b y_{2}+c z_{2}=0
\end{aligned}
$$

Then we have

$$
\begin{aligned}
& a\left(x_{1}+x_{2}\right)+b\left(y_{1}+y_{2}\right)+c\left(z_{1}+z_{2}\right) \\
& ==\underbrace{\left(a x_{1}+b y_{1}+c z_{1}\right)}_{0}+\underbrace{\left(a x_{2}+b y_{2}+c z_{2}\right)}_{0} \\
& =0
\end{aligned}
$$

Subspaces Definition Examples

Planes containing the origin

A plane containing $(0,0,0)$ is indeed a subspace of \mathbb{R}^{3}.

Proof. Let $\left(x_{1}, y_{1}, z_{1}\right)$ and $\left(x_{2}, y_{2}, z_{2}\right) \in W$. Then

$$
\begin{aligned}
& a x_{1}+b y_{1}+c z_{1}=0 \\
& a x_{2}+b y_{2}+c z_{2}=0
\end{aligned}
$$

Then we have

$$
\begin{aligned}
& a\left(x_{1}+x_{2}\right)+b\left(y_{1}+y_{2}\right)+c\left(z_{1}+z_{2}\right) \\
& \quad=\underbrace{\left(a x_{1}+b y_{1}+c z_{1}\right)}_{0}+\underbrace{\left(a x_{2}+b y_{2}+c z_{2}\right)}_{0} \\
& =0
\end{aligned}
$$

Subspaces Definition Examples

$$
\text { and } \begin{aligned}
a\left(r x_{1}\right)+b\left(r y_{1}\right)+c\left(r z_{1}\right) & =r\left(a x_{1}+b y_{1}+c z_{1}\right) \\
& =0 \quad \square
\end{aligned}
$$

Summary of subspaces of \mathbb{R}^{3}

1. $\{0\}$ and \mathbb{R}^{3}.
2. Planes containing $(0,0,0)$.

Subspaces
Definition
Examples
Subspaces of \mathbb{R}^{2}
Subspaces of \mathbb{R}^{3}
Exercises

Summary of subspaces of \mathbb{R}^{3}

1. $\{0\}$ and \mathbb{R}^{3}.
2. Planes containing $(0,0,0)$.
3. Lines containing ($0,0,0$).
(Intersection of two planes containing $(0,0,0)$)

Subspaces
Definition
Examples
Subspaces of \mathbb{R}^{2}
Subspaces of \mathbb{R}^{3}
Exercises

Exercises

Determine whether the given subset of \mathbb{R}^{n} is a subspace or not (Explain):
a) $W=\left\{(x, y) \in \mathbb{R}^{2} \mid x y=0\right\}$.
b) $W=\left\{(x, y, z) \in \mathbb{R}^{3} \mid 3 x+2 y^{2}+z=0\right\}$.
c) $W=\left\{(x, y, z) \in \mathbb{R}^{3} \mid 2 x+3 y-z=0\right\}$.
d) The set of all vectors $\left(x_{1}, x_{2}, x_{3}\right)$ satisfying

$$
2 x_{3}=x_{1}-10 x_{2}
$$

Exercises

Determine whether the given subset of \mathbb{R}^{n} is a subspace or not (Explain):
e) The set of all vectors in \mathbb{R}^{4} satisfying the system of linear equations

$$
\begin{array}{r}
2 x_{1}+3 x_{2}+5 x_{4}=0 \\
x_{1}+x_{2}-3 x_{3}=0
\end{array}
$$

f) The set of all points $\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \in \mathbb{R}^{4}$ satisfying

$$
x_{1}+2 x_{2}+3 x_{3}+x_{4}=-1
$$

Chapter 3

Vector Spaces of Functions

```
Spaces of Functions
C(I)
C
Cr}(I
PC(I)
Indicator functions
\chiA\capB
\chiA\cupB
\chiA\cupB
```


Space of Continuous Functions

Let $I \subseteq \mathbb{R}$ be an interval.
Spaces of Functions C(I)
$C^{1}(I)$
$C^{r}(I)$
$P C(I)$
Indicator functions
$\chi A \cap B$
$\chi_{A \cup B}$ (disjoint)
$\chi A \cup B$

Vector Spaces of Functions

Space of Continuous Functions

Let $I \subseteq \mathbb{R}$ be an interval. Then I is of the form (for some $a<b$)

$$
I=\left\{\begin{array}{l}
\{x \in \mathbb{R} \mid a<x<b\}, \quad \text { an open interval; } \\
\{x \in \mathbb{R} \mid a \leq x \leq b\}, \quad \text { a closed interval; } \\
\{x \in \mathbb{R} \mid a \leq x<b\} \\
\{x \in \mathbb{R} \mid a<x \leq b\} .
\end{array}\right.
$$

Spaces of Functions $C(I)$
$C^{1}(I)$
$C^{r}(I)$
$P C(I)$
Indicator functions
$\chi_{A \cap B}$
$\chi_{A \cup B}$ (disjoint)
$\chi_{A \cup B}$

Space of Continuous Functions

Let $I \subseteq \mathbb{R}$ be an interval. Then recall that the space of all functions $f: I \longrightarrow \mathbb{R}$ is a vector space. We will now list some important subspaces:

Spaces of Functions

Indicator functions

Space of Continuous Functions

Let $I \subseteq \mathbb{R}$ be an interval. Then recall that the space of all functions $f: I \longrightarrow \mathbb{R}$ is a vector space. We will now list some important subspaces:

Example (1). Let $C(I)$ be the space of continuous functions. If f and g are continuous, so are the functions $f+g$ and $r f(r \in \mathbb{R})$. Hence $C(I)$ is a vector space.

Spaces of Functions

C(I)

$C^{1}(I)$
$C^{r}(I)$
$P C(I)$
Indicator functions
$\chi A \cap B$
$\chi A \cup B$ (disjoint)
$\chi A \cup B$

Space of Continuous Functions

Let $I \subseteq \mathbb{R}$ be an interval. Then recall that the space of all functions $f: I \longrightarrow \mathbb{R}$ is a vector space. We will now list some important subspaces:

Example (1). Let $C(I)$ be the space of continuous functions. If f and g are continuous, so are the functions $f+g$ and $r f(r \in \mathbb{R})$. Hence $C(I)$ is a vector space.

Recall, that a function is continuous, if the graph has no gaps. This can be formulated in different ways:

Spaces of Functions

Space of Continuous Functions

Let $I \subseteq \mathbb{R}$ be an interval. Then recall that the space of all functions $f: I \longrightarrow \mathbb{R}$ is a vector space. We will now list some important subspaces:

Example (1). Let $C(I)$ be the space of continuous functions. If f and g are continuous, so are the functions $f+g$ and rf $(r \in \mathbb{R})$. Hence $C(I)$ is a vector space.

Recall, that a function is continuous, if the graph has no gaps. This can be formulated in different ways:
a) Let $x_{0} \in I$ and let $\epsilon>0$. Then there exists a $\delta>0$ such
that for all $x \in I \cap\left(x_{0}-\delta, x_{0}+\delta\right)$ we have

$$
\left|f(x)-f\left(x_{0}\right)\right|<\epsilon
$$

This tells us that the value of f at nearby points is arbitrarily close to the value of f at x_{0}.

Space of Continuous Functions

Let $I \subseteq \mathbb{R}$ be an interval. Then recall that the space of all functions $f: I \longrightarrow \mathbb{R}$ is a vector space. We will now list some important subspaces:

Example (1). Let $C(I)$ be the space of continuous functions. If f and g are continuous, so are the functions $f+g$ and $r f(r \in \mathbb{R})$. Hence $C(I)$ is a vector space.

Recall, that a function is continuous, if the graph has no gaps. This can be formulated in different ways:
b) A reformulation of (a) is:

$$
\lim _{x \rightarrow x_{0}} f(x)=f\left(x_{0}\right)
$$

Spaces of Functions

Space of continuously differentiable functs.

Example (2). The space $C^{1}(I)$. Here we assume that I is open.

Spaces of Functions $C(I)$
$C^{1}(I)$
$C^{r}(I)$
$P C(I)$
Indicator functions
$\chi A \cap B$
$\chi_{A \cup B}$ (disjoint)
$\chi A \cup B$

Space of continuously differentiable functs.

Example (2). The space $C^{1}(I)$. Here we assume that I is open. Recall that f is differentiable at x_{0} if

$$
\lim _{x \rightarrow x_{0}} \frac{f(x)-f\left(x_{0}\right)}{x-x_{0}}=\lim _{h \rightarrow 0} \frac{f\left(x_{0}+h\right)-f\left(x_{0}\right)}{h}=: f^{\prime}\left(x_{0}\right)
$$

exists.

Spaces of Functions $C(I)$
$C^{1}(I)$
$C^{r}(I)$
$P C(I)$
Indicator functions
$\chi A \cap B$
$\chi_{A \cup B}$ (disjoint)
$\chi A \cup B$

Space of continuously differentiable functs.

Example (2). The space $C^{1}(I)$. Here we assume that I is open. Recall that f is differentiable at x_{0} if

$$
\lim _{x \rightarrow x_{0}} \frac{f(x)-f\left(x_{0}\right)}{x-x_{0}}=\lim _{h \rightarrow 0} \frac{f\left(x_{0}+h\right)-f\left(x_{0}\right)}{h}=: f^{\prime}\left(x_{0}\right)
$$

exists.If $f^{\prime}\left(x_{0}\right)$ exists for all $x_{0} \in I$, then we say that f is differentiable on I. In this case we get a new function on I

$$
x \mapsto f^{\prime}(x)
$$

We say that f is continuously differentiable on I if f^{\prime} exists and is continuous on I.

Spaces of Functions $C(I)$
$C^{1}(I)$
$C^{r}(I)$
$P C(I)$
Indicator functions
$\chi A \cap B$
$\chi_{A \cup B}$ (disjoint)
$\chi A \cup B$

Space of continuously differentiable functs.

Example (2). The space $C^{1}(I)$. Here we assume that I is open. Recall that f is differentiable at x_{0} if

$$
\lim _{x \rightarrow x_{0}} \frac{f(x)-f\left(x_{0}\right)}{x-x_{0}}=\lim _{h \rightarrow 0} \frac{f\left(x_{0}+h\right)-f\left(x_{0}\right)}{h}=: f^{\prime}\left(x_{0}\right)
$$

exists. We say that f is continuously differentiable on I if f^{\prime} exists and is continuous on I. Recall that if f and g are differentiable, then so are

$$
f+g \text { and } r f(r \in \mathbb{R})
$$

moreover

$$
(f+g)^{\prime}=f^{\prime}+g^{\prime} ; \quad(r f)^{\prime}=r f^{\prime}
$$

Spaces of Functions $C(I)$
$C^{1}(I)$
$C^{r}(I)$
$P C(I)$
Indicator functions
$\chi_{A \cap B}$
$\chi_{A \cup B}$ (disjoint)
$\chi_{A \cup B}$

Space of continuously differentiable functs.

Example (2). The space $C^{1}(I)$. Here we assume that I is open. Recall that f is differentiable at x_{0} if

$$
\lim _{x \rightarrow x_{0}} \frac{f(x)-f\left(x_{0}\right)}{x-x_{0}}=\lim _{h \rightarrow 0} \frac{f\left(x_{0}+h\right)-f\left(x_{0}\right)}{h}=: f^{\prime}\left(x_{0}\right)
$$

exists. We say that f is continuously differentiable on I if f^{\prime} exists and is continuous on I. Recall that if f and g are differentiable, then so are

$$
f+g \text { and } r f(r \in \mathbb{R})
$$

moreover

$$
(f+g)^{\prime}=f^{\prime}+g^{\prime} ; \quad(r f)^{\prime}=r f^{\prime}
$$

As $f^{\prime}+g^{\prime}$ and $r f^{\prime}$ are continuous by Example (1), it follows that $C^{1}(I)$ is a vector space.

Spaces of Functions $C(I)$
$C^{1}(I)$
$C^{r}(I)$
$P C(I)$
Indicator functions
$\chi A \cap B$
$\chi_{A \cup B}$ (disjoint)
$\chi_{A \cup B}$

A continuous but not differentiable function

Let $f(x)=|x|$ for $x \in \mathbb{R}$. Then f is continuous on \mathbb{R} but it is not differentiable on \mathbb{R}.

Spaces of Functions $C(I)$

Indicator functions
$\chi_{A \cup B}$

A continuous but not differentiable function

Let $f(x)=|x|$ for $x \in \mathbb{R}$. Then f is continuous on \mathbb{R} but it is not differentiable on \mathbb{R}. We show that f is not differentiable at $x_{0}=0$.

Spaces of Functions $C(I)$

Indicator functions

A continuous but not differentiable function

Let $f(x)=|x|$ for $x \in \mathbb{R}$. Then f is continuous on \mathbb{R} but it is not differentiable on \mathbb{R}. We show that f is not differentiable at $x_{0}=0$. For $h>0$ we have

$$
\frac{f\left(x_{0}+h\right)-f\left(x_{0}\right)}{h}=\frac{|h|-0}{h}=\frac{h}{h}=1
$$

hence

$$
\lim _{h \rightarrow 0^{+}} \frac{f\left(x_{0}+h\right)-f\left(x_{0}\right)}{h}=1
$$

Spaces of Functions $C(I)$

```
\(C^{1}(I)\)
\(P C(I)\)
Indicator functions

\section*{A continuous but not differentiable function}

Let \(f(x)=|x|\) for \(x \in \mathbb{R}\). Then \(f\) is continuous on \(\mathbb{R}\) but it is not differentiable on \(\mathbb{R}\). We show that \(f\) is not differentiable at \(x_{0}=0\). For \(h>0\) we have
\[
\frac{f\left(x_{0}+h\right)-f\left(x_{0}\right)}{h}=\frac{|h|-0}{h}=\frac{h}{h}=1
\]
hence
\[
\lim _{h \rightarrow 0^{+}} \frac{f\left(x_{0}+h\right)-f\left(x_{0}\right)}{h}=1
\]

But if \(h<0\), then
\[
\frac{f\left(x_{0}+h\right)-f\left(x_{0}\right)}{h}=\frac{|h|-0}{h}=\frac{-h}{h}=-1
\]
hence
\[
\lim _{h \rightarrow 0^{-}} \frac{f\left(x_{0}+h\right)-f\left(x_{0}\right)}{h}=-1
\]

Spaces of Functions \(C(I)\)

Indicator functions

\section*{A continuous but not differentiable function}

Let \(f(x)=|x|\) for \(x \in \mathbb{R}\). Then \(f\) is continuous on \(\mathbb{R}\) but it is not differentiable on \(\mathbb{R}\). We show that \(f\) is not differentiable at \(x_{0}=0\).
Therefore,
\[
\lim _{h \rightarrow 0} \frac{f\left(x_{0}+h\right)-f\left(x_{0}\right)}{h}
\]

Spaces of Functions \(C(I)\)

Indicator functions
does not exist.

\section*{Space of r-times continuously diff. functs.}

Example (3). The space \(C^{r}(I)\)
Let \(I=(a, b)\) be an open interval. and let
\(r \in \mathbb{N}=\{1,2,3, \cdots\}\).
Definition. The function \(f: I \longrightarrow \mathbb{R}\) is said to be \(r\)-times continuously differentiable if all the derivatives \(f^{\prime}, f^{\prime \prime}, \cdots, f^{(r)}\) exist and \(f^{(r)}: I \longrightarrow \mathbb{R}\) is continuous.

We denote by \(C^{r}(I)\) the space of \(r\)-times continuously differentiable functions on \(I . C^{r}(I)\) is a subspace of \(C(I)\).

Spaces of Functions \(C(I)\)
\(C^{1}(I)\)

Indicator functions

\section*{Space of r-times continuously diff. functs.}

Example (3). The space \(C^{r}(I)\)
Let \(I=(a, b)\) be an open interval. and let
\(r \in \mathbb{N}=\{1,2,3, \cdots\}\).
Definition. The function \(f: I \longrightarrow \mathbb{R}\) is said to be \(r\)-times continuously differentiable if all the derivatives \(f^{\prime}, f^{\prime \prime}, \cdots, f^{(r)}\) exist and \(f^{(r)}: I \longrightarrow \mathbb{R}\) is continuous.

We denote by \(C^{r}(I)\) the space of \(r\)-times continuously differentiable functions on \(I . C^{r}(I)\) is a subspace of \(C(I)\).

We have
\[
C^{r}(I) \varsubsetneqq C^{r-1}(I) \subsetneq \cdots \varsubsetneqq C^{1}(I) \varsubsetneqq C(I) .
\]

Spaces of Functions \(C(I)\)
\(C^{1}(I)\)

Indicator functions
\[
C^{r}(I) \neq C^{r-1}(I)
\]

We have seen that \(C^{1}(I) \neq C(I)\). Let us try to find a function that is in \(C^{1}(I)\) but not in \(C^{2}(I)\).

Spaces of Functions \(C(I)\)
\(C^{1}(I)\)

Indicator functions
\(\chi A \cap B\)
\(\chi_{A \cup B}\) (disjoint)
\(\chi_{A \cup B}\)
\[
C^{r}(I) \neq C^{r-1}(I)
\]

We have seen that \(C^{1}(I) \neq C(I)\). Let us try to find a function that is in \(C^{1}(I)\) but not in \(C^{2}(I)\).

Assume \(0 \in I\) and let \(f(x)=x^{\frac{5}{3}}\). Then \(f\) is differentiable and
\[
f^{\prime}(x)=\frac{5}{3} x^{\frac{2}{3}}
\]
which is continuous.
Spaces of Functions \(C(I)\)
\(C^{1}(I)\)

Indicator functions
\[
C^{r}(I) \neq C^{r-1}(I)
\]

We have seen that \(C^{1}(I) \neq C(I)\). Let us try to find a function that is in \(C^{1}(I)\) but not in \(C^{2}(I)\).

Assume \(0 \in I\) and let \(f(x)=x^{\frac{5}{3}}\). Then \(f\) is differentiable and
\[
f^{\prime}(x)=\frac{5}{3} x^{\frac{2}{3}}
\]
which is continuous.
If \(x \neq 0\), then \(f^{\prime}\) is differentiable and
\[
f^{\prime \prime}(x)=\frac{10}{3} x^{-\frac{1}{3}}
\]

Spaces of Functions \(C(I)\)
\(C^{1}(I)\)

Indicator functions
\[
C^{r}(I) \neq C^{r-1}(I)
\]

But for \(x=0\) we have
\[
\lim _{h \rightarrow 0} \frac{f^{\prime}(h)-0}{h}=\lim _{h \rightarrow 0} \frac{5}{3} \frac{h^{\frac{2}{3}}}{h}=\lim _{h \rightarrow 0} \frac{5}{3} h^{-\frac{1}{3}}
\]
which does not exist.

Spaces of Functions \(C(I)\)
\(C^{1}(I)\)
\(C^{T r}(I)\)
\(P C(I)\)
Indicator functions
\(\chi A \cap B\)
\(\chi_{A \cup B}\) (disjoint)
\(\chi_{A \cup B}\)
\[
C^{r}(I) \neq C^{r-1}(I)
\]

But for \(x=0\) we have
\[
\lim _{h \rightarrow 0} \frac{f^{\prime}(h)-0}{h}=\lim _{h \rightarrow 0} \frac{5}{3} \frac{h^{\frac{2}{3}}}{h}=\lim _{h \rightarrow 0} \frac{5}{3} h^{-\frac{1}{3}}
\]
which does not exist.
Remark. One can show that the function
Spaces of Functions \(C(I)\)
\(C^{1}(I)\)
\(C^{r r}(I)\)
\(P C(I)\)
Indicator functions
\(\chi A \cap B\)
\(\chi_{A \cup B}\) (disjoint)
\(\chi_{A \cup B}\)
\[
f(x)=x^{\frac{3 r-1}{3}}
\]
is in \(C^{r-1}(\mathbb{R})\), but not in \(C^{r}(\mathbb{R})\).
\[
C^{r}(I) \neq C^{r-1}(I)
\]

But for \(x=0\) we have
\[
\lim _{h \rightarrow 0} \frac{f^{\prime}(h)-0}{h}=\lim _{h \rightarrow 0} \frac{5}{3} \frac{h^{\frac{2}{3}}}{h}=\lim _{h \rightarrow 0} \frac{5}{3} h^{-\frac{1}{3}}
\]
which does not exist.
Remark. One can show that the function
\[
f(x)=x^{\frac{3 r-1}{3}}
\]
is in \(C^{r-1}(\mathbb{R})\), but not in \(C^{r}(\mathbb{R})\).

Thus, as stated before, we have
\[
C^{r}(I) \varsubsetneqq C^{r-1}(I) \varsubsetneqq \cdots \varsubsetneqq C^{1}(I) \varsubsetneqq C(I) .
\]

\section*{Piecewise-continuous functions}

Example (4). Piecewise-continuous functions
Definition. Let \(I=[a, b)\). A function \(f: I \longrightarrow \mathbb{R}\) is called piecewise-continuous if there exists finitely many points
\[
a=x_{0}<x_{1}<\cdots<x_{n}=b
\]
such that \(f\) is continuous on each of the sub-intervals

Spaces of Functions \(C(I)\)
\(C^{1}(I)\)
\(C^{r}(I)\)
\(P C(I)\)
Indicator functions
\(\chi A \cap B\)
\(\chi_{A \cup B}\) (disjoint)
\(\chi_{A \cup B}\)
\[
\left(x_{i}, x_{i+1}\right) \text { for } i=0,1, \cdots, n-1
\]

\section*{Piecewise-continuous functions}

Example (4). Piecewise-continuous functions
Definition. Let \(I=[a, b)\). A function \(f: I \longrightarrow \mathbb{R}\) is called piecewise-continuous if there exists finitely many points
\[
a=x_{0}<x_{1}<\cdots<x_{n}=b
\]
such that \(f\) is continuous on each of the sub-intervals
\[
\left(x_{i}, x_{i+1}\right) \text { for } i=0,1, \cdots, n-1
\]

Remark. If \(f\) and \(g\) are both piecewise-continuous, then
\[
f+g \text { and } r f(r \in \mathbb{R})
\]
are piecewise-continuous.

Spaces of Functions \(C(I)\)
\(C^{1}(I)\)
\(C^{r}(I)\)
\(P C(I)\)
Indicator functions \(\chi A \cap B\)
\(\chi_{A \cup B}\) (disjoint)
\(\chi_{A \cup B}\)

\section*{Piecewise-continuous functions}

Example (4). Piecewise-continuous functions
Definition. Let \(I=[a, b)\). A function \(f: I \longrightarrow \mathbb{R}\) is called piecewise-continuous if there exists finitely many points
\[
a=x_{0}<x_{1}<\cdots<x_{n}=b
\]
such that \(f\) is continuous on each of the sub-intervals
\[
\left(x_{i}, x_{i+1}\right) \text { for } i=0,1, \cdots, n-1 .
\]

Remark. If \(f\) and \(g\) are both piecewise-continuous, then
\[
f+g \text { and } r f(r \in \mathbb{R})
\]
are piecewise-continuous.

Hence the space of piecewise-continuous functions is a vector space. Denote this vector space by \(P C(I)\).

Spaces of Functions C(I)
\(C^{1}(I)\)
\(C^{r}(I)\)
\(P C(I)\)
Indicator functions

\section*{The indicator function \(\chi_{A}\)}

Important elements of \(P C(I)\) are the indicator functions \(\chi_{A}\), where \(A \subseteq I\) a sub-interval.

Spaces of Functions \(C(I)\)
\(C^{1}(I)\)
\(C^{r}(I)\)
\(P C(I)\)
Indicator functions
\(\chi_{A \cap B}\)
\(\chi_{A \cup B}\) (disjoint)
\(\chi_{A \cup B}\)

\section*{The indicator function \(\chi_{A}\)}

Important elements of \(P C(I)\) are the indicator functions \(\chi_{A}\), where \(A \subseteq I\) a sub-interval.

Let \(A \subseteq \mathbb{R}\) be a set. Define
\[
\chi_{A}(x)= \begin{cases}1, & \text { if } x \in A \\ 0, & \text { if } x \notin A\end{cases}
\]

Spaces of Functions \(C(I)\)
\(C^{1}(I)\)
\(C^{r}(I)\)
\(P C(I)\)
Indicator functions
\(\chi A \cap B\)
\(\chi_{A \cup B}\) (disjoint)
\(\chi_{A \cup B}\)

\section*{The indicator function \(\chi_{A}\)}

Important elements of \(P C(I)\) are the indicator functions \(\chi_{A}\), where \(A \subseteq I\) a sub-interval.

Let \(A \subseteq \mathbb{R}\) be a set. Define
\[
\chi_{A}(x)= \begin{cases}1, & \text { if } x \in A \\ 0, & \text { if } x \notin A\end{cases}
\]

Spaces of Functions \(C(I)\)
\(C^{1}(I)\)
\(C^{r}(I)\)
\(P C(I)\)
Indicator functions
\(\chi_{A \cap B}\)
\(\chi_{A \cup B}\) (disjoint)
\(\chi_{A \cup B}\)

So the values of \(\chi_{A}\) tell us whether \(x\) is in \(A\) or not.
If \(x \in A\), then \(\chi_{A}(x)=1\) and if \(x \notin A\), then
\(\chi_{A}(x)=0\).

\section*{The indicator function \(\chi_{A}\)}

Important elements of \(P C(I)\) are the indicator functions \(\chi_{A}\), where \(A \subseteq I\) a sub-interval.

Let \(A \subseteq \mathbb{R}\) be a set. Define
\[
\chi_{A}(x)= \begin{cases}1, & \text { if } x \in A \\ 0, & \text { if } x \notin A\end{cases}
\]

Spaces of Functions \(C(I)\)
\(C^{1}(I)\)
\(C^{r}(I)\)
\(P C(I)\)
Indicator functions

So the values of \(\chi_{A}\) tell us whether \(x\) is in \(A\) or not.
If \(x \in A\), then \(\chi_{A}(x)=1\) and if \(x \notin A\), then
\(\chi_{A}(x)=0\).
We will work a lot with indicator functions so let us look at some of their properties.

\section*{Some properties of \(\chi_{A}\)}

Lemma. Let \(A, B \subseteq I\). Then
\[
\begin{equation*}
\chi_{A \cap B}(x)=\chi_{A}(x) \chi_{B}(x) \tag{*}
\end{equation*}
\]

Spaces of Functions \(C(I)\)
\(C^{1}(I)\)
\(C^{r}(I)\)
\(P C(I)\)
Indicator functions
\(\chi_{A \cap B}\)
\(\chi A \cup B\) (disjoint)
\(\chi_{A \cup B}\)

Vector Spaces of Functions

\section*{Some properties of \(\chi_{A}\)}

Lemma. Let \(A, B \subseteq I\). Then
\[
\begin{equation*}
\chi_{A \cap B}(x)=\chi_{A}(x) \chi_{B}(x) \tag{*}
\end{equation*}
\]

Proof. We have to show that the two functions
\[
x \mapsto \chi_{A \cap B}(x) \text { and } x \mapsto \chi_{A}(x) \chi_{B}(x)
\]
take the same values at every point \(x \in I\). So lets evaluate both functions:

Spaces of Functions \(C(I)\)
\(C^{1}(I)\)
\(C^{r}(I)\)
\(P C(I)\)
Indicator functions
\(\chi_{A \cap B}\)
\(\chi_{A \cup B}\) (disjoint)
\(\chi_{A \cup B}\)

\section*{Some properties of \(\chi_{A}\)}

Lemma. Let \(A, B \subseteq I\). Then
\[
\begin{equation*}
\chi_{A \cap B}(x)=\chi_{A}(x) \chi_{B}(x) \tag{*}
\end{equation*}
\]

Proof. We have to show that the two functions
\[
x \mapsto \chi_{A \cap B}(x) \text { and } x \mapsto \chi_{A}(x) \chi_{B}(x)
\]
take the same values at every point \(x \in I\). So lets evaluate both functions:

If \(x \in A\) and \(x \in B\), that is \(x \in A \cap B\), then
\(\chi_{A \cap B}(x)=1\) and,

Spaces of Functions \(C(I)\)
\(C^{1}(I)\)
\(C^{r}(I)\)
\(P C(I)\)
Indicator functions
\(\chi_{A \cap B}\)
\(\chi_{A \cup B}\) (disjoint)
\(\chi_{A \cup B}\)

\section*{Some properties of \(\chi_{A}\)}

Lemma. Let \(A, B \subseteq I\). Then
\[
\begin{equation*}
\chi_{A \cap B}(x)=\chi_{A}(x) \chi_{B}(x) \tag{*}
\end{equation*}
\]

Proof. We have to show that the two functions
\[
x \mapsto \chi_{A \cap B}(x) \text { and } x \mapsto \chi_{A}(x) \chi_{B}(x)
\]
take the same values at every point \(x \in I\). So lets evaluate both functions:

If \(x \in A\) and \(x \in B\), that is \(x \in A \cap B\), then
\(\chi_{A \cap B}(x)=1\) and,
\(\chi_{A}(x) \chi_{B}(x)=1\).
Thus, the left and the right hand sides of \((*)\) agree.

Spaces of Functions \(C(I)\)
\(C^{1}(I)\)
\(C^{r}(I)\)
\(P C(I)\)
Indicator functions
\(\chi_{A \cup B}\) (disjoint)
\(\chi_{A \cup B}\)
e
\[
\chi_{A \cap B}(x)=1 \text { and },
\]
\[
\text { since } \chi_{A}(x)=1 \text { and } \chi_{B}(x)=1 \text {, we also have }
\]
\[
\chi_{A}(x) \chi_{B}(x)=1 .
\]

\section*{Some properties of \(\chi_{A}\)}

Lemma. Let \(A, B \subseteq I\). Then
\[
\begin{equation*}
\chi_{A \cap B}(x)=\chi_{A}(x) \chi_{B}(x) \tag{*}
\end{equation*}
\]

Proof. We have to show that the two functions
\[
x \mapsto \chi_{A \cap B}(x) \text { and } x \mapsto \chi_{A}(x) \chi_{B}(x)
\]
take the same values at every point \(x \in I\). So lets evaluate both functions:

On the other hand, if \(x \notin A \cap B\), then there are two possibilities:

Spaces of Functions \(C(I)\)
\(C^{1}(I)\)
\(C^{r}(I)\)
\(P C(I)\)
Indicator functions
\(\chi_{A \cap B}\)
\(\chi_{A \cup B}\) (disjoint)
\(\chi_{A \cup B}\)

\section*{Some properties of \(\chi_{A}\)}

Lemma. Let \(A, B \subseteq I\). Then
\[
\begin{equation*}
\chi_{A \cap B}(x)=\chi_{A}(x) \chi_{B}(x) \tag{*}
\end{equation*}
\]

Proof. We have to show that the two functions
\[
x \mapsto \chi_{A \cap B}(x) \text { and } x \mapsto \chi_{A}(x) \chi_{B}(x)
\]
take the same values at every point \(x \in I\). So lets evaluate both functions:

On the other hand, if \(x \notin A \cap B\), then there are two possibilities:
- \(x \notin A\) then \(\chi_{A}(x)=0\), so \(\chi_{A}(x) \chi_{B}(x)=0\).

Spaces of Functions \(C(I)\)
\(C^{1}(I)\)
\(C^{r}(I)\)
\(P C(I)\)
Indicator functions
\(\chi_{A \cap B}\)
\(\chi_{A \cup B}\) (disjoint)
\(\chi_{A \cup B}\)

\section*{Some properties of \(\chi_{A}\)}

Lemma. Let \(A, B \subseteq I\). Then
\[
\begin{equation*}
\chi_{A \cap B}(x)=\chi_{A}(x) \chi_{B}(x) \tag{*}
\end{equation*}
\]

Proof. We have to show that the two functions
\[
x \mapsto \chi_{A \cap B}(x) \text { and } x \mapsto \chi_{A}(x) \chi_{B}(x)
\]
take the same values at every point \(x \in I\). So lets evaluate both functions:

On the other hand, if \(x \notin A \cap B\), then there are two possibilities:
- \(x \notin A\) then \(\chi_{A}(x)=0\), so \(\chi_{A}(x) \chi_{B}(x)=0\).

■ \(x \notin B\) then \(\chi_{B}(x)=0\), so \(\chi_{A}(x) \chi_{B}(x)=0\).
It follows that
\[
0=\chi_{A \cap B}(x)=\chi_{A}(x) \chi_{B}(x)
\]

Spaces of Functions \(C(I)\)
\(C^{1}(I)\)
\(C^{r}(I)\)
\(P C(I)\)
Indicator functions

\section*{Some properties of \(\chi_{A}\)}

What about \(\chi_{A \cup B}\) ? Can we express it in terms of \(\chi_{A}, \chi_{B}\) ?

Spaces of Functions \(C(I)\)
\(C^{1}(I)\)
\(C^{r}(I)\)
\(P C(I)\)
Indicator functions
\(\chi_{A \cup B}\)

Vector Spaces of Functions

\section*{Some properties of \(\chi_{A}\)}

What about \(\chi_{A \cup B}\) ? Can we express it in terms of \(\chi_{A}, \chi_{B}\) ?
If \(A\) and \(B\) are disjoint, that is \(A \cap B=\emptyset\) then
\[
\chi_{A \cup B}(x)=\chi_{A}(x)+\chi_{B}(x) .
\]

Spaces of Functions \(C(I)\)
\(C^{1}(I)\)
\(C^{r}(I)\)
\(P C(I)\)
Indicator functions

\section*{Some properties of \(\chi_{A}\)}

What about \(\chi_{A \cup B}\) ? Can we express it in terms of \(\chi_{A}, \chi_{B}\) ?
If \(A\) and \(B\) are disjoint, that is \(A \cap B=\emptyset\) then
\[
\chi_{A \cup B}(x)=\chi_{A}(x)+\chi_{B}(x) .
\]

Let us prove this:
- If \(x \notin A \cup B\), then \(x \notin A\) and \(x \notin B\). Thus the LHS (left hand side) and the RHS (right hand side) are both zero.

Spaces of Functions \(C(I)\)
\(P C(I)\)
Indicator functions

\section*{Some properties of \(\chi_{A}\)}

What about \(\chi_{A \cup B}\) ? Can we express it in terms of \(\chi_{A}, \chi_{B}\) ?
If \(A\) and \(B\) are disjoint, that is \(A \cap B=\emptyset\) then
\[
\chi_{A \cup B}(x)=\chi_{A}(x)+\chi_{B}(x) .
\]

Let us prove this:
- If \(x \notin A \cup B\), then \(x \notin A\) and \(x \notin B\). Thus the LHS (left hand side) and the RHS (right hand side) are both zero.
- If \(x \in A \cup B\) then either

Spaces of Functions \(C(I)\)

\section*{Some properties of \(\chi_{A}\)}

What about \(\chi_{A \cup B}\) ? Can we express it in terms of \(\chi_{A}, \chi_{B}\) ?
If \(A\) and \(B\) are disjoint, that is \(A \cap B=\emptyset\) then
\[
\chi_{A \cup B}(x)=\chi_{A}(x)+\chi_{B}(x) .
\]

Let us prove this:
- If \(x \notin A \cup B\), then \(x \notin A\) and \(x \notin B\). Thus the LHS (left hand side) and the RHS (right hand side) are both zero.
- If \(x \in A \cup B\) then either
- \(x\) is in \(A\) but not in \(B\). In this case
\[
\chi_{A \cup B}(x)=1 \text { and } \chi_{A}(x)+\chi_{B}(x)=1+0=1
\]

Spaces of Functions \(C(I)\)

\section*{Some properties of \(\chi_{A}\)}

What about \(\chi_{A \cup B}\) ? Can we express it in terms of \(\chi_{A}, \chi_{B}\) ?
If \(A\) and \(B\) are disjoint, that is \(A \cap B=\emptyset\) then
\[
\chi_{A \cup B}(x)=\chi_{A}(x)+\chi_{B}(x) .
\]

Let us prove this:
- If \(x \notin A \cup B\), then \(x \notin A\) and \(x \notin B\). Thus the LHS (left hand side) and the RHS (right hand side) are both zero.
- If \(x \in A \cup B\) then either
- \(x\) is in \(A\) but not in \(B\). In this case
\[
\chi_{A \cup B}(x)=1 \text { and } \chi_{A}(x)+\chi_{B}(x)=1+0=1
\]
or
- \(x\) is in \(B\) but not in \(A\). In this case
\[
\chi_{A \cup B}(x)=1 \text { and } \chi_{A}(x)+\chi_{B}(x)=0+1=1 \quad \square \quad \text { םоםо口й }
\]

\section*{Some properties of \(\chi_{A}\)}

Thus we have,
\[
\text { If } A \cap B=\emptyset \text {, then } \chi_{A \cup B}(x)=\chi_{A}(x)+\chi_{B}(x)
\]

Spaces of Functions \(C(I)\)
\(C^{1}(I)\)
\(C^{r}(I)\)
\(P C(I)\)
Indicator functions
\(\chi A \cap B\)
\(\chi_{A \cup B}\) (disjoint)
\(\chi_{A \cup B}\)

\section*{Some properties of \(\chi_{A}\)}

Thus we have,
\[
\text { If } A \cap B=\emptyset \text {, then } \chi_{A \cup B}(x)=\chi_{A}(x)+\chi_{B}(x)
\]

Now, what if \(A \cap B \neq \emptyset\) ?
Spaces of Functions \(C(I)\)
\(C^{1}(I)\)
\(C^{r}(I)\)
\(P C(I)\)
Indicator functions
\(\chi A \cap B\)
\(\chi_{A \cup B}\) (disjoint)
\(\chi_{A \cup B}\)

\section*{Some properties of \(\chi_{A}\)}

Thus we have,
\[
\text { If } A \cap B=\emptyset \text {, then } \chi_{A \cup B}(x)=\chi_{A}(x)+\chi_{B}(x)
\]

Now, what if \(A \cap B \neq \emptyset\) ?
Lemma. \(\chi_{A \cup B}(x)=\chi_{A}(x)+\chi_{B}(x)-\chi_{A \cap B}(x)\).
Spaces of Functions \(C(I)\)
\(C^{1}(I)\)
\(C^{r}(I)\)
\(P C(I)\)
Indicator functions

\section*{Some properties of \(\chi_{A}\)}

Thus we have,
\[
\text { If } A \cap B=\emptyset \text {, then } \chi_{A \cup B}(x)=\chi_{A}(x)+\chi_{B}(x)
\]

Now, what if \(A \cap B \neq \emptyset\) ?
Lemma. \(\chi_{A \cup B}(x)=\chi_{A}(x)+\chi_{B}(x)-\chi_{A \cap B}(x)\).
Proof.
- If \(x \notin A \cup B\), then both of the LHS and the RHS take the value 0 .

Spaces of Functions \(C(I)\)
\(C^{1}(I)\)
\(C^{r}(I)\)
\(P C(I)\)
Indicator functions

\section*{Some properties of \(\chi_{A}\)}

Thus we have,
\[
\text { If } A \cap B=\emptyset \text {, then } \chi_{A \cup B}(x)=\chi_{A}(x)+\chi_{B}(x)
\]

Now, what if \(A \cap B \neq \emptyset\) ?
Lemma. \(\chi_{A \cup B}(x)=\chi_{A}(x)+\chi_{B}(x)-\chi_{A \cap B}(x)\).
Proof.
- If \(x \notin A \cup B\), then both of the LHS and the RHS take the value 0 .
■ If \(x \in A \cup B\), then we have the following possibilities:

\section*{Some properties of \(\chi_{A}\)}

Thus we have,
\[
\text { If } A \cap B=\emptyset \text {, then } \chi_{A \cup B}(x)=\chi_{A}(x)+\chi_{B}(x) .
\]

Now, what if \(A \cap B \neq \emptyset\) ?
Lemma. \(\chi_{A \cup B}(x)=\chi_{A}(x)+\chi_{B}(x)-\chi_{A \cap B}(x)\).
Proof.
- If \(x \notin A \cup B\), then both of the LHS and the RHS take the value 0 .

■ If \(x \in A \cup B\), then we have the following possibilities:
1. If \(x \in A, x \notin B\), then
\[
\begin{aligned}
& \chi_{A \cup B}(x)=1 \\
& \chi_{A}(x)+\chi_{B}(x)-\chi_{A \cap B}=1+0-0=1
\end{aligned}
\]

Spaces of Functions \(C(I)\)
\(C^{1}(I)\)
\(C^{r}(I)\)
\(P C(I)\)
Indicator functions

\section*{Some properties of \(\chi_{A}\)}

Thus we have,
\[
\text { If } A \cap B=\emptyset \text {, then } \chi_{A \cup B}(x)=\chi_{A}(x)+\chi_{B}(x)
\]

Now, what if \(A \cap B \neq \emptyset\) ?
Lemma. \(\chi_{A \cup B}(x)=\chi_{A}(x)+\chi_{B}(x)-\chi_{A \cap B}(x)\).
Proof.
- If \(x \notin A \cup B\), then both of the LHS and the RHS take the value 0 .
■ If \(x \in A \cup B\), then we have the following possibilities:
1. If \(x \in A, x \notin B\), then
\[
\begin{aligned}
& \chi_{A \cup B}(x)=1 \\
& \chi_{A}(x)+\chi_{B}(x)-\chi_{A \cap B}=1+0-0=1
\end{aligned}
\]
2. Similarly for the case \(x \in B, x \notin A\) : LHS equals the RHS.

Spaces of Functions \(C(I)\)
\(C^{1}(I)\)
\(C^{r}(I)\)
\(P C(I)\)
Indicator functions

\section*{Some properties of \(\chi_{A}\)}

Thus we have,
\[
\text { If } A \cap B=\emptyset \text {, then } \chi_{A \cup B}(x)=\chi_{A}(x)+\chi_{B}(x)
\]

Now, what if \(A \cap B \neq \emptyset\) ?
Lemma. \(\chi_{A \cup B}(x)=\chi_{A}(x)+\chi_{B}(x)-\chi_{A \cap B}(x)\).
Proof.
- If \(x \notin A \cup B\), then both of the LHS and the RHS take the value 0 .
- If \(x \in A \cup B\), then we have the following possibilities:
3. If \(x \in A \cap B\), then
\[
\begin{aligned}
& \chi_{A \cup B}(x)=1 \\
& \chi_{A}(x)+\chi_{B}(x)-\chi_{A \cap B}=1+1-1=1
\end{aligned}
\]

Spaces of Functions \(C(I)\)
\(C^{1}(I)\)
\(C^{r}(I)\)
\(P C(I)\)
Indicator functions

\section*{Some properties of \(\chi_{A}\)}

Thus we have,
\[
\text { If } A \cap B=\emptyset \text {, then } \chi_{A \cup B}(x)=\chi_{A}(x)+\chi_{B}(x)
\]

Now, what if \(A \cap B \neq \emptyset\) ?
Lemma. \(\chi_{A \cup B}(x)=\chi_{A}(x)+\chi_{B}(x)-\chi_{A \cap B}(x)\).
Proof.
Spaces of Functions \(C(I)\)
\(C^{1}(I)\)
\(C^{r}(I)\)
\(P C(I)\)
Indicator functions
- If \(x \notin A \cup B\), then both of the LHS and the RHS take the value 0 .
■ If \(x \in A \cup B\), then we have the following possibilities:
3. If \(x \in A \cap B\), then
\[
\begin{aligned}
& \chi_{A \cup B}(x)=1 \\
& \chi_{A}(x)+\chi_{B}(x)-\chi_{A \cap B}=1+1-1=1
\end{aligned}
\]

As we have checked all possibilities, we have shown that the statement in the lemma is correct```

