THE IMAGE OF THE SEGAL-BARGMANN TRANSFORM SYMMETRIC SPACES AND GENERALIZATIONS

Joint work with
H. Schlichtkrull

To appear in Advances in Mathematics

1. The Heat Equation

1. The Heat Equation

- M a Riemannian manifold
\square

1. The Heat Equation

- M a Riemannian manifold
- Δ the Laplace operator

$$
\Delta=\frac{1}{\sqrt{g}} \sum_{k} \partial_{k} \sum_{i} g^{i k} \sqrt{g} \partial_{i}
$$

where $g=\operatorname{det}\left(g_{i j}\right)$

1. The Heat Equation

- M a Riemannian manifold
- Δ the Laplace operator

$$
\Delta=\frac{1}{\sqrt{g}} \sum_{k} \partial_{k} \sum_{i} g^{i k} \sqrt{g} \partial_{i}
$$

where $g=\operatorname{det}\left(g_{i j}\right)$

- The Heat equation is

$$
\begin{aligned}
\Delta u(x, t) & =\partial_{t} u(x, t) \\
\lim _{t \rightarrow o^{+}} u(x, t) & =f(x)
\end{aligned}
$$

Where f is in $L^{2}(M)$ or a distribution.

- The solution can be written as

$$
u(x, t)=e^{t \Delta} f(x)=: H_{t} f(x)
$$

- The solution can be written as

$$
u(x, t)=e^{t \Delta} f(x)=: H_{t} f(x)
$$

- But more importantly, there exists a function $h_{t}(x, y)$, the heat kernel, such that:
- $h_{t}(x, y)=h_{t}(y, x) \geq 0$;
- $d \mu_{t}(y)=h_{t}(x, y) d y$ is a probability measure on M;
- $H_{t} f(x)=\int_{M} f(y) h_{t}(x, y) d y$;
- The solution can be written as

$$
u(x, t)=e^{t \Delta} f(x)=: H_{t} f(x)
$$

- But more importantly, there exists a function $h_{t}(x, y)$, the heat kernel, such that:
- $h_{t}(x, y)=h_{t}(y, x) \geq 0$;
- $d \mu_{t}(y)=h_{t}(x, y) d y$ is a probability measure on M;
- $H_{t} f(x)=\int_{M} f(y) h_{t}(x, y) d y$;
- In some special cases there is a "natural" complexification $M_{\mathbb{C}}$ of M, such that the heat kernel $x \mapsto h_{t}(x, y)$ and the function $H_{t} f$ extends to a holomorphic function on $M_{\mathbb{C}}$. The task is then to define a Hilbert space $\mathcal{H}_{t}\left(M_{\mathbb{C}}\right)$ of holomorphic functions on $M_{\mathbb{C}}$ such that the transfrom

$$
L^{2}(M) \ni f \mapsto H_{t} f \in \mathcal{H}_{t}\left(M_{\mathbb{C}}\right)
$$

becomes an unitary isomorphism.
2. The case $M=\mathbb{R}^{n}$

- As a motivation - and as a tool for our more general result - let us start with the case $M=\mathbb{R}^{n}$.

2. The case $M=\mathbb{R}^{n}$

- As a motivation - and as a tool for our more general result - let us start with the case $M=\mathbb{R}^{n}$.
- The first simple remark is, that in general the heat kernel is invariant under isometries, i.e. if $\varphi: M \rightarrow M$ is an isometry, then

$$
h_{t}(x, y)=h_{t}(\varphi(x), \varphi(y))
$$

It follows that the heat kernel on \mathbb{R}^{n} is a function of one variable

$$
h_{t}(x, y)=h_{t}(x-y) .
$$

2. The case $M=\mathbb{R}^{n}$

- As a motivation - and as a tool for our more general result - let us start with the case $M=\mathbb{R}^{n}$.
- The first simple remark is, that in general the heat kernel is invariant under isometries, i.e. if $\varphi: M \rightarrow M$ is an isometry, then

$$
h_{t}(x, y)=h_{t}(\varphi(x), \varphi(y))
$$

It follows that the heat kernel on \mathbb{R}^{n} is a function of one variable

$$
h_{t}(x, y)=h_{t}(x-y) .
$$

- By definition, the heat kernel is a solution to the heat equation with $f=\delta_{0}$. Taking the Fourier transform (in the space variable x) the heat equation is transformed into the simple differential equation in the time variable:

$$
\partial_{t} \widehat{h_{t}}(\lambda)=-|\lambda|^{2} \widehat{h_{t}}(\lambda), \quad \lim _{t \rightarrow 0+} \widehat{h_{t}}(\lambda)=(2 \pi)^{-n / 2}
$$

- This gives $\quad \widehat{h}_{t}(\lambda)=(2 \pi)^{-n / 2} e^{-|\lambda|^{2} t}$.

- This gives $\quad \widehat{h_{t}}(\lambda)=(2 \pi)^{-n / 2} e^{-|\lambda|^{2} t}$.
- By taking the inverse Fourier transform:

$$
h_{t}(x)=(4 \pi t)^{-n / 2} e^{-|x|^{2} / 4 t}
$$

- This gives $\quad \widehat{h_{t}}(\lambda)=(2 \pi)^{-n / 2} e^{-|\lambda|^{2} t}$.
- By taking the inverse Fourier transform:

$$
h_{t}(x)=(4 \pi t)^{-n / 2} e^{-|x|^{2} / 4 t} .
$$

- It is clear from this explicit formula, that

$$
h_{t}(z)=(4 \pi t)^{-n / 2} e^{-z^{2} / 4 t}, \quad z^{2}=z_{1}^{2}+\ldots+z_{n}^{2}
$$

gives a holomorphic extension of the heat kernel to $\mathbb{C}^{n} \simeq T\left(\mathbb{R}^{n}\right)^{*}$, the complexification of \mathbb{R}^{n}.
-

- This gives a holomorphic extension of $H_{t} f:$

$$
H_{t} f(z)=f * h_{t}(z)=(4 \pi t)^{-n / 2} \int_{\mathbb{R}^{n}} f(y) e^{-(z-y)^{2} / 4 t} d y
$$

- This gives a holomorphic extension of $H_{t} f$:

$$
H_{t} f(z)=f * h_{t}(z)=(4 \pi t)^{-n / 2} \int_{\mathbb{R}^{n}} f(y) e^{-(z-y)^{2} / 4 t} d y
$$

- To describe the Hilbert space $\mathcal{H}_{t}\left(\mathbb{C}^{n}\right)$ define a positive weight function by

$$
\omega_{t}^{\mathbb{R}^{n}}(x)=\omega_{t}(x)=(2 \pi t)^{-n / 2} e^{-x^{2} / 2 t}=h_{t / 2}(x)
$$

- This gives a holomorphic extension of $H_{t} f$:

$$
H_{t} f(z)=f * h_{t}(z)=(4 \pi t)^{-n / 2} \int_{\mathbb{R}^{n}} f(y) e^{-(z-y)^{2} / 4 t} d y
$$

- To describe the Hilbert space $\mathcal{H}_{t}\left(\mathbb{C}^{n}\right)$ define a positive weight function by

$$
\omega_{t}^{\mathbb{R}^{n}}(x)=\omega_{t}(x)=(2 \pi t)^{-n / 2} e^{-x^{2} / 2 t}=h_{t / 2}(x)
$$

and a measure on \mathbb{C}^{n} by

$$
d \mu_{t}(x+i y)=\omega_{t}(y) d x d y .
$$

- This gives a holomorphic extension of $H_{t} f$:

$$
H_{t} f(z)=f * h_{t}(z)=(4 \pi t)^{-n / 2} \int_{\mathbb{R}^{n}} f(y) e^{-(z-y)^{2} / 4 t} d y
$$

- To describe the Hilbert space $\mathcal{H}_{t}\left(\mathbb{C}^{n}\right)$ define a positive weight function by

$$
\omega_{t}^{\mathbb{R}^{n}}(x)=\omega_{t}(x)=(2 \pi t)^{-n / 2} e^{-x^{2} / 2 t}=h_{t / 2}(x)
$$

and a measure on \mathbb{C}^{n} by

$$
d \mu_{t}(x+i y)=\omega_{t}(y) d x d y .
$$

and set

$$
\mathcal{H}_{t}\left(\mathbb{C}^{n}\right)=\left\{\left.F \in \mathcal{O}\left(\mathbb{C}^{n}\right)\left|\|F\|_{t}^{2}:=\int_{\mathbb{C}^{n}}\right| F(x+i y)\right|^{2} d \mu_{t}<\infty\right\} .
$$

- This gives a holomorphic extension of $H_{t} f$:

$$
H_{t} f(z)=f * h_{t}(z)=(4 \pi t)^{-n / 2} \int_{\mathbb{R}^{n}} f(y) e^{-(z-y)^{2} / 4 t} d y
$$

- To describe the Hilbert space $\mathcal{H}_{t}\left(\mathbb{C}^{n}\right)$ define a positive weight function by

$$
\omega_{t}^{\mathbb{R}^{n}}(x)=\omega_{t}(x)=(2 \pi t)^{-n / 2} e^{-x^{2} / 2 t}=h_{t / 2}(x)
$$

and a measure on \mathbb{C}^{n} by

$$
d \mu_{t}(x+i y)=\omega_{t}(y) d x d y .
$$

and set

$$
\mathcal{H}_{t}\left(\mathbb{C}^{n}\right)=\left\{\left.F \in \mathcal{O}\left(\mathbb{C}^{n}\right)\left|\|F\|_{t}^{2}:=\int_{\mathbb{C}^{n}}\right| F(x+i y)\right|^{2} d \mu_{t}<\infty\right\} .
$$

- Note, that we only put a weight on the fibers $x+i \mathbb{R}^{n}$. If one wants to consider the infinite dimensional case, it is necessary to weight both variables.

Theorem (Segal-Bargmann)

1. $\mathcal{H}_{t}\left(\mathbb{C}^{n}\right)$ is a Hilbert space with continuous point evaluation.
2. We have $H_{t}\left(L^{2}\left(\mathbb{R}^{n}\right)\right) \subseteq \mathcal{H}_{t}\left(\mathbb{C}^{n}\right)$ and the map $H_{t}: L^{2}\left(\mathbb{R}^{n}\right) \rightarrow \mathcal{H}_{t}\left(\mathbb{C}^{n}\right)$ is a unitary isomorphism.
3. If $f \in L^{2}\left(\mathbb{R}^{n}\right)$, then

$$
f(x)=\int_{\mathbb{R}^{n}} H_{t} f(x+i y) h_{t}(y) d y .
$$

Theorem (Segal-Bargmann)

1. $\mathcal{H}_{t}\left(\mathbb{C}^{n}\right)$ is a Hilbert space with continuous point evaluation.
2. We have $H_{t}\left(L^{2}\left(\mathbb{R}^{n}\right)\right) \subseteq \mathcal{H}_{t}\left(\mathbb{C}^{n}\right)$ and the map $H_{t}: L^{2}\left(\mathbb{R}^{n}\right) \rightarrow \mathcal{H}_{t}\left(\mathbb{C}^{n}\right)$ is a unitary isomorphism.
3. If $f \in L^{2}\left(\mathbb{R}^{n}\right)$, then

$$
f(x)=\int_{\mathbb{R}^{n}} H_{t} f(x+i y) h_{t}(y) d y .
$$

- The obvious problem in the general case is: What is $M_{\mathbb{C}}$?

Theorem (Segal-Bargmann)

1. $\mathcal{H}_{t}\left(\mathbb{C}^{n}\right)$ is a Hilbert space with continuous point evaluation.
2. We have $H_{t}\left(L^{2}\left(\mathbb{R}^{n}\right)\right) \subseteq \mathcal{H}_{t}\left(\mathbb{C}^{n}\right)$ and the map $H_{t}: L^{2}\left(\mathbb{R}^{n}\right) \rightarrow \mathcal{H}_{t}\left(\mathbb{C}^{n}\right)$ is a unitary isomorphism.
3. If $f \in L^{2}\left(\mathbb{R}^{n}\right)$, then

$$
f(x)=\int_{\mathbb{R}^{n}} H_{t} f(x+i y) h_{t}(y) d y .
$$

- The obvious problem in the general case is: What is $M_{\mathbb{C}}$?
- And: What is a natural generalization of the measure $d \mu_{t}$?
- One class of spaces where such a complexification exists are the Riemannian symmetric spaces G / K, where G is a connected and semisimple Lie group.
- One class of spaces where such a complexification exists are the Riemannian symmetric spaces G / K, where G is a connected and semisimple Lie group.
- B. Hall in 1997 for compact Lie groups and then M.B. Stenzel in 1999 for symmetric spaces $M=G / K$, where G is compact. Here $M_{\mathbb{C}}=G_{\mathbb{C}} / K_{\mathbb{C}} \simeq T(G / K)^{*}$.
- One class of spaces where such a complexification exists are the Riemannian symmetric spaces G / K, where G is a connected and semisimple Lie group.
- B. Hall in 1997 for compact Lie groups and then M.B. Stenzel in 1999 for symmetric spaces $M=G / K$, where G is compact. Here $M_{\mathbb{C}}=G_{\mathbb{C}} / K_{\mathbb{C}} \simeq T(G / K)^{*}$.
- This was put in a more general/abstract framework by G. Ólafsson and B. Ørsted using polarization of the restriction map (\rightarrow quantization)

$$
\left.\mathcal{O}\left(M_{\mathbb{C}}\right) \ni F \mapsto \chi F\right|_{G / K} \in L^{2}(M)
$$

- One class of spaces where such a complexification exists are the Riemannian symmetric spaces G / K, where G is a connected and semisimple Lie group.
- B. Hall in 1997 for compact Lie groups and then M.B. Stenzel in 1999 for symmetric spaces $M=G / K$, where G is compact. Here $M_{\mathbb{C}}=G_{\mathbb{C}} / K_{\mathbb{C}} \simeq T(G / K)^{*}$.
- This was put in a more general/abstract framework by G. Ólafsson and B. Ørsted using polarization of the restriction map (\rightarrow quantization)

$$
\left.\mathcal{O}\left(M_{\mathbb{C}}\right) \ni F \mapsto \chi F\right|_{G / K} \in L^{2}(M)
$$

- B. Hall and J.J. Mitchell in 2004 the case $M=G / K$ where G is complex or of rank one.
- One class of spaces where such a complexification exists are the Riemannian symmetric spaces G / K, where G is a connected and semisimple Lie group.
- B. Hall in 1997 for compact Lie groups and then M.B. Stenzel in 1999 for symmetric spaces $M=G / K$, where G is compact. Here $M_{\mathbb{C}}=G_{\mathbb{C}} / K_{\mathbb{C}} \simeq T(G / K)^{*}$.
- This was put in a more general/abstract framework by G. Ólafsson and B. Ørsted using polarization of the restriction map (\rightarrow quantization)

$$
\left.\mathcal{O}\left(M_{\mathbb{C}}\right) \ni F \mapsto \chi F\right|_{G / K} \in L^{2}(M)
$$

- B. Hall and J.J. Mitchell in 2004 the case $M=G / K$ where G is complex or of rank one.
- Then B. Krötz, R. Stanton and G. Ólafsson the general case G / K in 2005.
- One class of spaces where such a complexification exists are the Riemannian symmetric spaces G / K, where G is a connected and semisimple Lie group.
- B. Hall in 1997 for compact Lie groups and then M.B. Stenzel in 1999 for symmetric spaces $M=G / K$, where G is compact. Here $M_{\mathbb{C}}=G_{\mathbb{C}} / K_{\mathbb{C}} \simeq T(G / K)^{*}$.
- This was put in a more general/abstract framework by G. Ólafsson and B. Ørsted using polarization of the restriction map (\rightarrow quantization)

$$
\left.\mathcal{O}\left(M_{\mathbb{C}}\right) \ni F \mapsto \chi F\right|_{G / K} \in L^{2}(M)
$$

- B. Hall and J.J. Mitchell in 2004 the case $M=G / K$ where G is complex or of rank one.
- Then B. Krötz, R. Stanton and G. Ólafsson the general case G / K in 2005.
- Here, I would like to discuss a new joint work with H. Schlichtkrull (Copenhagen) on the K-invariant functions on G / K and some generalizations. To appear in Adv. Math.

3. K-invariant functions on G / K and the

Opdam-Heckmann theory

3. K-invariant functions on G / K and the

Opdam-Heckmann theory

- G a connected, non-compact semisimple Lie group with finite center, $K \subset G$ a maximal compact subgroup, and $\theta: G \rightarrow G$ the corresponding Cartan involution:

$$
K=G^{\theta}=\{g \in G \mid \theta(g)=g\} .
$$

Denote the corresponding involution on the Lie algebra \mathfrak{g} by the same letter θ.

3. K-invariant functions on G / K and the

Opdam-Heckmann theory

- G a connected, non-compact semisimple Lie group with finite center, $K \subset G$ a maximal compact subgroup, and $\theta: G \rightarrow G$ the corresponding Cartan involution:

$$
K=G^{\theta}=\{g \in G \mid \theta(g)=g\} .
$$

Denote the corresponding involution on the Lie algebra \mathfrak{g} by the same letter θ.

- Think of $G=\mathrm{SL}(n, \mathbb{R}), K=\mathrm{SO}(n)$ and $\theta(g)=\left(g^{-1}\right)^{T}$. The corresponding involution on the Lie algebra

$$
\mathfrak{s l}(n, \mathbb{R})=\left\{X \in M_{n}(\mathbb{R}) \mid \operatorname{Tr}(X)=0\right\}
$$

is simply $\theta(X)=-X^{T}$.

- Let $\mathfrak{k}=\{X \in \mathfrak{g} \mid \theta(X)=X\}$ and $\mathfrak{p}=\{X \in \mathfrak{g} \mid \theta(X)=-X\}$. Then

$$
\mathfrak{g}=\mathfrak{k} \oplus \mathfrak{p}
$$

- Let $\mathfrak{k}=\{X \in \mathfrak{g} \mid \theta(X)=X\}$ and $\mathfrak{p}=\{X \in \mathfrak{g} \mid \theta(X)=-X\}$. Then

$$
\mathfrak{g}=\mathfrak{k} \oplus \mathfrak{p} .
$$

- Corresponds to the decomposition of $\operatorname{sl}(n, \mathbb{R})$ into skew-symmetric and symmetric matrices.
- Let $\mathfrak{k}=\{X \in \mathfrak{g} \mid \theta(X)=X\}$ and $\mathfrak{p}=\{X \in \mathfrak{g} \mid \theta(X)=-X\}$. Then

$$
\mathfrak{g}=\mathfrak{k} \oplus \mathfrak{p} .
$$

- Corresponds to the decomposition of $\operatorname{sl}(n, \mathbb{R})$ into skew-symmetric and symmetric matrices.
- Let $\mathfrak{a} \simeq \mathbb{R}^{n}$ be a maximal abelian subspace of \mathfrak{p}, i.e., all diagonal matrices with trace zero.
- Let $\mathfrak{k}=\{X \in \mathfrak{g} \mid \theta(X)=X\}$ and $\mathfrak{p}=\{X \in \mathfrak{g} \mid \theta(X)=-X\}$. Then

$$
\mathfrak{g}=\mathfrak{k} \oplus \mathfrak{p} .
$$

- Corresponds to the decomposition of $\operatorname{sl}(n, \mathbb{R})$ into skew-symmetric and symmetric matrices.
- Let $\mathfrak{a} \simeq \mathbb{R}^{n}$ be a maximal abelian subspace of \mathfrak{p}, i.e., all diagonal matrices with trace zero.
- Then each $\operatorname{ad}(X): \mathfrak{g} \rightarrow \mathfrak{g}, Y \mapsto[X, Y]$, is semisimple and

$$
\mathfrak{g}=\mathfrak{m} \oplus \mathfrak{a} \oplus \bigoplus_{\alpha \in \Delta} \mathfrak{g}^{\alpha}
$$

where

- Let $\mathfrak{k}=\{X \in \mathfrak{g} \mid \theta(X)=X\}$ and $\mathfrak{p}=\{X \in \mathfrak{g} \mid \theta(X)=-X\}$. Then

$$
\mathfrak{g}=\mathfrak{k} \oplus \mathfrak{p} .
$$

- Corresponds to the decomposition of $\operatorname{sl}(n, \mathbb{R})$ into skew-symmetric and symmetric matrices.
- Let $\mathfrak{a} \simeq \mathbb{R}^{n}$ be a maximal abelian subspace of \mathfrak{p}, i.e., all diagonal matrices with trace zero.
- Then each $\operatorname{ad}(X): \mathfrak{g} \rightarrow \mathfrak{g}, Y \mapsto[X, Y]$, is semisimple and

$$
\mathfrak{g}=\mathfrak{m} \oplus \mathfrak{a} \oplus \bigoplus_{\alpha \in \Delta} \mathfrak{g}^{\alpha}
$$

where

- $\mathfrak{m}=\{Y \in \mathfrak{k} \mid(\forall X \in \mathfrak{a})[X, Y]=0\}$
- Let $\mathfrak{k}=\{X \in \mathfrak{g} \mid \theta(X)=X\}$ and $\mathfrak{p}=\{X \in \mathfrak{g} \mid \theta(X)=-X\}$. Then

$$
\mathfrak{g}=\mathfrak{k} \oplus \mathfrak{p} .
$$

- Corresponds to the decomposition of $\operatorname{sl}(n, \mathbb{R})$ into skew-symmetric and symmetric matrices.
- Let $\mathfrak{a} \simeq \mathbb{R}^{n}$ be a maximal abelian subspace of \mathfrak{p}, i.e., all diagonal matrices with trace zero.
- Then each $\operatorname{ad}(X): \mathfrak{g} \rightarrow \mathfrak{g}, Y \mapsto[X, Y]$, is semisimple and

$$
\mathfrak{g}=\mathfrak{m} \oplus \mathfrak{a} \oplus \bigoplus_{\alpha \in \Delta} \mathfrak{g}^{\alpha}
$$

where

- $\mathfrak{m}=\{Y \in \mathfrak{k} \mid(\forall X \in \mathfrak{a})[X, Y]=0\}$
- $\alpha \in \mathfrak{a}^{*} \backslash\{0\}$ and $\mathfrak{g}^{\alpha}=\{Y \in \mathfrak{g} \mid(\forall X \in \mathfrak{a})[X, Y]=\alpha(X) Y\}$ the joint α-eigenspace
- Let $\mathfrak{k}=\{X \in \mathfrak{g} \mid \theta(X)=X\}$ and $\mathfrak{p}=\{X \in \mathfrak{g} \mid \theta(X)=-X\}$. Then

$$
\mathfrak{g}=\mathfrak{k} \oplus \mathfrak{p} .
$$

- Corresponds to the decomposition of $\operatorname{sl}(n, \mathbb{R})$ into skew-symmetric and symmetric matrices.
- Let $\mathfrak{a} \simeq \mathbb{R}^{n}$ be a maximal abelian subspace of \mathfrak{p}, i.e., all diagonal matrices with trace zero.
- Then each $\operatorname{ad}(X): \mathfrak{g} \rightarrow \mathfrak{g}, Y \mapsto[X, Y]$, is semisimple and

$$
\mathfrak{g}=\mathfrak{m} \oplus \mathfrak{a} \oplus \bigoplus_{\alpha \in \Delta} \mathfrak{g}^{\alpha}
$$

where

- $\mathfrak{m}=\{Y \in \mathfrak{k} \mid(\forall X \in \mathfrak{a})[X, Y]=0\}$
- $\alpha \in \mathfrak{a}^{*} \backslash\{0\}$ and $\mathfrak{g}^{\alpha}=\{Y \in \mathfrak{g} \mid(\forall X \in \mathfrak{a})[X, Y]=\alpha(X) Y\}$ the joint α-eigenspace
- $\Delta=\left\{\alpha \in \mathfrak{a}^{*} \backslash\{0\} \mid \mathfrak{g}^{\alpha} \neq\{0\}\right\}$.
- Fix $Z \in \mathfrak{a}$ such that $\alpha(Z) \neq 0$ for all $\alpha \in \Delta$. Then $\Delta^{+}=\{\alpha \mid \alpha(Z)>0\}$ is a positive system of roots.
- Fix $Z \in \mathfrak{a}$ such that $\alpha(Z) \neq 0$ for all $\alpha \in \Delta$. Then $\Delta^{+}=\{\alpha \mid \alpha(Z)>0\}$ is a positive system of roots.
- For $\alpha \in \Delta$ let $r_{\alpha}: \mathfrak{a} \rightarrow \mathfrak{a}$ be the reflection in the hyperplane $\alpha(X)=0$ and let W be the finite reflection group - the Weyl group - generated by r_{α}, $\alpha \in \Delta$.
- Fix $Z \in \mathfrak{a}$ such that $\alpha(Z) \neq 0$ for all $\alpha \in \Delta$. Then $\Delta^{+}=\{\alpha \mid \alpha(Z)>0\}$ is a positive system of roots.
- For $\alpha \in \Delta$ let $r_{\alpha}: \mathfrak{a} \rightarrow \mathfrak{a}$ be the reflection in the hyperplane $\alpha(X)=0$ and let W be the finite reflection group - the Weyl group - generated by r_{α}, $\alpha \in \Delta$.
- The open cone $\mathfrak{a}^{+}=\left\{X \in \mathfrak{a} \mid\left(\forall \alpha \in \Delta^{+}\right) \alpha(X)>0\right\}$ is a fundamental domain for W. Set:

$$
A=\exp (\mathfrak{a}) \quad \text { and } \quad A^{+}=\exp \left(\mathfrak{a}^{+}\right)
$$

and note that $\exp : \mathfrak{a} \rightarrow A$ is an analytic isomorphism.

- Fix $Z \in \mathfrak{a}$ such that $\alpha(Z) \neq 0$ for all $\alpha \in \Delta$. Then $\Delta^{+}=\{\alpha \mid \alpha(Z)>0\}$ is a positive system of roots.
- For $\alpha \in \Delta$ let $r_{\alpha}: \mathfrak{a} \rightarrow \mathfrak{a}$ be the reflection in the hyperplane $\alpha(X)=0$ and let W be the finite reflection group - the Weyl group - generated by r_{α}, $\alpha \in \Delta$.
- The open cone $\mathfrak{a}^{+}=\left\{X \in \mathfrak{a} \mid\left(\forall \alpha \in \Delta^{+}\right) \alpha(X)>0\right\}$ is a fundamental domain for W. Set:

$$
A=\exp (\mathfrak{a}) \quad \text { and } \quad A^{+}=\exp \left(\mathfrak{a}^{+}\right)
$$

and note that $\exp : \mathfrak{a} \rightarrow A$ is an analytic isomorphism.

- Set $m_{\alpha}=\operatorname{dimg}^{\alpha}$ and $a^{\alpha}=e^{\alpha(\log a)}$

$$
\delta(a)=\prod_{\alpha \in \Delta+}\left|a^{\alpha}-a^{-\alpha}\right|^{m_{\alpha}} \quad \text { and } \quad d \mu(a)=\delta(a) d a
$$

For or standard example we have:

For or standard example we have:

- $\Delta=\left\{\epsilon_{i j}\right\}$ where $\epsilon_{i j}(X)=x_{i}-x_{j}$.

For or standard example we have:

- $\Delta=\left\{\epsilon_{i j}\right\}$ where $\epsilon_{i j}(X)=x_{i}-x_{j}$.
- W is the set of permutations $\sigma\left(\left(x_{i i}\right)\right)=\left(x_{\sigma(i) \sigma(i)}\right)$.

For or standard example we have:

- $\Delta=\left\{\epsilon_{i j}\right\}$ where $\epsilon_{i j}(X)=x_{i}-x_{j}$.
- W is the set of permutations $\sigma\left(\left(x_{i i}\right)\right)=\left(x_{\sigma(i) \sigma(i)}\right)$.
- A^{+}is the set of diagonal matrices $\left(a_{i i}\right)$ with

$$
a_{11}>a_{22}>\ldots>a_{n n}
$$

For or standard example we have:

- $\Delta=\left\{\epsilon_{i j}\right\}$ where $\epsilon_{i j}(X)=x_{i}-x_{j}$.
- W is the set of permutations $\sigma\left(\left(x_{i i}\right)\right)=\left(x_{\sigma(i) \sigma(i)}\right)$.
- A^{+}is the set of diagonal matrices $\left(a_{i i}\right)$ with

$$
a_{11}>a_{22}>\ldots>a_{n n}
$$

- and

$$
\delta(a)=\prod_{i<j}\left(a_{i} / a_{j}-a_{j} / a_{i}\right)
$$

Theorem We have $G=K A K$ and the restriction map

$$
\left.L^{2}(G / K)^{K} \ni f \mapsto f\right|_{A} \in L^{2}\left(A,|W|^{-1} d \mu\right)^{W} \simeq L^{2}\left(A^{+}, d \mu\right)
$$

is an unitary isomorphism.

Theorem We have $G=K A K$ and the restriction map

$$
\left.L^{2}(G / K)^{K} \ni f \mapsto f\right|_{A} \in L^{2}\left(A,|W|^{-1} d \mu\right)^{W} \simeq L^{2}\left(A^{+}, d \mu\right)
$$

is an unitary isomorphism.

- This reduces the analysis of K-invariant functions on G / K to analysis of W-invariant functions on the Euclidean space $A \simeq \mathfrak{a}$.

Theorem We have $G=K A K$ and the restriction map

$$
\left.L^{2}(G / K)^{K} \ni f \mapsto f\right|_{A} \in L^{2}\left(A,|W|^{-1} d \mu\right)^{W} \simeq L^{2}\left(A^{+}, d \mu\right)
$$

is an unitary isomorphism.

- This reduces the analysis of K-invariant functions on G / K to analysis of W-invariant functions on the Euclidean space $A \simeq \mathfrak{a}$.
- Next we consider the effect on the Heat equation. For that let H_{1}, \ldots, H_{n} be a orthonormal basis of \mathfrak{a} and $A^{\text {reg }}=\left\{a \in A \mid(\forall \alpha) a^{\alpha} \neq 1\right\}$.

Theorem We have $G=K A K$ and the restriction map

$$
\left.L^{2}(G / K)^{K} \ni f \mapsto f\right|_{A} \in L^{2}\left(A,|W|^{-1} d \mu\right)^{W} \simeq L^{2}\left(A^{+}, d \mu\right)
$$

is an unitary isomorphism.

- This reduces the analysis of K-invariant functions on G / K to analysis of W-invariant functions on the Euclidean space $A \simeq \mathfrak{a}$.
- Next we consider the effect on the Heat equation. For that let H_{1}, \ldots, H_{n} be a orthonormal basis of \mathfrak{a} and $A^{\text {reg }}=\left\{a \in A \mid(\forall \alpha) a^{\alpha} \neq 1\right\}$.
- Let (\cdot, \cdot) be a W-invariant inner product on \mathfrak{a} (and by duality on \mathfrak{a}^{*}). Chose $h_{\alpha} \in \mathfrak{a}$ be such that $\left(X, h_{\alpha}\right)=\alpha(X),(\alpha, \beta)=\left(H_{\alpha}, H_{\beta}\right)$, and - for $\alpha \neq 0$ $H_{\alpha}=\frac{2}{(\alpha, \alpha)} h_{\alpha}$.

Theorem We have $G=K A K$ and the restriction map

$$
\left.L^{2}(G / K)^{K} \ni f \mapsto f\right|_{A} \in L^{2}\left(A,|W|^{-1} d \mu\right)^{W} \simeq L^{2}\left(A^{+}, d \mu\right)
$$

is an unitary isomorphism.

- This reduces the analysis of K-invariant functions on G / K to analysis of W-invariant functions on the Euclidean space $A \simeq \mathfrak{a}$.
- Next we consider the effect on the Heat equation. For that let H_{1}, \ldots, H_{n} be a orthonormal basis of \mathfrak{a} and $A^{\text {reg }}=\left\{a \in A \mid(\forall \alpha) a^{\alpha} \neq 1\right\}$.
- Let (\cdot, \cdot) be a W-invariant inner product on \mathfrak{a} (and by duality on \mathfrak{a}^{*}). Chose $h_{\alpha} \in \mathfrak{a}$ be such that $\left(X, h_{\alpha}\right)=\alpha(X),(\alpha, \beta)=\left(H_{\alpha}, H_{\beta}\right)$, and - for $\alpha \neq 0$ $H_{\alpha}=\frac{2}{(\alpha, \alpha)} h_{\alpha}$.
- Define a W-invariant differential operator L on $A^{\text {reg }}$ by

$$
L=\sum_{j=1}^{n} \partial\left(H_{j}\right)^{2}+\sum_{\alpha \in \Delta^{+}} m_{\alpha} \frac{1+e^{-2 \alpha}}{1-e^{-2 \alpha}} \partial\left(h_{\alpha}\right) .
$$

Theorem (The radial part of the Laplacian) We have

$$
\left.(\Delta f)\right|_{A^{\text {reg }}}=L\left(\left.f\right|_{A^{\text {reg }}}\right)
$$

for all $f \in C^{\infty}(G / K)^{K}$.

Theorem (The radial part of the Laplacian) We have

$$
\left.(\Delta f)\right|_{A^{\text {reg }}}=L\left(\left.f\right|_{A^{\text {reg }}}\right)
$$

for all $f \in C^{\infty}(G / K)^{K}$.

- Hence the heat equation for K-invariant functions on G / K corresponds to the Cauchy problem on $A^{\text {reg }}$ (or A^{+})
(*)

$$
\begin{aligned}
& L u(a, t)=\partial_{t} u(a, t) \\
& u(a, t) \xrightarrow{t \rightarrow 0^{+}} \\
& f(a) \in L^{2}\left(A^{+}, d \mu\right)
\end{aligned}
$$

Theorem (The radial part of the Laplacian) We have

$$
\left.(\Delta f)\right|_{A^{\text {reg }}}=L\left(\left.f\right|_{A^{\text {reg }}}\right)
$$

for all $f \in C^{\infty}(G / K)^{K}$.

- Hence the heat equation for K-invariant functions on G / K corresponds to the Cauchy problem on $A^{\text {reg }}$ (or A^{+})
(*)

$$
\begin{aligned}
& L u(a, t)=\partial_{t} u(a, t) \\
& u(a, t) \xrightarrow{t \rightarrow 0^{+}} \\
& f(a) \in L^{2}\left(A^{+}, d \mu\right)
\end{aligned}
$$

- The important observation now is, that every thing in (*) is independent of G / K, it only depends on \mathfrak{a}, the set of roots Δ and the multiplicity function $m: \alpha \rightarrow m_{\alpha}$!

Theorem (The radial part of the Laplacian) We have

$$
\left.(\Delta f)\right|_{A^{\text {Peg }}}=L\left(\left.f\right|_{A^{\text {reg }}}\right)
$$

for all $f \in C^{\infty}(G / K)^{K}$.

- Hence the heat equation for K-invariant functions on G / K corresponds to the Cauchy problem on $A^{\text {reg }}$ (or A^{+})
(*)

$$
\begin{aligned}
& L u(a, t)=\partial_{t} u(a, t) \\
& u(a, t) \xrightarrow{t \rightarrow 0^{+}} \\
& f(a) \in L^{2}\left(A^{+}, d \mu\right)
\end{aligned}
$$

- The important observation now is, that every thing in (*) is independent of G / K, it only depends on \mathfrak{a}, the set of roots Δ and the multiplicity function $m: \alpha \rightarrow m_{\alpha}$!
- So from now on $m: \Delta \rightarrow[0, \infty)$ is a Weyl group invariant function, defined on a root system Δ in a finite dimensional Euclidean space \mathfrak{a}.

Theorem (The radial part of the Laplacian) We have

$$
\left.(\Delta f)\right|_{A^{\text {Peg }}}=L\left(\left.f\right|_{A^{\text {reg }}}\right)
$$

for all $f \in C^{\infty}(G / K)^{K}$.

- Hence the heat equation for K-invariant functions on G / K corresponds to the Cauchy problem on $A^{\text {reg }}$ (or A^{+})
(*)

$$
\begin{aligned}
& L u(a, t)=\partial_{t} u(a, t) \\
& u(a, t) \xrightarrow{t \rightarrow 0^{+}} \\
& f(a) \in L^{2}\left(A^{+}, d \mu\right)
\end{aligned}
$$

- The important observation now is, that every thing in (*) is independent of G / K, it only depends on \mathfrak{a}, the set of roots Δ and the multiplicity function $m: \alpha \rightarrow m_{\alpha}$!
- So from now on $m: \Delta \rightarrow[0, \infty)$ is a Weyl group invariant function, defined on a root system Δ in a finite dimensional Euclidean space \mathfrak{a}.
- The density function and the differential operator L is defined as before.
- What is missing is a nice Fourier analysis on \mathfrak{a} with respect to the measure $d \mu$. In particular: What are the special functions that generalize the exponential functions $x \mapsto e_{\lambda}(x)=e^{i(\lambda, x)}$?
- What is missing is a nice Fourier analysis on \mathfrak{a} with respect to the measure $d \mu$. In particular: What are the special functions that generalize the exponential functions $x \mapsto e_{\lambda}(x)=e^{i(\lambda, x)}$?
- The was done by E. Opdam and G. Heckman in a series of article, starting around 1988
- What is missing is a nice Fourier analysis on \mathfrak{a} with respect to the measure $d \mu$. In particular: What are the special functions that generalize the exponential functions $x \mapsto e_{\lambda}(x)=e^{i(\lambda, x)}$?
- The was done by E. Opdam and G. Heckman in a series of article, starting around 1988
- What they did was to define for each $\lambda \in \mathfrak{a}_{\mathbb{C}}^{*}$ a function - the generalized hypergeometric functions $-\varphi_{\lambda}: A \rightarrow \mathbb{C}$ using the same expansion formula as for the spherical functions on G / K and show that
- What is missing is a nice Fourier analysis on \mathfrak{a} with respect to the measure $d \mu$. In particular: What are the special functions that generalize the exponential functions $x \mapsto e_{\lambda}(x)=e^{i(\lambda, x)}$?
- The was done by E. Opdam and G. Heckman in a series of article, starting around 1988
- What they did was to define for each $\lambda \in \mathfrak{a}_{\mathbb{C}}^{*}$ a function - the generalized hypergeometric functions $-\varphi_{\lambda}: A \rightarrow \mathbb{C}$ using the same expansion formula as for the spherical functions on G / K and show that
- φ_{λ} extends to a holomorphic function on a complex neighborhood of A in $A_{\mathbb{C}}=\mathfrak{a}_{\mathbb{C}} / \mathbb{Z}\left\{\pi i H_{\alpha} \mid \alpha \in \Delta\right\} ;$
- What is missing is a nice Fourier analysis on \mathfrak{a} with respect to the measure $d \mu$. In particular: What are the special functions that generalize the exponential functions $x \mapsto e_{\lambda}(x)=e^{i(\lambda, x)}$?
- The was done by E. Opdam and G. Heckman in a series of article, starting around 1988
- What they did was to define for each $\lambda \in \mathfrak{a}_{\mathbb{C}}^{*}$ a function - the generalized hypergeometric functions $-\varphi_{\lambda}: A \rightarrow \mathbb{C}$ using the same expansion formula as for the spherical functions on G / K and show that
- φ_{λ} extends to a holomorphic function on a complex neighborhood of A in $A_{\mathbb{C}}=\mathfrak{a}_{\mathbb{C}} / \mathbb{Z}\left\{\pi i H_{\alpha} \mid \alpha \in \Delta\right\} ;$
- $\varphi_{\lambda}=\varphi_{\mu}$ if and only if there exists a $w \in W$ such that $w \lambda=\mu$;
- What is missing is a nice Fourier analysis on \mathfrak{a} with respect to the measure $d \mu$. In particular: What are the special functions that generalize the exponential functions $x \mapsto e_{\lambda}(x)=e^{i(\lambda, x)}$?
- The was done by E. Opdam and G. Heckman in a series of article, starting around 1988
- What they did was to define for each $\lambda \in \mathfrak{a}_{\mathbb{C}}^{*}$ a function - the generalized hypergeometric functions - $\varphi_{\lambda}: A \rightarrow \mathbb{C}$ using the same expansion formula as for the spherical functions on G / K and show that
- φ_{λ} extends to a holomorphic function on a complex neighborhood of A in $A_{\mathbb{C}}=\mathfrak{a}_{\mathbb{C}} / \mathbb{Z}\left\{\pi i H_{\alpha} \mid \alpha \in \Delta\right\} ;$
- $\varphi_{\lambda}=\varphi_{\mu}$ if and only if there exists a $w \in W$ such that $w \lambda=\mu$;
- $L \varphi_{\lambda}=((\lambda, \lambda)-(\rho, \rho)) \varphi_{\lambda}$ where $2 \rho=\sum_{\alpha \in \Delta^{+}} m_{\alpha} \alpha$.
- What is missing is a nice Fourier analysis on \mathfrak{a} with respect to the measure $d \mu$. In particular: What are the special functions that generalize the exponential functions $x \mapsto e_{\lambda}(x)=e^{i(\lambda, x)}$?
- The was done by E. Opdam and G. Heckman in a series of article, starting around 1988
- What they did was to define for each $\lambda \in \mathfrak{a}_{\mathbb{C}}^{*}$ a function - the generalized hypergeometric functions - $\varphi_{\lambda}: A \rightarrow \mathbb{C}$ using the same expansion formula as for the spherical functions on G / K and show that
- φ_{λ} extends to a holomorphic function on a complex neighborhood of A in $A_{\mathbb{C}}=\mathfrak{a}_{\mathbb{C}} / \mathbb{Z}\left\{\pi i H_{\alpha} \mid \alpha \in \Delta\right\} ;$
- $\varphi_{\lambda}=\varphi_{\mu}$ if and only if there exists a $w \in W$ such that $w \lambda=\mu$;
- $L \varphi_{\lambda}=((\lambda, \lambda)-(\rho, \rho)) \varphi_{\lambda}$ where $2 \rho=\sum_{\alpha \in \Delta^{+}} m_{\alpha} \alpha$.
- Growth estimates for $\varphi_{\lambda}(a \exp i X)$ for $X \in \Omega$ where

$$
\Omega=\{X \in \mathfrak{a}|(\forall \alpha \in \Delta)| \alpha(X) \mid<\pi / 2\} .
$$

Define the Hypergeometric Fourier transform by

$$
\mathcal{F} f(\lambda)=\hat{f}(\lambda)=\int_{A} f(a) \varphi_{-i \lambda}(a) d \mu=|W| \int_{A^{+}} f(a) \varphi_{-i \lambda}(a) d \mu .
$$

Define the Hypergeometric Fourier transform by

$$
\mathcal{F} f(\lambda)=\hat{f}(\lambda)=\int_{A} f(a) \varphi_{-i \lambda}(a) d \mu=|W| \int_{A^{+}} f(a) \varphi_{-i \lambda}(a) d \mu .
$$

- Define $c: \mathfrak{a}_{\mathbb{C}}^{*} \rightarrow \mathbb{C}$ by the same formula as the Harish-Chandra c-function (product and quotients of Γ-functions) and set $d \nu(\lambda)=|c(i \lambda)|^{-1} d \lambda$.

Define the Hypergeometric Fourier transform by

$$
\mathcal{F} f(\lambda)=\hat{f}(\lambda)=\int_{A} f(a) \varphi_{-i \lambda}(a) d \mu=|W| \int_{A^{+}} f(a) \varphi_{-i \lambda}(a) d \mu .
$$

- Define $c: \mathfrak{a}_{\mathbb{C}}^{*} \rightarrow \mathbb{C}$ by the same formula as the Harish-Chandra c-function (product and quotients of Γ-functions) and set $d \nu(\lambda)=|c(i \lambda)|^{-1} d \lambda$.

Theorem (Heckmann-Opdam) The Fourier transform extends to an unitary isomorphism

$$
L^{2}(A, d \mu)^{W} \simeq L^{2}\left(\mathfrak{a}^{*}, d \nu\right)^{W} .
$$

Furthermore, if $f \in C_{c}^{\infty}(A)^{W}$ then

$$
f(a)=|W|^{-1} \int_{\mathfrak{a}^{*}} \hat{f}(\lambda) \varphi_{i \lambda}(a) d \nu(\lambda)
$$

and

$$
\mathcal{F}(L f)(\lambda)=-\left(|\lambda|^{2}+|\rho|^{2}\right) \mathcal{F}(f)(\lambda) .
$$

Let us put this together in a commutative diagram:

$$
\begin{gathered}
L^{2}(A, d \mu)^{W} \longrightarrow L^{2}(A, d a)^{\tau(W)} \\
\underset{\mathcal{F}}{ } \downarrow \boldsymbol{\downarrow} \begin{array}{l}
\mathcal{F}_{A} \\
L^{2}\left(\mathfrak{a}^{*}, d \nu\right)^{W} \xrightarrow[\Psi]{\longrightarrow}
\end{array} L^{2}\left(\mathfrak{a}^{*}, d \lambda\right)^{\tau(W)}
\end{gathered}
$$

Let us put this together in a commutative diagram:

$$
\begin{gathered}
L^{2}(A, d \mu)^{W} \longrightarrow L^{2}(A, d a)^{\tau(W)} \\
\mathcal{F} \downarrow \\
\downarrow \\
L^{2}\left(\mathfrak{a}^{*}, d \nu\right)^{W} \xrightarrow[\Psi]{ } \longrightarrow L^{2}\left(\mathfrak{a}^{*}, d \lambda\right)^{\tau(W)}
\end{gathered}
$$

- \mathcal{F}_{A} is the usual Fourier transform on $A: \mathcal{F}_{A}(f)(\lambda)=\int_{A} f(a) a^{-i \lambda} d a$

Let us put this together in a commutative diagram:

$$
\begin{gathered}
L^{2}(A, d \mu)^{W} \longrightarrow L^{2}(A, d a)^{\tau(W)} \\
\mathcal{F} \downarrow \\
\downarrow \\
L^{2}\left(\mathfrak{a}^{*}, d \nu\right)^{W} \xrightarrow[\Psi]{ } \longrightarrow L^{2}\left(\mathfrak{a}^{*}, d \lambda\right)^{\tau(W)}
\end{gathered}
$$

- \mathcal{F}_{A} is the usual Fourier transform on $A: \mathcal{F}_{A}(f)(\lambda)=\int_{A} f(a) a^{-i \lambda} d a$
- Ψ is the linear map $F \mapsto c(-i \lambda)^{-1} F(\lambda)$

Let us put this together in a commutative diagram:

- \mathcal{F}_{A} is the usual Fourier transform on $A: \mathcal{F}_{A}(f)(\lambda)=\int_{A} f(a) a^{-i \lambda} d a$
- Ψ is the linear map $F \mapsto c(-i \lambda)^{-1} F(\lambda)$
- τ is the action $\tau(w) F(\lambda)=c\left(i w^{-1} \lambda\right) / c(i \lambda) F\left(w^{-1} \lambda\right)$

Let us put this together in a commutative diagram:

- \mathcal{F}_{A} is the usual Fourier transform on $A: \mathcal{F}_{A}(f)(\lambda)=\int_{A} f(a) a^{-i \lambda} d a$
- Ψ is the linear map $F \mapsto c(-i \lambda)^{-1} F(\lambda)$
- τ is the action $\tau(w) F(\lambda)=c\left(i w^{-1} \lambda\right) / c(i \lambda) F\left(w^{-1} \lambda\right)$
- and the isometry Λ

Let us put this together in a commutative diagram:

$$
\begin{gathered}
L^{2}(A, d \mu)^{W} \xrightarrow{\Lambda} L^{2}(A, d a)^{\tau(W)} \\
\underset{\mathcal{F} \downarrow}{ } \begin{array}{c}
\downarrow \mathcal{F}_{A} \\
L^{2}\left(\mathfrak{a}^{*}, d \nu\right)^{W} \xrightarrow[\Psi]{ } \\
\downarrow^{2}\left(\mathfrak{a}^{*}, d \lambda\right)^{\tau(W)}
\end{array}
\end{gathered}
$$

- \mathcal{F}_{A} is the usual Fourier transform on $A: \mathcal{F}_{A}(f)(\lambda)=\int_{A} f(a) a^{-i \lambda} d a$
- Ψ is the linear map $F \mapsto c(-i \lambda)^{-1} F(\lambda)$
- τ is the action $\tau(w) F(\lambda)=c\left(i w^{-1} \lambda\right) / c(i \lambda) F\left(w^{-1} \lambda\right)$
- and the isometry Λ

Let us put this together in a commutative diagram:

- \mathcal{F}_{A} is the usual Fourier transform on $A: \mathcal{F}_{A}(f)(\lambda)=\int_{A} f(a) a^{-i \lambda} d a$
- Ψ is the linear map $F \mapsto c(-i \lambda)^{-1} F(\lambda)$
- τ is the action $\tau(w) F(\lambda)=c\left(i w^{-1} \lambda\right) / c(i \lambda) F\left(w^{-1} \lambda\right)$
- and the isometry Λ is constructed so as to make the diagram commutative.

Let us put this together in a commutative diagram:

$$
\begin{gathered}
L^{2}(A, d \mu)^{W} \xrightarrow{\Lambda} L^{2}(A, d a)^{\tau(W)} \\
\underset{\mathcal{F} \downarrow}{ } \begin{array}{c}
\downarrow \mathcal{F}_{A} \\
L^{2}\left(\mathfrak{a}^{*}, d \nu\right)^{W} \xrightarrow[\Psi]{ } \\
L^{2}\left(\mathfrak{a}^{*}, d \lambda\right)^{\tau(W)}
\end{array}
\end{gathered}
$$

- \mathcal{F}_{A} is the usual Fourier transform on $A: \mathcal{F}_{A}(f)(\lambda)=\int_{A} f(a) a^{-i \lambda} d a$
- Ψ is the linear map $F \mapsto c(-i \lambda)^{-1} F(\lambda)$
- τ is the action $\tau(w) F(\lambda)=c\left(i w^{-1} \lambda\right) / c(i \lambda) F\left(w^{-1} \lambda\right)$
- and the isometry Λ is constructed so as to make the diagram commutative.
- Then

$$
\Lambda(L f)(a)=\left(\Delta_{A}-|\rho|^{2}\right) \Lambda(f)(a)
$$

reducing the our problem to a shifted heat equation on $A \simeq \mathfrak{a}$:

$$
\left(\Delta_{A}-|\rho|^{2}\right) u(a, t)=\partial_{t} u(x, t)
$$

Theorem ($\mathbf{O}^{+} \mathbf{S}, 2005$) 1) The solution of the heat equation is given by

$$
u(a, t)=|W|^{-2} \int_{\mathfrak{a}^{*}} e^{-t\left(|\lambda|^{2}+|\rho|^{2}\right)} \hat{f}(\lambda) \varphi_{i \lambda}(a) d \nu(\lambda) \quad f \in L^{2}(A)^{W}
$$

Theorem (Ó+S, 2005) 1) The solution of the heat equation is given by

$$
u(a, t)=|W|^{-2} \int_{a^{*}} e^{-t\left(|\lambda|^{2}+|\rho|^{2}\right)} \hat{f}(\lambda) \varphi_{i \lambda}(a) d \nu(\lambda) \quad f \in L^{2}(A)^{W} .
$$

Let \mathcal{H}_{t} be the space of holomorphic function on $F: A \exp i \Omega \rightarrow \mathbb{C}$ such that $\Lambda(F)$ extends to a $\tau(W)$-invariant holomorphic function on $\mathfrak{a}_{\mathbb{C}}$ such that

$$
\|F\|_{t}^{2}=e^{2 t|\rho|^{2}} \int_{\mathbf{a}_{\mathrm{C}}}|\Lambda F(X+i Y)|^{2} d \mu_{t}(X+i Y)<\infty
$$

Then \mathcal{H}_{t} is a Hilbert space and

$$
H_{t}: L^{2}(A)^{W} \rightarrow \mathcal{H}_{t}
$$

is an unitary isomorphism. Here μ_{t} is the heat measure on the Euclidean space \mathfrak{a}.

Assume $m_{\alpha}=2$ for all α, i.e., $(\mathfrak{a}, \Delta, m)$ corresponds to a Riemannian symmetric space G / K with G complex.

Assume $m_{\alpha}=2$ for all α, i.e., $(\mathfrak{a}, \Delta, m)$ corresponds to a Riemannian symmetric space G / K with G complex. Then, $\delta(a)^{1 / 2}=\prod_{\alpha \in \Delta^{+}}\left(a^{\alpha}-a^{-\alpha}\right)$ has a holomorphic extension to $A_{\mathbb{C}}$ and $\Lambda f(a)=\delta(a)^{1 / 2} f(a)$.

Assume $m_{\alpha}=2$ for all α, i.e., $(\mathfrak{a}, \Delta, m)$ corresponds to a Riemannian symmetric space G / K with G complex. Then, $\delta(a)^{1 / 2}=\prod_{\alpha \in \Delta^{+}}\left(a^{\alpha}-a^{-\alpha}\right)$ has a holomorphic extension to $A_{\mathbb{C}}$ and $\Lambda f(a)=\delta(a)^{1 / 2} f(a)$.

Theorem (Hall+Mitchell) Assume that G is complex. Let $f \in L^{2}(G / K)^{K}$, and let $u(x, t)=H_{t} f(x)$ be the solution to the heat equation. The map $X \mapsto \delta(\exp X)^{1 / 2} u(\exp X, t), X \in \mathfrak{a}$, has a holomorphic extension to $\mathfrak{a}_{\mathbb{C}}$ such that

$$
\|f\|^{2}=\int_{\mathfrak{a}_{\mathbb{C}}}\left|\left(\delta^{1 / 2} u\right)(X+i Y, t)\right|^{2} e^{2 t|\rho|^{2}} d \mu_{t}(X+i Y)
$$

Assume $m_{\alpha}=2$ for all α, i.e., $(\mathfrak{a}, \Delta, m)$ corresponds to a Riemannian symmetric space G / K with G complex. Then, $\delta(a)^{1 / 2}=\prod_{\alpha \in \Delta^{+}}\left(a^{\alpha}-a^{-\alpha}\right)$ has a holomorphic extension to $A_{\mathbb{C}}$ and $\Lambda f(a)=\delta(a)^{1 / 2} f(a)$.

Theorem (Hall+Mitchell) Assume that G is complex. Let $f \in L^{2}(G / K)^{K}$, and let $u(x, t)=H_{t} f(x)$ be the solution to the heat equation. The map $X \mapsto \delta(\exp X)^{1 / 2} u(\exp X, t), X \in \mathfrak{a}$, has a holomorphic extension to $\mathfrak{a}_{\mathbb{C}}$ such that

$$
\|f\|^{2}=\int_{\mathfrak{a}_{\mathrm{C}}}\left|\left(\delta^{1 / 2} u\right)(X+i Y, t)\right|^{2} e^{2 t|\rho|^{2}} d \mu_{t}(X+i Y)
$$

Conversely, any meromorphic function $u(Z)$ which is invariant under W and which satisfies

$$
\int_{\mathfrak{a}_{\mathbb{C}}}\left|\left(\delta^{1 / 2} u\right)(X+i Y)\right|^{2} e^{2 t|\rho|^{2}} d \mu_{t}(X+i Y)<\infty
$$

is the Segal-Bargmann tranform $H_{t} f$ for some $f \in L^{2}(G / K)^{K}$.

