
Chapter 6

Basic Representation

Theory

6.1 Invariant integrals and measures

In this section we shall state the existence of a Haar integral on a locally compact
Hausdorff group and use some general results from measure theory. For details
of the definitions and proofs, see for example the book by Gerald B. Folland
A Course in Abstract Harmonic Analysis. We then discuss action measures on
homogeneous spaces and group action.

6.1.1 Measure theory, an overview

Let X be a locally compact Hausdorff space and let Cc(X) be the space of
continuous complex valued functions on X having compact support. We start
by recalling some standard results regarding integrals and measures onX . First,
the σ-algebra Ba of Baire sets is the smallest σ-algebra on X such that each
f ∈ Cc(X) is measurable. It is generated by the sets

Kf,α = {x ∈ X | f(x) ≥ α}

α ∈ R and f ∈ Cc(X), real valued. Note that each of the sets Kf,α, α > 0,
is a compact Gδ set. Furthermore, every compact Gδ is Baire measurable. A
Radon measure is a measure µ : Ba → [0,∞] such that µ(K) < ∞ for every
compact Gδ set K.

The σ-algebra generated by the open sets is called the Borel sigma algebra
is denoted by Bo(X). Note that every compact Gδ-set is contained in Bo and
hence Ba ⊆ Bo.

Moreover, every Radon measure µ extends to a unique Borel measure which
we also call µ that has the following properties:

(a) µ(K) <∞ for all compact sets K
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322 Basic Representation Theory

(b) If E is Borel and µ(E) <∞ or E is open, then

µ(E) = sup{µ(K) | K is compact,K ⊆ E}.

(c) µ(E) = inf{µ(U) | U is open, E ⊆ U} for each Bore set E.

If X is second countable, then even more holds:

Lemma 6.1.1. Let X be a second countable locally compact Hausdorff space.
Then Ba = Bo.

Proof. Let K be a compact subset of X . Since X is second countable and
locally compact, there exists a countable base Ui, i = 1, 2, . . . for the topology
of X such that each Ūi is compact. Now consider the collection of those Ui

such that Ūi misses K. This is countable and if y /∈ K, then there is an open
set U having compact closure such that y ∈ Ū ⊆ X −K. In particular, there
must be a Ui whose closure is compact and disjoint from K that contains y.
Thus X − K is the union of those Ui (call the corresponding index set of i’s,
I0) with Ūi ⊆ X −K. Thus K = ∩i∈I0(G − Ūi) is a Gδ . So every compact set
is Baire. Since every open set is a countable union of compact sets, every open
set is Baire. Thus every Borel set is Baire.

A Borel measure will be called regular if µ satisfies (a), (b), and (c). We
will from now on always view a Radon measure as a regular Borel measure
on X without comments. If µ is a Radon-measure and 1 ≤ p ≤ ∞ then we
denote by Lp(X) the corresponding Lp-space. Then Cc(X) is dense in Lp(X)
for 1 ≤ p <∞.

A Radon on Borel measure defines a positive linear form on Cc(X) by

I(f) =

∫

X

f(x) dµ(x) .

A linear functional I : Cc(X) → C is said to be positive if I(f) ≥ 0 for all
positive f ∈ Cc(X), i.e., f(x) ≥ 0 for all x ∈ X . Note, that this implies that
I(f) ∈ R for all real valued functions f ∈ Cc(X). The following theorem states,
that we can also define Radon measure by using positive linear form on Cc(X).

Theorem 6.1.2 (Riesz-Markov). Let I : Cc(X) → C be a positive linear
functional. Then there is a unique Borel measure µ such that

Iµ(f) = I(f) =

∫

X

f(x) dµ(x)

for all f ∈ Cc(X). If µ is chosen regular, then µ is unique.

6.1.2 Invariance properties of measures

Assume from now on that X is locally compact and Hausdorff space X and that
G is a locally compact Hausdorff topological group acting separately continu-
ously on X .
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For f ∈ Cc(X) and a ∈ G define

λ(a)f(x) = a · f(x) = f(a−1x)

and note that λ(ab) = λ(a)λ(b). Then a · f ∈ Cc(X). If µ is a Radon measure
on X we define a · µ by

Ia·µ(f) = I(a−1f)

Thus
∫

X

f(x) d(a · µ)(x) =

∫

X

f(ax) dµ(x) .

Then a · µ is a Radon measure on X .

Definition 6.1.3. Let X be a locally compact Hausdorff topological space and
G a locally compact topological Hausdorff group acting separately continuously
on X. Let µ be a Radon or Borel measure on X. The measure µ is said to be

(a) invariant if for all a ∈ G we have a · µ = µ,

(b) relatively invariant if there exists a continuous homomorphism ∆X :
G→ R

+ such that a · µ = ∆X (a)−1µ for all a ∈ G, or
∫

X

f(ax) dµ(x) = ∆X(a)

∫

X

f(x) dµ(x) ,

(c) strongly quasi-invariant if there exists a continuous function ∆X :
G×X → R+ such that

∫

X

f(x)∆X (a−1, x) dµ(x) =

∫

X

f(x) d(a · µ)(x)

for all f ∈ Cc(X).

(d) quasi-invariant if for all a ∈ G the measure a ·µ is absolutely continuous
with respect to µ,

Remark 6.1.4. Note that (a) ⇒ (b) ⇒ (c) ⇒ (d). But, if X is not assumed σ-
finite then (d) does not even necessarily imply that the Radon-Nikodym deriva-

tive d(a·µ)
dµ

(y) exists even if a ·µ is absolute continuous with respect to µ. A nice
discussion on that can be found in the book by Folland A Course in Abstract
Harmonic Analysis. Note that µ is strongly quasi-invariant if and only if the

Radon-Nikodym derivative ∆X(a, x) = d(a·µ)
dµ

(y) exists and is continuous.

Lemma 6.1.5. Let µ be a Radon measure on X. Let E be measurable and
a ∈ G. Then a · µ(E) = µ(a−1 · E).

Proof. Let χE denote the indicator function of E. Then

a · µ(E) =

∫

X

χE(ax) dµ =

∫

X

χa−1·E dµ .
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Lemma 6.1.6. Let µ be a positive relatively invariant Radon measure on X.

1. ∅ 6= U ⊆ X open. Then µ(U) > 0.

2. If f ∈ Cc(X) is non-zero and positive, then I(f) > 0.

Proof. (1) Assume that µ(U) = 0. Let K ⊆ X be compact. Then there are
a1, . . . , an ∈ G such that

K ⊆
n
⋃

j=1

a−1
j U .

Hence

µ(K) ≤ µ(

n
⋃

j=1

a−1
j U) ≤

n
∑

j=1

µ(a−1
j U) =

n
∑

j=1

aj · µ(U) .

But ajµ is absolutely continuous with respect to µ and hence ajµ(U) = 0 and
hence K has measure zero. It follows that I(f) = 0 for all f ∈ Cc(X) and hence
µ = 0.

(2) Let x ∈ X be such that f(x) > 0. Let U = {y ∈ X | f(y) > f(x)/2}.
Then U is open, non-empty and µ(U) <∞ as U ⊆ supp(f). It follows that

0 < µ(U) ≤
f(x)

2
I(f)

and hence I(f) > 0.

We will from now on assume that X is completely regular, and note that
this is always the case if X = G/H for some closed subgroup H of G.

Lemma 6.1.7. Assume that g, h ∈ C(X) and that I(fg) = I(fh). Then g = h.

Proof. We can assume that h = 0 by replacing g by g − h. Assume that there
exists x ∈ X such that g(x) 6= 0. We can assume that g(x) > 0. Then
U = {y ∈ X | g(y) > g(x)/2} is open and U is compact and hence of finite
measure. As X is completely regular there exists a continuous function f such
that f(x) = 1 and f = 0 outside U . We can assume that f(y) ≥ 0 for all y,
by replacing f by |f | if necessary. In particular, fg is non-zero and compactly
supported and hence I(fg) > 0, a contradiction.

The following lemma explains the use of the inverse in the definition of
relatively invariant and strongly quasi-invariant measure:

Lemma 6.1.8. Assume that µ is strongly quasi-invariant. Let a, b ∈ G. Then
the following holds:

(a) µX (e, x) = 1 for all x ∈ X;

(b) (The cocycle relation) µX (ab, x) = µX(a, bx)µX(b, x);
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(c) Let a ∈ G and f ∈ Cc(X), then
∫

X

f(ax)µX (a, x) dµ(x) =

∫

X

f(x) dµ(x) .

Proof. (a) This is obvious as e · µ = µ.
(b) Let a, b ∈ G and f ∈ Cc(X), then

∫

X

f(x)µX (ab, x) dµ(x) =

∫

X

f((ab)−1 · x) dµ(x)

=

∫

X

λ(b)f(a−1x) dµ(x)

=

∫

X

λ(b)f(x)µX (a, x) dµ(x)

=

∫

X

f(b−1x)µX (a, b(b−1x)) dµ(x)

=

∫

X

f(x)µX (a, bx)µX(b, x) dµ(x) .

The claim now follows from Lemma 6.1.7.
(c) Note, that by (a) and (b) we have that µX (a, a−1x)µX (a−1, x) = 1.

Hence
∫

X

f(ax)µX(a, x) dµ(x) =

∫

f(ax)µX(a, a−1(ax)) dµ(x)

=

∫

X

f(x)µX (a, a−1x)µX (a−1, x) dµ(x)

=

∫

X

f(x) dµ(x) .

6.2 The Haar measure on G

We consider now the special case where G = X . The following theorem is fun-
damental in extending harmonic analysis on locally Euclidean spaces to general
locally compact Hausdorff groups. Recall λ(a)f(x) = f(a−1x) if f is a function
on a group G.

Theorem 6.2.1 (Haar). Let G be a locally compact Hausdorff group. Then
there is a nonzero positive integral I on Cc(G) such that I(λ(a)f) = I(f) for
each f ∈ Cc(X) and a ∈ G. Moreover, if J is another such integral, there is a
constant c > 0 such that J = cI.

The resulting Radon measure mG = m is called a left Haar measure for the
left invariant integral I . It has the property

m(aE) = m(E)
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for all a and all Baire sets E. Moreover, it has a unique regular extension to
the Borel sets having the same invariance property. This measure is also called
a left Haar measure. We will sometimes write dx instead of dm(x).

Recall from Lemma 6.1.1, that if G is second countable, then Ba = Bo.
Hence, any left invariant measure which is finite on compact sets and nonzero
is a left Haar measure. For example, Lebesgue measures on the line or on R

n

are Haar meaures for these groups.
We now establish some facts for a left invariant Haar integral I and its

corresponding Haar measurem. For f ∈ Cc(G) and a ∈ G let ρ(a)f(x) = f(xa).

Proposition 6.2.2. Let I be a left Haar integral for locally compact Hausdorff
group G and let m be the corresponding left invariant Haar measure on the
σ-algebra of Borel subsets of G.

(a) m(U) > 0 for every nonempty open set U .

(b) Let f ∈ Cc(G) be positive and non-zero. Then I(f) > 0.

(c)
∫

f(gx) dm(x) =
∫

f(x) dm(x) for each nonnegative Borel function f .

(d) There exists a continuous homomorphism ∆ = ∆G : G → R+ such that
for all g ∈ G we have

1.
∫

G
f(xa) dµ(x) = ∆(a)−1

∫

G
f(x) dµ(x) for all f ∈ L1(G),

2. m(Ea) = ∆(a)m(E) for all Borel sets E.

(e)
∫

f(x−1)∆(x−1) dm(x) =
∫

f(x) dm(x) for all f ∈ L1(G).

Proof. (a) and (b) follows from Lemma 6.1.6
For (c), note one can show using m(gE) = m(E) for any g ∈ G and and

any Borel set E that
∫

s(gx) dm(x) =
∫

s(x) dm(x) for simple nonegative Borel
functions s. Now if f ≥ 0 is Borel, f(x) = lim sn(x) for all x where sn is a
pointwise increasing sequence of simple Borel functions. Thus the Monotone
Convergence Theorem gives

∫

f(gx) dm(x) =
∫

f(x) dm(x).
To see (d), letm be a left Haar measure. Define a linear positive functional on

Cc(X) by J(f) = I(ρ(a)f). Then J(λ(b)f) = I(ρ(a)λ(b)f) = I(λ(b)(ρ(a)f)) =
I(ρ(a)f) = J(f) as ρ(a) and λ(b) commutes. It follows that J is left invariant.
Denote the corresponding measure by m′. Then, by Theorem 6.2.1 there exists
a ∆(a) > 0 such that Then m′ = ∆(a)−1m which translates to

m(Ea) =

∫

X

χE(xa−1) dµ(x) = ∆(a)µ(E) .

Thus
∫

X
s(xa) dm = ∆(a)−1

∫

X
s dm for all simple measurable functions, and

hence
∫

G

f(xa) dµ(x) = ∆(a)−1

∫

X

f(x) dµ(x)

for all f ∈ L1(G).
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We already know ∆(a) > 0 for all a ∈ G, and clearly ∆(e) = 1. Since
∆(ab)m(E) = m(Eab) = ∆(b)m(Ea) = ∆(b)∆(a)m(E) for Borel sets E. Hence
∆(ab) = ∆(a)∆(b) and ∆ is a homomorphism.

To see continuity, by Lemma ??, we only need to show ∆ is continuous at
e. Using Lemma ??, we can find compact neighborhoods U and V of e and a
function f ∈ Cc(G) such that f = 1 on U , 0 ≤ f ≤ 1, and suppf ⊆ UV . Recall
ρ(y)f(x) = f(xy) for x, y ∈ G. Let ε > 0. By right uniform continuity, there
is an open neighborhood W of e contained in U−1 such that |f(xy) − f(x)| <

εI(f)
m(UV U) for all x and for y ∈ W . Note the support of f and ρ(y)f are both

contained in UV U . Consequently, if y ∈ W , then

|I(ρ(y)f) − I(f)| = |I(ρ(y)f − f)|

= |

∫

(f(xy) − f(x)) dm(x)|

≤

∫

UV U

|f(xy) − f(x)| dm(x)

≤ εI(f).

But I(ρ(y)f) = ∆(y−1)I(f). Consequently, |∆(y−1) − 1| ≤ ε for y ∈ W . So ∆
is continuous at e.

Finally we show (e). Define J(f) =
∫

f(x−1)∆(x−1) dm(x) for f ∈ Cc(G).
Clearly J is positive. We show J is left invariant. Indeed, by (f),

J(λ(g)f) =

∫

f(g−1x−1)∆(x−1) dm(x)

= ∆(g)−1

∫

f(g−1(xg−1)−1)∆((xg−1)−1) dm(x)

= ∆(g)−1

∫

f(x−1)∆(x−1)∆(g) dm(x)

= J(f).

Thus by uniqueness of left Haar integrals, there is a c > 0 with J = cI . Hence
∫

f(x−1)∆(x−1) dm(x) = c

∫

f(x) dm(x)

for f ∈ Cc(G). To see c = 1, note
∫

f(x) dm(x) =
1

c

∫

f(x−1)∆(x−1) dm(x)

=
1

c2

∫

f(x)∆(x)∆(x−1) dm(x)

=
1

c2

∫

f(x) dm(x).

Thus c2
∫

f(x) dm(x) =
∫

f(x) dm(x). So c = 1.
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The function ∆ in Proposition 6.2.2 is called the modular function for the
group G. If ∆ is identically one, the group G is said to be unimodular. Thus
a left Haar measure on G is right invariant if and only if G is unimodular.

Lemma 6.2.3. Let K ⊆ G be compact, then ∆G|K = 1. In particular, if G is
compact, then G is unimodular.

Proof. As ∆ is continuous, it follows that ∆(K) is a compact subgroup of R+

and hence equal to {1}.

Example 1 (GL(n,R)). Recall that GL(n,R) can be viewed as an open dense

subset of M(n,R), and M(n,R) can be naturally identified with Rn2

by stacking
the n column vectors of n×n matrices into a column vector of length n2. Define
a Radon measure µ on GL(n,R) by
Z

GL(n,R)

f(X) dµ(X) :=

Z

GL(n,R))

f([xi,j ])| det([xi,j ])|
−n

dx1,1 · · · dx1,n · · · dx2,1 · · · dxn,n

=

Z

GL(n,R)

f(X) | det(X)|−n
dλ(X)

where dλ is the Lebesgue measure on Rn2

. Let C,X ∈ GL(n,R) and denote
by x1, . . . ,xn the column vectors of X . Then the matrix CX is given by

CX = (Cx1, . . . , Cxn)

Hence left multiplication by C on GL(n,R) corresponds after stacking column

vectors to the linear transformation on Rn2

having n2 × n2 matrix

LC =







C 0
. . .

0 C






.

This transformation has determinant det(C)n. It follows using Theorem ?? that
∫

f(CX) dµ(X) =

∫

f(CX) |det(X)|−n dλ(X)

= | detC|n
∫

f(CX) |det(CX)|−n
dλ(X)

=

∫

f(X) |det(X)|−n
dλ(X)

Hence µ is a left Haar measure.

6.3 Strongly quasi-invariant measures on G/H

In this section G denotes a locally compact Hausdorff topological group and
H a closed subgroup of G. By Lemma ??, the homogeneous space G/H with
quotient topology is Hausdorff and the mapping

(g, xH) 7→ gxH
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is a continuous action of G on G/H . Moreover, since the mapping κ : G→ G/H
is an open mapping, the space G/H is locally compact. Our aim is to study
quasi invariant measure on the homogeneous space X = G/H .

Lemma 6.3.1. Let K ⊆ X be compact. Then there exists a compact set L ⊆ G
such that κ(L) = K.

Proof. For each x ∈ κ−1(K) let Ux ∈ N (x) be compact. Then κ(Ux) is a
compact neighborhood of xH . Hence, there exists finitely many Uj = Uxj

,
j = 1, . . . , n, such that K ⊆ ∪n

j=1κ(Uj). Let

L =





n
⋃

j=1

Uj



 ∩ κ−1(K) .

As κ−1(K) is closed, it follows that L is compact, and by construction we have
κ(L) = K.

Lemma 6.3.2. Use dmH to denote a left Haar measure on H. The mapping
f 7→ fH defined by fH(xH) =

∫

f(xh) dh maps Cc(G) onto Cc(G/H).

Proof. Suppose f ∈ Cc(G). To see fH is continuous, let ε > 0. Choose a
compact neighborhood N of e. By left uniform continuity of f , we choose a
neighborhood N ′ of e contained in N such that

|f(ny) − f(y)| ≤
ε

m(H ∩ x−1N−1suppf)
for all y ∈ G for n ∈ N ′.

Let n ∈ N ′. Then f(nxh) = 0 and f(xh) = 0 for h /∈ H ∩ x−1N−1suppf .
Hence

|fH(nxH) − fH(xH)| ≤

∫

H

|f(nxh) − f(xh)| dh

≤

∫

H∩x−1N−1suppf

ε

m(H ∩ x−1N−1supp f)
dh

= ε.

So fH is continuous.

Moreover, if κ : G → G/H is the mapping g 7→ gH , we have supp (fH) ⊆
κ(supp (f)). Hence fH ∈ Cc(G/H) for f ∈ Cc(G).

Now suppose F ∈ Cc(G/H). Let K be the support of F . Let L ⊆ G be
compact such that κ(L) =. By Lemma ??, there exists ϕ ∈ Cc(G), 0 ≤ ϕ ≤ 1

such that ϕ = 1 on K. Then ϕH > 0 on K. Define f(x) = ϕ(x)
ϕH(xH)F (xH) on K
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and f(x) = 0 outside K. Then f is continuous, see Exercise ??. Finally

fH(xH) =

∫

H

f(xh) dh

=

∫

ϕ(x)

ϕH(xH)
F (xH) dh

= F (xH)

for x ∈ G.

Definition 6.3.3. Let H be a closed subgroup of G. A continuous function
ρ : G→ R+ is called a rho-function if

ρ(xh) = ρ(x)
∆H (h)

∆G(h)
(6.3.1)

for all x ∈ G and h ∈ H.

Note, that if ρ is a rho-function, then, for a fixed a, the function x 7→
ρ(ax)/ρ(x) is H-right invariant and hence

G×G/H 3 (a, xH) 7→
ρ(ax)

ρ(x)
∈ C (6.3.2)

is well defined and continuous.

Theorem 6.3.4 (Strongly quasi-invariant measures). Assume G is locally
compact and Hausdorff and H is a closed subgroup. Let µ be a positive Radon
measure on X. Then µ is strongly quasi-invariant if and only if there exists a
rho-function ρ such that

I(f) =

∫

X

fH(x) dµ(x) =

∫

G

f(x)ρ(x) dmG(x)

for all f ∈ Cc(G). In this case the Radon-Nikodym derivative is given by

µX(a, x) =
ρ(ax)

ρ(x)
. (6.3.3)

Proof. Assume that the rho-function ρ is given. We first show that I is well
defined. Indeed, suppose fH = 0. Choose g ∈ Cc(G) with gH = 1 on the
compact set κ(supp f). Suppose g(x)f(xh) 6= 0. Then x ∈ supp(f) and xh ∈
supp(f). Hence (x, h) ∈ supp(g)× (supp(f)supp(g)−1 which is compact. Hence

G×H 3 (x, h) 7→ F (x, h) = ρ(x)g(x)f(xh) ∈ C

is in Cc(G×H). It follows that F is integrable on G×H and vanishes outside
a set of finite measure. Thus we are allowed to use Fubini’s Theorem in the
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following argument:

0 =

∫ ∫

ρ(x)g(x)f(xh) dmH (h) dmG(x)

=

∫ ∫

ρ(x)g(x)f(xh) dmG(x) dmH (h)

=

∫ ∫

ρ(xh−1)g(xh−1)f(x)∆G(h−1) dmG(x) dmH (h)

=

∫ ∫

∆G(h)∆H (h−1)ρ(xh)g(xh)f(x) dmH (h) dmG(x)

=

∫ ∫

ρ(x)g(xh)f(x) dmH (h) dmG(x)

=

∫

ρ(x)f(x)gH (xH) dmG(x)

=

∫

ρ(x)f(x) dmG(x).

So I is well defined. Let a ∈ G. Then

∫

fH(axH) dµ(xH) =

∫

f(ax)ρ(x) dmG(x)

=

∫

f(x)ρ(a−1x) dmG(x)

=

∫

f(x)
ρ(a−1x)

ρ(x)
ρ(x) dmG(x)

=

∫

ρ(a−1x)

ρ(x)
fH(xH) dµ(xH).

In particular we get that µX(a, x) = ρ(ax)
ρ(x) .

Assume now that µ is a strongly quasi-invariant measure on X with Radon-
Nikodym derivative µX . Define ρ(a) = µX(a, eH). Then ρ is well defined
because µX is continuous. We need to show that (6.3.1) holds. From the
cocycle relation in Lemma 6.1.8 it follows for a ∈ G and h ∈ H , that ρ(ah) =
µX(a, hH)µX(h, eH) = ρ(a)ρ(h). Define I : Cc(G) → C by

J(f) =

∫

X

∫

H

f(gh)ρ(gh)−1 dmH(h)dµ(gH) =

∫

X

(f/ρ)H(x) dµ(x) .
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Let a ∈ G, then, by using the cocycle relation, we get:

J(λ(a)f) =

∫

X

(f/λ(a−1)ρ)H (a−1x) dµ(x)

=

∫

X

(f/λ(a−1)ρ)H (x)µ(a, x) dµ(x)

=

∫

X

∫

H

f(gh)ρ(agh)−1µ(a, gH) dmH(h)dµ(gH)

=

∫

X

∫

H

f(xh)ρ(gh)−1µ(a, gH)−1µ(a, gH) dmH(h)dµ(aH)

= J(f)

Hence, there exists a c > 0 such that

J(f) =

∫

X

∫

H

f(gh)ρ(gh)−1 dmH(h)dµ(gH) = c

∫

G

f(g) dmG(g) .

Replacing f by fρ it follows that

∫

X

fH(x) dµ(x) = c

∫

G

f(g)ρ(g) dg

for all f ∈ Cc(G). From this we get

c

∫

G

f(gh)ρ(g) dmG(g) = c∆G(h)−1

∫

G

f(g)ρ(gh−1) dmG(g)

= c∆G(h)−1ρ(h−1)

∫

G

f(g)ρ(g) dmG(g)

= ∆G(h)−1ρ(h−1)

∫

X

fH(x) dµ(x) .

On the other hand

c

∫

G

f(gh)ρ(g) dmG(g) = c

∫

G

(ρ(h)f)(g)ρ(g) dmG(g)

= c

∫

G

(ρ(h)f)(g)ρ(g) dmG(g)

=

∫

X

∫

H

f(gkh) dmH(k)dµ(gH)

= ∆H(h−1)

∫

X

fH(x) dµ(x) .

By taking f ∈ Cc(G) such that
∫

X
fH(x) dµ(x) 6= 0, and replacing h by h−1 it

follows that
ρ(h) = ∆H(h)/∆G(h)

as was to be shown.
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Corollary 6.3.5. There exists an invariant measure on G/H if and only if
∆H = ∆G|H.

Corollary 6.3.6. If K ⊆ G is a compact subgroup, then there exists a invariant
measure on G/K.

Proof. This follows from Lemma 6.2.3 and Corollary 6.3.5.

Theorem 6.3.7 (Relatively invariant measures). Let µ be a positive Radon
measure on X. Then µ is strongly quasi-invariant if and only if there exists a
homomorphism ρ : G → R+ such that ρ(h) = ∆H(h)/∆G(h) for all h ∈ H and
such that

∫

X

fH(x) dµ(x) =

∫

G

f(x)ρ(x) dmG(x) (6.3.4)

for all f ∈ Cc(G).

Proof. If ρ is as in the theorem, then ρ is rho-function. By Theorem 6.3.4 there
exists a quasi invariant measure such that (6.3.4) holds. By (6.3.3) it follows
that µX(a, x) = ρ(a) is independent of x, and hence the measure is relatively
invariant.

Assume now that µ is relatively invariant and define ρ by

I(λ(a)f) =

∫

X

f(ax) dµ(x) = ρ(a)

∫

X

f(x) dµ(x) .

As λ(ab)f = λ(a)[λ(b)f ] it follows that ρ is a homomorphism. Let f ∈ Cc(X)
be such that I(f) = 1. then ρ(a) = I(λ(a)f). Let ε > 0 be given. We can
assume that ε < 1. As f is uniformly continuous, there exists a V ∈ N (e) such
that |f(ax) − f(x)| < 1. Let U ∈ N (e), U ⊆ V be such that

|f(ax) − f(x)| <
ε

µ(V −1supp(f))
.

Then for a ∈ U we get

|ρ(a) − 1| ≤

∫

X

|f(ax) − f(x)| dµ ≤ ε .

Recall a Hausdorff space X is paracompact if every open covering has an
open locally finite refinement. Examples include both metrizable spaces and
compact Hausdorff spaces. Since second countable locally compact Hausdorff
spaces are metrizable, homogeneous spaces G/H are paracompact if G is a
second countable locally compact Hausdorff group and H is a closed subgroup.
However, for groups more is true. Indeed, every locally compact Hausdorff group
G is paracompact and so are their quotients G/H for closed subgroups H ; see
Exercises ??.?? and ??.??.



334 Basic Representation Theory

Lemma 6.3.8. Let G be a locally compact Hausdorff group with closed subgroup

H. Then there is a positive continuous function φ(x) with φ(xh) = φ(x)∆H (h)
∆G(h)

for all x ∈ G and h ∈ H.

Proof. We use G/H is paracompact. Since G/H is locally compact, we can find
a locally finite cover U of G/H consisting of open sets U with each Ū compact.
Now consider the collection of all open sets V with V̄ ⊆ U for some U ∈ U .
This is an open cover of G/H . Hence it has a locally finite refinement V of open
sets covering G/H .

For each open set U in U , set WU =
⋃

{V ∈ V | V̄ ⊆ U}. The sets WU

for U ∈ V form an open cover for G/H . Since WU ⊆ U , W̄U ⊆ Ū . Thus
each W̄U is compact. We finally note W̄U ⊆ U . Indeed, let x ∈ W̄U . Choose
a neighborhood Nx of x that meets only finitely many V in V . In particular,
{V ∈ V | V̄ ⊆ U, Nx ∩ V 6= ∅} consists of finitely many sets V1, V2, . . . , Vn.
This implies x ∈ V1 ∪ V2 ∪ · · · ∪ Vn = ∪n

k=1V̄k ⊆ U . So W̄U ⊆ U .
Now by Lemma ??, one can find for each U ∈ U a continuous function FU

of compact support inside U and satisfying 0 ≤ FU ≤ 1 and FU = 1 on WU . By
Lemma 6.3.2 and its proof, there are nonnegative fU ∈ Cc(G) such that

FU (xH) =

∫

fU (xh) dh

for all xH . Define f =
∑

U∈U fU . Note if x ∈ G, there is an open set N in G/H
with xH ∈ N and N meets only finitely many U . Since FU has compact support
in U , this implies fU is zero on κ−1(N) for all but finitely many U . Thus f
is defined, nonnegative, and continuous. Moreover, for each x, fU (xh) > 0 for
some U and h; and the set of h with fU (xh) > 0 is precompact.

Now set δ(h) = ∆H(h)
∆G(h) . Define φ(x) =

∫

H
f(xh) δ(h−1) dh. Note φ is contin-

uous for
∫

H

f(yh)δ(h−1) dh =
∑

U∩N 6=∅

∫

fU (yh)δ(h−1) dh when y ∈ N.

Moreover, φ(xh′) =
∫

f(xh′h)δ(h−1) dh =
∫

ψ(xh)δ(h−1h′) dh = δ(h′)φ(x).


