Chapter 6

Basic Representation Theory

6.1 Invariant integrals and measures

In this section we shall state the existence of a Haar integral on a locally compact Hausdorff group and use some general results from measure theory. For details of the definitions and proofs, see for example the book by Gerald B. Folland *A Course in Abstract Harmonic Analysis.* We then discuss action measures on homogeneous spaces and group action.

6.1.1 Measure theory, an overview

Let X be a locally compact Hausdorff space and let $C_c(X)$ be the space of continuous complex valued functions on X having compact support. We start by recalling some standard results regarding integrals and measures on X. First, the σ -algebra \mathcal{B}_a of Baire sets is the smallest σ -algebra on X such that each $f \in C_c(X)$ is measurable. It is generated by the sets

$$K_{f,\alpha} = \{ x \in X \mid f(x) \ge \alpha \}$$

 $\alpha \in \mathbb{R}$ and $f \in C_c(X)$, real valued. Note that each of the sets $K_{f,\alpha}$, $\alpha > 0$, is a compact G_{δ} set. Furthermore, every compact G_{δ} is Baire measurable. A **Radon measure** is a measure $\mu : \mathcal{B}_a \to [0, \infty]$ such that $\mu(K) < \infty$ for every compact G_{δ} set K.

The σ -algebra generated by the open sets is called the **Borel sigma algebra** is denoted by $\mathcal{B}_o(X)$. Note that every compact G_{δ} -set is contained in \mathcal{B}_o and hence $\mathcal{B}_a \subseteq \mathcal{B}_o$.

Moreover, every Radon measure μ extends to a unique Borel measure which we also call μ that has the following properties:

(a) $\mu(K) < \infty$ for all compact sets K

(b) If E is Borel and $\mu(E) < \infty$ or E is open, then

 $\mu(E) = \sup\{\mu(K) \mid K \text{ is compact}, K \subseteq E\}.$

(c) $\mu(E) = \inf\{\mu(U) \mid U \text{ is open}, E \subseteq U\}$ for each Bore set E.

If X is second countable, then even more holds:

Lemma 6.1.1. Let X be a second countable locally compact Hausdorff space. Then $\mathcal{B}_a = \mathcal{B}_o$.

Proof. Let K be a compact subset of X. Since X is second countable and locally compact, there exists a countable base U_i , i = 1, 2, ... for the topology of X such that each \overline{U}_i is compact. Now consider the collection of those U_i such that \overline{U}_i misses K. This is countable and if $y \notin K$, then there is an open set U having compact closure such that $y \in \overline{U} \subseteq X - K$. In particular, there must be a U_i whose closure is compact and disjoint from K that contains y. Thus X - K is the union of those U_i (call the corresponding index set of *i*'s, I_0) with $\overline{U}_i \subseteq X - K$. Thus $K = \bigcap_{i \in I_0} (G - \overline{U}_i)$ is a G_{δ} . So every compact set is Baire. Since every open set is a countable union of compact sets, every open set is Baire. Thus every Borel set is Baire. \Box

A Borel measure will be called **regular** if μ satisfies (a), (b), and (c). We will from now on always view a Radon measure as a regular Borel measure on X without comments. If μ is a Radon-measure and $1 \leq p \leq \infty$ then we denote by $L^p(X)$ the corresponding L^p -space. Then $C_c(X)$ is dense in $L^p(X)$ for $1 \leq p < \infty$.

A Radon on Borel measure defines a positive linear form on $C_c(X)$ by

$$I(f) = \int_X f(x) \, d\mu(x) \, .$$

A linear functional $I : C_c(X) \to \mathbb{C}$ is said to be **positive** if $I(f) \ge 0$ for all positive $f \in C_c(X)$, i.e., $f(x) \ge 0$ for all $x \in X$. Note, that this implies that $I(f) \in \mathbb{R}$ for all real valued functions $f \in C_c(X)$. The following theorem states, that we can also define Radon measure by using positive linear form on $C_c(X)$.

Theorem 6.1.2 (Riesz-Markov). Let $I : C_c(X) \to \mathbb{C}$ be a positive linear functional. Then there is a unique Borel measure μ such that

$$I_{\mu}(f) = I(f) = \int_{X} f(x) \, d\mu(x)$$

for all $f \in C_c(X)$. If μ is chosen regular, then μ is unique.

6.1.2 Invariance properties of measures

Assume from now on that X is locally compact and Hausdorff space X and that G is a locally compact Hausdorff topological group acting separately continuously on X.

Invariant integrals and measures

For $f \in C_c(X)$ and $a \in G$ define

$$\lambda(a)f(x) = a \cdot f(x) = f(a^{-1}x)$$

and note that $\lambda(ab) = \lambda(a)\lambda(b)$. Then $a \cdot f \in C_c(X)$. If μ is a Radon measure on X we define $a \cdot \mu$ by

$$I_{a \cdot \mu}(f) = I(a^{-1}f)$$

Thus

$$\int_X f(x) \, d(a \cdot \mu)(x) = \int_X f(ax) \, d\mu(x) \, .$$

Then $a \cdot \mu$ is a Radon measure on X.

Definition 6.1.3. Let X be a locally compact Hausdorff topological space and G a locally compact topological Hausdorff group acting separately continuously on X. Let μ be a Radon or Borel measure on X. The measure μ is said to be

- (a) **invariant** if for all $a \in G$ we have $a \cdot \mu = \mu$,
- (b) relatively invariant if there exists a continuous homomorphism Δ_X : $G \to \mathbb{R}^+$ such that $a \cdot \mu = \Delta_X(a)^{-1}\mu$ for all $a \in G$, or

$$\int_X f(ax) \, d\mu(x) = \Delta_X(a) \int_X f(x) \, d\mu(x) \, d\mu(x)$$

(c) strongly quasi-invariant if there exists a continuous function Δ_X : $G \times X \to \mathbb{R}^+$ such that

$$\int_X f(x)\Delta_X(a^{-1},x)\,d\mu(x) = \int_X f(x)\,d(a\cdot\mu)(x)$$

for all $f \in C_c(X)$.

(d) quasi-invariant if for all $a \in G$ the measure $a \cdot \mu$ is absolutely continuous with respect to μ ,

Remark 6.1.4. Note that (a) \Rightarrow (b) \Rightarrow (c) \Rightarrow (d). But, if X is not assumed σ -finite then (d) does not even necessarily imply that the Radon-Nikodym derivative $\frac{d(a:\mu)}{d\mu}(y)$ exists even if $a \cdot \mu$ is absolute continuous with respect to μ . A nice discussion on that can be found in the book by Folland A Course in Abstract Harmonic Analysis. Note that μ is strongly quasi-invariant if and only if the Radon-Nikodym derivative $\Delta_X(a, x) = \frac{d(a:\mu)}{d\mu}(y)$ exists and is continuous.

Lemma 6.1.5. Let μ be a Radon measure on X. Let E be measurable and $a \in G$. Then $a \cdot \mu(E) = \mu(a^{-1} \cdot E)$.

Proof. Let χ_E denote the indicator function of E. Then

$$a \cdot \mu(E) = \int_X \chi_E(ax) \, d\mu = \int_X \chi_{a^{-1} \cdot E} \, d\mu \, .$$

- 1. $\emptyset \neq U \subset X$ open. Then $\mu(U) > 0$.
- 2. If $f \in C_c(X)$ is non-zero and positive, then I(f) > 0.

Proof. (1) Assume that $\mu(U) = 0$. Let $K \subseteq X$ be compact. Then there are $a_1, \ldots, a_n \in G$ such that

$$K \subseteq \bigcup_{j=1}^n a_j^{-1} U \,.$$

Hence

$$\mu(K) \le \mu(\bigcup_{j=1}^{n} a_j^{-1}U) \le \sum_{j=1}^{n} \mu(a_j^{-1}U) = \sum_{j=1}^{n} a_j \cdot \mu(U) \,.$$

But $a_j\mu$ is absolutely continuous with respect to μ and hence $a_j\mu(U) = 0$ and hence K has measure zero. It follows that I(f) = 0 for all $f \in C_c(X)$ and hence $\mu = 0$.

(2) Let $x \in X$ be such that f(x) > 0. Let $U = \{y \in X \mid f(y) > f(x)/2\}$. Then U is open, non-empty and $\mu(U) < \infty$ as $\overline{U} \subseteq \text{supp}(f)$. It follows that

$$0 < \mu(U) \le \frac{f(x)}{2}I(f)$$

and hence I(f) > 0.

We will from now on assume that X is completely regular, and note that this is always the case if X = G/H for some closed subgroup H of G.

Lemma 6.1.7. Assume that $g, h \in C(X)$ and that I(fg) = I(fh). Then g = h.

Proof. We can assume that h = 0 by replacing g by g - h. Assume that there exists $x \in X$ such that $g(x) \neq 0$. We can assume that g(x) > 0. Then $U = \{y \in X \mid g(y) > g(x)/2\}$ is open and \overline{U} is compact and hence of finite measure. As X is completely regular there exists a continuous function f such that f(x) = 1 and f = 0 outside U. We can assume that $f(y) \geq 0$ for all y, by replacing f by |f| if necessary. In particular, fg is non-zero and compactly supported and hence I(fg) > 0, a contradiction.

The following lemma explains the use of the inverse in the definition of relatively invariant and strongly quasi-invariant measure:

Lemma 6.1.8. Assume that μ is strongly quasi-invariant. Let $a, b \in G$. Then the following holds:

- (a) $\mu_X(e, x) = 1$ for all $x \in X$;
- (b) (The cocycle relation) $\mu_X(ab, x) = \mu_X(a, bx)\mu_X(b, x)$;

The Haar measure on G

(c) Let $a \in G$ and $f \in C_c(X)$, then

$$\int_X f(ax)\mu_X(a,x)\,d\mu(x) = \int_X f(x)\,d\mu(x)$$

Proof. (a) This is obvious as $e \cdot \mu = \mu$. (b) Let $a, b \in G$ and $f \in C_c(X)$, then

$$\begin{split} \int_X f(x)\mu_X(ab,x) \, d\mu(x) &= \int_X f((ab)^{-1} \cdot x) \, d\mu(x) \\ &= \int_X \lambda(b) f(a^{-1}x) \, d\mu(x) \\ &= \int_X \lambda(b) f(x)\mu_X(a,x) \, d\mu(x) \\ &= \int_X f(b^{-1}x)\mu_X(a,b(b^{-1}x)) \, d\mu(x) \\ &= \int_X f(x)\mu_X(a,bx)\mu_X(b,x) \, d\mu(x) \, . \end{split}$$

The claim now follows from Lemma 6.1.7.

(c) Note, that by (a) and (b) we have that $\mu_X(a, a^{-1}x)\mu_X(a^{-1}, x) = 1$. Hence

$$\begin{split} \int_X f(ax)\mu_X(a,x) \, d\mu(x) &= \int f(ax)\mu_X(a,a^{-1}(ax)) \, d\mu(x) \\ &= \int_X f(x)\mu_X(a,a^{-1}x)\mu_X(a^{-1},x) \, d\mu(x) \\ &= \int_X f(x) \, d\mu(x) \, . \end{split}$$

6.2 The Haar measure on G

We consider now the special case where G = X. The following theorem is fundamental in extending harmonic analysis on locally Euclidean spaces to general locally compact Hausdorff groups. Recall $\lambda(a)f(x) = f(a^{-1}x)$ if f is a function on a group G.

Theorem 6.2.1 (Haar). Let G be a locally compact Hausdorff group. Then there is a nonzero positive integral I on $C_c(G)$ such that $I(\lambda(a)f) = I(f)$ for each $f \in C_c(X)$ and $a \in G$. Moreover, if J is another such integral, there is a constant c > 0 such that J = cI.

The resulting Radon measure $m_G = m$ is called a left Haar measure for the left invariant integral I. It has the property

$$m(aE) = m(E)$$

Basic Representation Theory

for all a and all Baire sets E. Moreover, it has a unique regular extension to the Borel sets having the same invariance property. This measure is also called a left Haar measure. We will sometimes write dx instead of dm(x).

Recall from Lemma 6.1.1, that if G is second countable, then $\mathcal{B}_a = \mathcal{B}_o$. Hence, any left invariant measure which is finite on compact sets and nonzero is a left Haar measure. For example, Lebesgue measures on the line or on \mathbb{R}^n are Haar measures for these groups.

We now establish some facts for a left invariant Haar integral I and its corresponding Haar measure m. For $f \in C_c(G)$ and $a \in G$ let $\rho(a)f(x) = f(xa)$.

Proposition 6.2.2. Let I be a left Haar integral for locally compact Hausdorff group G and let m be the corresponding left invariant Haar measure on the σ -algebra of Borel subsets of G.

- (a) m(U) > 0 for every nonempty open set U.
- (b) Let $f \in C_c(G)$ be positive and non-zero. Then I(f) > 0.
- (c) $\int f(gx) dm(x) = \int f(x) dm(x)$ for each nonnegative Borel function f.
- (d) There exists a continuous homomorphism $\Delta = \Delta_G : G \to \mathbb{R}^+$ such that for all $g \in G$ we have

(e)
$$\int f(x^{-1})\Delta(x^{-1}) dm(x) = \int f(x) dm(x)$$
 for all $f \in L^1(G)$.

Proof. (a) and (b) follows from Lemma 6.1.6

For (c), note one can show using m(gE) = m(E) for any $g \in G$ and and any Borel set E that $\int s(gx) dm(x) = \int s(x) dm(x)$ for simple nonegative Borel functions s. Now if $f \ge 0$ is Borel, $f(x) = \lim s_n(x)$ for all x where s_n is a pointwise increasing sequence of simple Borel functions. Thus the Monotone Convergence Theorem gives $\int f(gx) dm(x) = \int f(x) dm(x)$.

To see (d), let *m* be a left Haar measure. Define a linear positive functional on $C_c(X)$ by $J(f) = I(\rho(a)f)$. Then $J(\lambda(b)f) = I(\rho(a)\lambda(b)f) = I(\lambda(b)(\rho(a)f)) = I(\rho(a)f) = J(f)$ as $\rho(a)$ and $\lambda(b)$ commutes. It follows that *J* is left invariant. Denote the corresponding measure by *m'*. Then, by Theorem 6.2.1 there exists a $\Delta(a) > 0$ such that Then $m' = \Delta(a)^{-1}m$ which translates to

$$m(Ea) = \int_X \chi_E(xa^{-1}) \, d\mu(x) = \Delta(a)\mu(E) \,.$$

Thus $\int_X s(xa) dm = \Delta(a)^{-1} \int_X s dm$ for all simple measurable functions, and hence

$$\int_G f(xa) \, d\mu(x) = \Delta(a)^{-1} \int_X f(x) \, d\mu(x)$$

for all $f \in L^1(G)$.

The Haar measure on G

We already know $\Delta(a) > 0$ for all $a \in G$, and clearly $\Delta(e) = 1$. Since $\Delta(ab)m(E) = m(Eab) = \Delta(b)m(Ea) = \Delta(b)\Delta(a)m(E)$ for Borel sets E. Hence $\Delta(ab) = \Delta(a)\Delta(b)$ and Δ is a homomorphism.

To see continuity, by Lemma ??, we only need to show Δ is continuous at e. Using Lemma ??, we can find compact neighborhoods U and V of e and a function $f \in C_c(G)$ such that f = 1 on U, $0 \leq f \leq 1$, and $\operatorname{supp} f \subseteq UV$. Recall $\rho(y)f(x) = f(xy)$ for $x, y \in G$. Let $\epsilon > 0$. By right uniform continuity, there is an open neighborhood W of e contained in U^{-1} such that $|f(xy) - f(x)| < \frac{\epsilon I(f)}{m(UVU)}$ for all x and for $y \in W$. Note the support of f and $\rho(y)f$ are both contained in UVU. Consequently, if $y \in W$, then

$$\begin{aligned} |I(\rho(y)f) - I(f)| &= |I(\rho(y)f - f)| \\ &= |\int (f(xy) - f(x)) \, dm(x)| \\ &\leq \int_{UVU} |f(xy) - f(x)| \, dm(x) \\ &\leq \epsilon I(f). \end{aligned}$$

But $I(\rho(y)f) = \Delta(y^{-1})I(f)$. Consequently, $|\Delta(y^{-1}) - 1| \le \epsilon$ for $y \in W$. So Δ is continuous at e.

Finally we show (e). Define $J(f) = \int f(x^{-1})\Delta(x^{-1}) dm(x)$ for $f \in C_c(G)$. Clearly J is positive. We show J is left invariant. Indeed, by (f),

$$\begin{aligned} J(\lambda(g)f) &= \int f(g^{-1}x^{-1})\Delta(x^{-1})\,dm(x) \\ &= \Delta(g)^{-1}\int f(g^{-1}(xg^{-1})^{-1})\Delta((xg^{-1})^{-1})\,dm(x) \\ &= \Delta(g)^{-1}\int f(x^{-1})\Delta(x^{-1})\Delta(g)\,dm(x) \\ &= J(f). \end{aligned}$$

Thus by uniqueness of left Haar integrals, there is a c > 0 with J = cI. Hence

$$\int f(x^{-1})\Delta(x^{-1})\,dm(x) = c\int f(x)\,dm(x)$$

for $f \in C_c(G)$. To see c = 1, note

$$\int f(x) dm(x) = \frac{1}{c} \int f(x^{-1}) \Delta(x^{-1}) dm(x)$$
$$= \frac{1}{c^2} \int f(x) \Delta(x) \Delta(x^{-1}) dm(x)$$
$$= \frac{1}{c^2} \int f(x) dm(x).$$

Thus $c^2 \int f(x) dm(x) = \int f(x) dm(x)$. So c = 1.

Basic Representation Theory

The function Δ in Proposition 6.2.2 is called the modular function for the group G. If Δ is identically one, the group G is said to be **unimodular**. Thus a left Haar measure on G is right invariant if and only if G is unimodular.

Lemma 6.2.3. Let $K \subseteq G$ be compact, then $\Delta_G|_K = 1$. In particular, if G is compact, then G is unimodular.

Proof. As Δ is continuous, it follows that $\Delta(K)$ is a compact subgroup of \mathbb{R}^+ and hence equal to $\{1\}$.

Example 1 ($GL(n, \mathbb{R})$). Recall that $GL(n, \mathbb{R})$ can be viewed as an open dense subset of $M(n, \mathbb{R})$, and $M(n, \mathbb{R})$ can be naturally identified with \mathbb{R}^{n^2} by stacking the *n* column vectors of $n \times n$ matrices into a column vector of length n^2 . Define a Radon measure μ on $GL(n, \mathbb{R})$ by

$$\int_{\mathrm{GL}(n,\mathbb{R})} f(X) d\mu(X) := \int_{\mathrm{GL}(n,\mathbb{R}))} f([x_{i,j}]) |\det([x_{i,j}])|^{-n} dx_{1,1} \cdots dx_{1,n} \cdots dx_{2,1} \cdots dx_{n,n}$$
$$= \int_{\mathrm{GL}(n,\mathbb{R})} f(X) |\det(X)|^{-n} d\lambda(X)$$

where $d\lambda$ is the Lebesgue measure on \mathbb{R}^{n^2} . Let $C, X \in \mathrm{GL}(n, \mathbb{R})$ and denote by $\mathbf{x}_1, \ldots, \mathbf{x}_n$ the column vectors of X. Then the matrix CX is given by

$$CX = (C\mathbf{x}_1, \dots, C\mathbf{x}_n)$$

Hence left multiplication by C on $GL(n, \mathbb{R})$ corresponds after stacking column vectors to the linear transformation on \mathbb{R}^{n^2} having $n^2 \times n^2$ matrix

$$L_C = \begin{pmatrix} C & & 0 \\ & \ddots & \\ 0 & & C \end{pmatrix}.$$

This transformation has determinant $det(C)^n$. It follows using Theorem ?? that

$$\int f(CX) d\mu(X) = \int f(CX) |\det(X)|^{-n} d\lambda(X)$$
$$= |\det C|^n \int f(CX) |\det(CX)|^{-n} d\lambda(X)$$
$$= \int f(X) |\det(X)|^{-n} d\lambda(X)$$

Hence μ is a left Haar measure.

6.3 Strongly quasi-invariant measures on G/H

In this section G denotes a locally compact Hausdorff topological group and H a closed subgroup of G. By Lemma ??, the homogeneous space G/H with quotient topology is Hausdorff and the mapping

$$(g, xH) \mapsto gxH$$

 $\mathbf{328}$

Strongly quasi-invariant measures on G/H

is a continuous action of G on G/H. Moreover, since the mapping $\kappa : G \to G/H$ is an open mapping, the space G/H is locally compact. Our aim is to study quasi invariant measure on the homogeneous space X = G/H.

Lemma 6.3.1. Let $K \subseteq X$ be compact. Then there exists a compact set $L \subseteq G$ such that $\kappa(L) = K$.

Proof. For each $x \in \kappa^{-1}(K)$ let $U_x \in \mathcal{N}(x)$ be compact. Then $\kappa(U_x)$ is a compact neighborhood of xH. Hence, there exists finitely many $U_j = U_{x_j}$, $j = 1, \ldots, n$, such that $K \subseteq \bigcup_{j=1}^n \kappa(U_j)$. Let

$$L = \left(\bigcup_{j=1}^{n} U_j\right) \cap \kappa^{-1}(K) \,.$$

As $\kappa^{-1}(K)$ is closed, it follows that L is compact, and by construction we have $\kappa(L) = K$.

Lemma 6.3.2. Use dm_H to denote a left Haar measure on H. The mapping $f \mapsto f_H$ defined by $f_H(xH) = \int f(xh) dh$ maps $C_c(G)$ onto $C_c(G/H)$.

Proof. Suppose $f \in C_c(G)$. To see f_H is continuous, let $\epsilon > 0$. Choose a compact neighborhood N of e. By left uniform continuity of f, we choose a neighborhood N' of e contained in N such that

$$|f(ny) - f(y)| \le \frac{\epsilon}{m(H \cap x^{-1}N^{-1}\mathrm{supp}f)}$$
 for all $y \in G$ for $n \in N'$.

Let $n \in N'$. Then f(nxh) = 0 and f(xh) = 0 for $h \notin H \cap x^{-1}N^{-1} \text{supp} f$. Hence

$$|f_H(nxH) - f_H(xH)| \le \int_H |f(nxh) - f(xh)| \, dh$$

$$\le \int_{H \cap x^{-1}N^{-1} \operatorname{supp} f} \frac{\epsilon}{m(H \cap x^{-1}N^{-1} \operatorname{supp} f)} \, dh$$

$$= \epsilon.$$

So f_H is continuous.

Moreover, if $\kappa : G \to G/H$ is the mapping $g \mapsto gH$, we have $\operatorname{supp}(f_H) \subseteq \kappa(\operatorname{supp}(f))$. Hence $f_H \in C_c(G/H)$ for $f \in C_c(G)$.

Now suppose $F \in C_c(G/H)$. Let K be the support of F. Let $L \subseteq G$ be compact such that $\kappa(L) =$. By Lemma ??, there exists $\varphi \in C_c(G)$, $0 \le \varphi \le 1$ such that $\varphi = 1$ on K. Then $\varphi_H > 0$ on K. Define $f(x) = \frac{\varphi(x)}{\varphi_H(xH)}F(xH)$ on K

Basic Representation Theory

and f(x) = 0 outside K. Then f is continuous, see Exercise ??. Finally

$$f_H(xH) = \int_H f(xh) \, dh$$
$$= \int \frac{\varphi(x)}{\varphi_H(xH)} F(xH) \, dh$$
$$= F(xH)$$

for $x \in G$.

Definition 6.3.3. Let H be a closed subgroup of G. A continuous function $\rho: G \to \mathbb{R}^+$ is called a **rho-function** if

$$\rho(xh) = \rho(x) \frac{\Delta_H(h)}{\Delta_G(h)} \tag{6.3.1}$$

for all $x \in G$ and $h \in H$.

Note, that if ρ is a rho-function, then, for a fixed a, the function $x \mapsto \rho(ax)/\rho(x)$ is *H*-right invariant and hence

$$G \times G/H \ni (a, xH) \mapsto \frac{\rho(ax)}{\rho(x)} \in \mathbb{C}$$
 (6.3.2)

is well defined and continuous.

Theorem 6.3.4 (Strongly quasi-invariant measures). Assume G is locally compact and Hausdorff and H is a closed subgroup. Let μ be a positive Radon measure on X. Then μ is strongly quasi-invariant if and only if there exists a rho-function ρ such that

$$I(f) = \int_X f_H(x) d\mu(x) = \int_G f(x)\rho(x) dm_G(x)$$

for all $f \in C_c(G)$. In this case the Radon-Nikodym derivative is given by

$$\mu_X(a,x) = \frac{\rho(ax)}{\rho(x)} \,. \tag{6.3.3}$$

Proof. Assume that the rho-function ρ is given. We first show that I is well defined. Indeed, suppose $f_H = 0$. Choose $g \in C_c(G)$ with $g_H = 1$ on the compact set $\kappa(\operatorname{supp} f)$. Suppose $g(x)f(xh) \neq 0$. Then $x \in \operatorname{supp}(f)$ and $xh \in \operatorname{supp}(f)$. Hence $(x,h) \in \operatorname{supp}(g) \times (\operatorname{supp}(f)\operatorname{supp}(g)^{-1})$ which is compact. Hence

$$G \times H \ni (x,h) \mapsto F(x,h) = \rho(x)g(x)f(xh) \in \mathbb{C}$$

is in $C_c(G \times H)$. It follows that F is integrable on $G \times H$ and vanishes outside a set of finite measure. Thus we are allowed to use Fubini's Theorem in the

Strongly quasi-invariant measures on G/H

following argument:

$$0 = \int \int \rho(x)g(x)f(xh) dm_H(h) dm_G(x)$$

$$= \int \int \rho(x)g(x)f(xh) dm_G(x) dm_H(h)$$

$$= \int \int \rho(xh^{-1})g(xh^{-1})f(x)\Delta_G(h^{-1}) dm_G(x) dm_H(h)$$

$$= \int \int \Delta_G(h)\Delta_H(h^{-1})\rho(xh)g(xh)f(x) dm_H(h) dm_G(x)$$

$$= \int \int \rho(x)g(xh)f(x) dm_H(h) dm_G(x)$$

$$= \int \rho(x)f(x)g_H(xH) dm_G(x)$$

$$= \int \rho(x)f(x) dm_G(x).$$

So I is well defined. Let $a \in G$. Then

$$\int f_H(axH) d\mu(xH) = \int f(ax)\rho(x) dm_G(x)$$

=
$$\int f(x)\rho(a^{-1}x) dm_G(x)$$

=
$$\int f(x)\frac{\rho(a^{-1}x)}{\rho(x)}\rho(x) dm_G(x)$$

=
$$\int \frac{\rho(a^{-1}x)}{\rho(x)} f_H(xH) d\mu(xH).$$

In particular we get that $\mu_X(a, x) = \frac{\rho(ax)}{\rho(x)}$.

Assume now that μ is a strongly quasi-invariant measure on X with Radon-Nikodym derivative μ_X . Define $\rho(a) = \mu_X(a, eH)$. Then ρ is well defined because μ_X is continuous. We need to show that (6.3.1) holds. From the cocycle relation in Lemma 6.1.8 it follows for $a \in G$ and $h \in H$, that $\rho(ah) = \mu_X(a, hH)\mu_X(h, eH) = \rho(a)\rho(h)$. Define $I : C_c(G) \to \mathbb{C}$ by

$$J(f) = \int_X \int_H f(gh)\rho(gh)^{-1} \, dm_H(h)d\mu(gH) = \int_X (f/\rho)_H(x) \, d\mu(x) \, d\mu$$

Let $a \in G$, then, by using the cocycle relation, we get:

$$J(\lambda(a)f) = \int_{X} (f/\lambda(a^{-1})\rho)_{H}(a^{-1}x) d\mu(x)$$

= $\int_{X} (f/\lambda(a^{-1})\rho)_{H}(x)\mu(a,x) d\mu(x)$
= $\int_{X} \int_{H} f(gh)\rho(agh)^{-1}\mu(a,gH) dm_{H}(h)d\mu(gH)$
= $\int_{X} \int_{H} f(xh)\rho(gh)^{-1}\mu(a,gH)^{-1}\mu(a,gH) dm_{H}(h)d\mu(aH)$
= $J(f)$

Hence, there exists a c > 0 such that

$$J(f) = \int_X \int_H f(gh)\rho(gh)^{-1} dm_H(h)d\mu(gH) = c \int_G f(g) dm_G(g).$$

Replacing f by $f\rho$ it follows that

$$\int_X f_H(x) \, d\mu(x) = c \int_G f(g) \rho(g) \, dg$$

for all $f \in C_c(G)$. From this we get

$$\begin{split} c \int_{G} f(gh)\rho(g) \, dm_{G}(g) &= c \Delta_{G}(h)^{-1} \int_{G} f(g)\rho(gh^{-1}) \, dm_{G}(g) \\ &= c \Delta_{G}(h)^{-1}\rho(h^{-1}) \int_{G} f(g)\rho(g) \, dm_{G}(g) \\ &= \Delta_{G}(h)^{-1}\rho(h^{-1}) \int_{X} f_{H}(x) \, d\mu(x) \, . \end{split}$$

On the other hand

$$\begin{split} c \int_{G} f(gh) \rho(g) \, dm_{G}(g) &= c \int_{G} (\rho(h)f)(g) \rho(g) \, dm_{G}(g) \\ &= c \int_{G} (\rho(h)f)(g) \rho(g) \, dm_{G}(g) \\ &= \int_{X} \int_{H} f(gkh) \, dm_{H}(k) d\mu(gH) \\ &= \Delta_{H}(h^{-1}) \int_{X} f_{H}(x) \, d\mu(x) \, . \end{split}$$

By taking $f \in C_c(G)$ such that $\int_X f_H(x) d\mu(x) \neq 0$, and replacing h by h^{-1} it follows that

$$\rho(h) = \Delta_H(h) / \Delta_G(h)$$

as was to be shown.

Strongly quasi-invariant measures on G/H

Corollary 6.3.5. There exists an invariant measure on G/H if and only if $\Delta_H = \Delta_G | H$.

Corollary 6.3.6. If $K \subseteq G$ is a compact subgroup, then there exists a invariant measure on G/K.

Proof. This follows from Lemma 6.2.3 and Corollary 6.3.5.

Theorem 6.3.7 (Relatively invariant measures). Let μ be a positive Radon measure on X. Then μ is strongly quasi-invariant if and only if there exists a homomorphism $\rho: G \to \mathbb{R}^+$ such that $\rho(h) = \Delta_H(h)/\Delta_G(h)$ for all $h \in H$ and such that

$$\int_{X} f_{H}(x) \, d\mu(x) = \int_{G} f(x)\rho(x) \, dm_{G}(x) \tag{6.3.4}$$

for all $f \in C_c(G)$.

Proof. If ρ is as in the theorem, then ρ is rho-function. By Theorem 6.3.4 there exists a quasi invariant measure such that (6.3.4) holds. By (6.3.3) it follows that $\mu_X(a, x) = \rho(a)$ is independent of x, and hence the measure is relatively invariant.

Assume now that μ is relatively invariant and define ρ by

$$I(\lambda(a)f) = \int_X f(ax) \, d\mu(x) = \rho(a) \int_X f(x) \, d\mu(x)$$

As $\lambda(ab)f = \lambda(a)[\lambda(b)f]$ it follows that ρ is a homomorphism. Let $f \in C_c(X)$ be such that I(f) = 1. then $\rho(a) = I(\lambda(a)f)$. Let $\epsilon > 0$ be given. We can assume that $\epsilon < 1$. As f is uniformly continuous, there exists a $V \in \mathcal{N}(e)$ such that |f(ax) - f(x)| < 1. Let $U \in \mathcal{N}(e)$, $U \subseteq V$ be such that

$$|f(ax) - f(x)| < \frac{\epsilon}{\mu(V^{-1}\operatorname{supp}(f))}$$

Then for $a \in U$ we get

$$|\rho(a) - 1| \le \int_X |f(ax) - f(x)| \, d\mu \le \epsilon \, .$$

Recall a Hausdorff space X is **paracompact** if every open covering has an open locally finite refinement. Examples include both metrizable spaces and compact Hausdorff spaces. Since second countable locally compact Hausdorff spaces are metrizable, homogeneous spaces G/H are paracompact if G is a second countable locally compact Hausdorff group and H is a closed subgroup. However, for groups more is true. Indeed, every locally compact Hausdorff group G is paracompact and so are their quotients G/H for closed subgroups H; see Exercises ??.?? and ??.??

Lemma 6.3.8. Let G be a locally compact Hausdorff group with closed subgroup H. Then there is a positive continuous function $\phi(x)$ with $\phi(xh) = \phi(x) \frac{\Delta_H(h)}{\Delta_G(h)}$ for all $x \in G$ and $h \in H$.

Proof. We use G/H is paracompact. Since G/H is locally compact, we can find a locally finite cover \mathcal{U} of G/H consisting of open sets U with each \overline{U} compact. Now consider the collection of all open sets V with $\overline{V} \subseteq U$ for some $U \in \mathcal{U}$. This is an open cover of G/H. Hence it has a locally finite refinement \mathcal{V} of open sets covering G/H.

For each open set U in \mathcal{U} , set $W_U = \bigcup \{ V \in \mathcal{V} \mid \overline{V} \subseteq U \}$. The sets W_U for $U \in \mathcal{V}$ form an open cover for G/H. Since $W_U \subseteq U$, $\overline{W}_U \subseteq \overline{U}$. Thus each \overline{W}_U is compact. We finally note $\overline{W}_U \subseteq U$. Indeed, let $x \in \overline{W}_U$. Choose a neighborhood N_x of x that meets only finitely many V in \mathcal{V} . In particular, $\{V \in \mathcal{V} \mid \overline{V} \subseteq U, N_x \cap V \neq \emptyset\}$ consists of finitely many sets V_1, V_2, \ldots, V_n . This implies $x \in \overline{V_1 \cup V_2 \cup \cdots \cup V_n} = \bigcup_{k=1}^n \overline{V}_k \subseteq U$. So $\overline{W}_U \subseteq U$.

Now by Lemma ??, one can find for each $U \in \mathcal{U}$ a continuous function F_U of compact support inside U and satisfying $0 \leq F_U \leq 1$ and $F_U = 1$ on W_U . By Lemma 6.3.2 and its proof, there are nonnegative $f_U \in C_c(G)$ such that

$$F_U(xH) = \int f_U(xh) \, dh$$

for all xH. Define $f = \sum_{U \in \mathcal{U}} f_U$. Note if $x \in G$, there is an open set N in G/H with $xH \in N$ and N meets only finitely many U. Since F_U has compact support in U, this implies f_U is zero on $\kappa^{-1}(N)$ for all but finitely many U. Thus f is defined, nonnegative, and continuous. Moreover, for each x, $f_U(xh) > 0$ for some U and h; and the set of h with $f_U(xh) > 0$ is precompact.

Now set $\delta(h) = \frac{\Delta_H(h)}{\Delta_G(h)}$. Define $\phi(x) = \int_H f(xh) \,\delta(h^{-1}) \,dh$. Note ϕ is continuous for

$$\int_{H} f(yh)\delta(h^{-1}) dh = \sum_{U \cap N \neq \emptyset} \int f_U(yh)\delta(h^{-1}) dh \text{ when } y \in N.$$

Moreover, $\phi(xh') = \int f(xh'h)\delta(h^{-1}) dh = \int \psi(xh)\delta(h^{-1}h') dh = \delta(h')\phi(x)$.