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1. The Heat Equation

» )M a Riemannian manifold
» A the Laplace operator

1 :
A = %;akzgzk\/gai.

where g = det(g;;)
» The Heat equation is

Au(x,t) = Owu(z,t)
i u(e,t) = ()

Where f isin L?(M) or a distribution.
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» The solution can be written as

u(z,t) = et f(x) =: Hof (x).
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» The solution can be written as

u(z,t) = et f(x) =: Hof (x).

» But more importantly, there exists a function h,(z, y), the heat kernel,
such that:

o Iu(z,y) = h(y,x) > 0;
o dus(y) = hi(x,y)dy is a probability measure on M,

o ) = /M F()he(z, y) dy;
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» The solution can be written as
u(z,t) = et f(x) =: Hof (x).

» But more importantly, there exists a function h;(z, y), the heat kernel,
such that:

o Iu(z,y) = h(y,x) > 0;
o dus(y) = hi(x,y)dy is a probability measure on M,

o ) = /M F()he(z, y) dy;

» In some special cases there is a “natural” complexification M¢ of M, such
that the heat kernel x — h;(x,y) and the function H; f extends to a
holomorphic function on M. The task is then to define a Hilbert space
H:(M¢c) of holomorphic functions on M¢ such that the transfrom

L2(M) > f+ Hf € Hy(Mc)

becomes an unitary isomorphism.
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2. Thecase M = R"

» As a motivation - and as a tool for our more general result - let us start
with the case M = R™.
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2. Thecase M = R"

» As a motivation - and as a tool for our more general result - let us start
with the case M = R™.

» The first simple remark is, that in general the heat kernel is invariant
under isometries, i.e. if o : M — M is an isometry, then

he(z,y) = he(p(x), 0(y))

It follows that the heat kernel on R" Is a function of one variable

hi(z,y) = he(z —y).
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2. Thecase M = R"

» As a motivation - and as a tool for our more general result - let us start
with the case M = R™.

» The first simple remark is, that in general the heat kernel is invariant
under isometries, i.e. if o : M — M is an isometry, then

he(z,y) = he(p(x), 0(y))

It follows that the heat kernel on R" Is a function of one variable

hi(z,y) = he(z —y).

» By definition, the heat kernel is a solution to the heat equation with f = 9.
Taking the Fourier transform (in the space variable x) the heat equation is
transformed into the simple differential equation in the time variable:

Ouhe(N) = =PAPRe(Y),  lim h(A) = (2m) 7"
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» This gives Ay (\) = (27) /2 At
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» This gives  hy(\) = (2m) /2 Mt

» By taking the inverse Fourier transform:

he(z) = (4mt) ="/ 2e~1el*/4t
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» This gives  hy(\) = (2m) /2 Mt
» By taking the inverse Fourier transform:
he(z) = (4mt) ="/ 2e~1el*/4t
» It is clear from this explicit formula, that
hi(z) = (47rt)_”/26_22/475 : =2+ .+

gives a holomorphic extension of the heat kernel to C"* ~ T'(R™)*, the
complexification of R".
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» This gives a holomorphic extension of H; f:

Hyf(2) = f * hy(2) = (4mt) ™"/ N fly)e= G974 gy
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» This gives a holomorphic extension of H, f:

Hf(2) = f * he(2) = (4mt) ™"/ N fly)e= G974 gy

» To describe the Hilbert space H;(C") define a positive weight function by

wf{n () = wi(x) = (27rt)_”/26_$ J2E — ht/g(aﬁ)

- p. 6/19



» This gives a holomorphic extension of H, f:

Hf(2) = f * he(2) = (4mt) ™"/ N fly)e= G974 gy

» To describe the Hilbert space H;(C") define a positive weight function by
SR (2) = wiz) = (2mt) "2~ /2 = by o ()
and a measure on C" by
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» This gives a holomorphic extension of H, f:

Hf(2) = f * he(2) = (4mt) ™"/ N fly)e= G974 gy

» To describe the Hilbert space H;(C") define a positive weight function by
SR (2) = wiz) = (2mt) "2~ /2 = by o ()
and a measure on C" by

dp(z + iy) = wi(y) dady .

and set

H,(C") = {F € O(C™) | |F|l? = / F(o + )2 dpse < oo}

n
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» This gives a holomorphic extension of H, f:

Hof(2) = f * hy(2) = (4mt) /2 5 fy)e~ G0/t gy

» To describe the Hilbert space H;(C"™) define a positive weight function by
" (w) = wi(w) = (2mt) e 1% = hy o (x)
and a measure on C" by

dps(x + iy) = we(y) dedy .

and set

H.(C") ={F € O(C") | |F||} := / |F (2 +iy)|* dps < oo}
» Note, that we only put a weight on the fibers x + :R"”. If one wants to
consider the infinite dimensional case, it is hecessary to weight both
variables.
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Theorem (Segal-Bargmann)
1. H:(C") is a Hilbert space with continuous point evaluation.

2. We have H;(L*(R")) C ‘H;(C") and the map H; : L?*(R") — H,;(C") is a
unitary isomorphism.

3. If f € L2(R"), then

flx) = - Hyf(x + iy)he(y) dy -
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Theorem (Segal-Bargmann)
1. H:(C") is a Hilbert space with continuous point evaluation.

2. We have H,(L*(R")) C H;(C™) and the map H; : L*(R") — H;(C")is a
unitary isomorphism.

3. If f e L*(R"), then

flx) = - Hyf(x +iy)he(y) dy .

» The obvious problem in the general case is: What is M¢?

» And: What is a natural generalization of the measure d;?
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» One class of spaces where such a complexification exists are the
Riemannian symmetric spaces G/ K, where G is a connected and
semisimple Lie group.
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» One class of spaces where such a complexification exists are the
Riemannian symmetric spaces G/ K, where G is a connected and
semisimple Lie group.

e B. Hall in 1997 for compact Lie groups and then M.B. Stenzel in 1999 for
symmetric spaces M = G/K, where G is compact. Here

Mc = Ge/Ke 2 T(G/K)*.
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» One class of spaces where such a complexification exists are the
Riemannian symmetric spaces GG/ K, where G is a connected and
semisimple Lie group.

e B. Hall in 1997 for compact Lie groups and then M.B. Stenzel in 1999 for
symmetric spaces M = G/K, where G is compact. Here

Mc = Ge/Ke 2 T(G/K)*.

e This was put in a more general/abstract framework by G. Olafsson and B.
@rsted using polarization of the restriction map (— quantization)

O(Mg) 3 F — xF|a/x € L*(M)
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semisimple Lie group.

e B. Hall in 1997 for compact Lie groups and then M.B. Stenzel in 1999 for
symmetric spaces M = G/K, where G is compact. Here

Mc = Ge/Ke 2 T(G/K)*.

e This was put in a more general/abstract framework by G. Olafsson and B.
@rsted using polarization of the restriction map (— quantization)

O(Mg) 3 F — xF|a/x € L*(M)

e B. Hall and J.J. Mitchell in 2004 the case M = G/K where G is complex
or of rank one.
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» One class of spaces where such a complexification exists are the
Riemannian symmetric spaces GG/ K, where G is a connected and
semisimple Lie group.

e B. Hall in 1997 for compact Lie groups and then M.B. Stenzel in 1999 for
symmetric spaces M = G/K, where G is compact. Here

Mc = Ge/Ke 2 T(G/K)*.

e This was put in a more general/abstract framework by G. Olafsson and B.
@rsted using polarization of the restriction map (— quantization)

O(Mg) 3 F — xF|a/x € L*(M)

e B. Hall and J.J. Mitchell in 2004 the case M = G/K where G is complex
or of rank one. ,
e Then B. Krotz, R. Stanton and G. Olafsson the general case G/ K in 2005.
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» One class of spaces where such a complexification exists are the
Riemannian symmetric spaces GG/ K, where G is a connected and
semisimple Lie group.

e B. Hall in 1997 for compact Lie groups and then M.B. Stenzel in 1999 for
symmetric spaces M = G/K, where G is compact. Here

Mc = Ge/Ke 2 T(G/K)*.

e This was put in a more general/abstract framework by G. Olafsson and B.
@rsted using polarization of the restriction map (— quantization)

O(Mg) 3 F — xF|a/x € L*(M)

e B. Hall and J.J. Mitchell in 2004 the case M = G/K where G is complex
or of rank one.

e Then B. Krétz, R. Stanton and G. Olafsson the general case G/K in 2005.
» Here, | would like to discuss a new joint work with H. Schlichtkrull
(Copenhagen) on the K-invariant functions on G/K and some
generalizations. To appear in Adv. Math.
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3. K-invariant functionson G/K and the

Opdam-Heckmann theory

- p. 9/19



3. K-invariant functionson G/K and the

Opdam-Heckmann theory

» (G a connected, non-compact semisimple Lie group with finite center,
K C G a maximal compact subgroup, and ¢ : G — G the corresponding
Cartan involution:

K=G"={geG|0(g) =g}

Denote the corresponding involution on the Lie algebra g by the same letter
6.
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3. K-invariant functionson G/K and the

Opdam-Heckmann theory

» (G a connected, non-compact semisimple Lie group with finite center,
K C G a maximal compact subgroup, and ¢ : G — G the corresponding
Cartan involution:

K=G"={geG|0(g) =g}

Denote the corresponding involution on the Lie algebra g by the same letter
6

» Think of G = SL(n,R), K = SO(n) and 6(g) = (¢ !)*. The corresponding
Involution on the Lie algebra

si(n,R) = {X € M,(R) | Tr(X) = 0}

is simply (X) = —X7.
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plett={Xecg|dgX)=X}andp={X e€g|0(X)=—-X}. Then
g=¢tdp.
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plett={Xecg|dgX)=X}andp={X e€g|0(X)=—-X}. Then
g=¢tdp.

» Corresponds to the decomposition of sl(n, R) into skew-symmetric and
symmetric matrices.
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» Corresponds to the decomposition of sl(n, R) into skew-symmetric and
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» Let a ~ R" be a maximal abelian subspace of p, i.e., all diagonal matrices
with trace zero.
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where
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» Corresponds to the decomposition of sl(n, R) into skew-symmetric and
symmetric matrices.

» Let a ~ R" be a maximal abelian subspace of p, i.e., all diagonal matrices
with trace zero.

» Theneachad(X):g — g, Y — [X, Y], is semisimple and

g:m@a@@go‘
acA

where
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plett={Xecg|dgX)=X}andp={X e€g|0(X)=—-X}. Then
g=¢tdp.

» Corresponds to the decomposition of sl(n, R) into skew-symmetric and
symmetric matrices.

» Let a ~ R" be a maximal abelian subspace of p, i.e., all diagonal matrices
with trace zero.

» Theneachad(X):g — g, Y — [X, Y], is semisimple and

g=mdad @ g
aEA
where
em={Yect|(VXe€a)|X,Y]|=0}
eaca*\{0}andg®*={Y eg| (VX €a) | X,Y] =a(X)Y} the joint
«a-eigenspace

e A={aca” \{0}|g" #{0}}.
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e Fix Z € asuchthat a(Z) #0foralla € A. Then AT ={a | a(Z) > 0} isa
positive system of roots.
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e Fix Z € asuchthat a(Z) #0foralla € A. Then AT ={a | a(Z) > 0} isa
positive system of roots.

» For a € Aletr, : a — a be the reflection in the hyperplane o(X) = 0 and

let W be the finite reflection group - the Weyl group - generated by r,,
a € A.
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e Fix Z € asuchthat a(Z) #0foralla € A. Then AT ={a | a(Z) > 0} isa
positive system of roots.

» For a € Aletr, : a — a be the reflection in the hyperplane o(X) = 0 and
let W be the finite reflection group - the Weyl group - generated by r,,
a € A.

» Theopenconea™ ={X €a| (Va e AT)a(X) > 0} is a fundamental
domain for W. Set:

A = exp(a) and AT = exp(a™)

and note that exp : a — A Is an analytic isomorphism.
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e Fix Z € asuchthat a(Z) #0foralla € A. Then AT ={a | a(Z) > 0} isa
positive system of roots.

» For a € Aletr, : a — a be the reflection in the hyperplane o(X) = 0 and
let W be the finite reflection group - the Weyl group - generated by r,,
a € A.

» Theopenconea™ ={X €a| (Va e AT)a(X) > 0} is a fundamental
domain for W. Set:

A = exp(a) and AT = exp(a™)

and note that exp : a — A Is an analytic isomorphism.
» Set m, = dimg® and ¢® = e*(l°ga)

(@)= ][ la*—a™ and  du(a) =d(a)da

aEAT
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For or standard example we have:

-p. 12/19



For or standard example we have:
> A = {eij} where Gij(X) =X — Tj.

-p. 12/19



For or standard example we have:
> A = {eij} where Gij(X) —T; — Tj.

» W is the set of permutations o ((z4)) = (T (5)e(i))-
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> A = {eij} where Gij(X) —T; — Tj.

» W is the set of permutations o ((z4)) = (T (5)e(i))-
» AT is the set of diagonal matrices (a;;) with

a1 > ao2 > ... > Apn
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For or standard example we have:
> A = {eij} where Gij(X) —T; — Tj.

» W is the set of permutations o ((z4)) = (T (5)e(i))-

» AT is the set of diagonal matrices (a;;) with

a1 > ao2 > ... > Apn

» and

5(a) = | (ai/a; — a;/a;) .

i<j

- p. 12/19



Theorem We have G = K AK and the restriction map
LYH(G/K)E 5 f s fla € LXA, W[ Y)W ~ L} (A, dy)

IS an unitary isomorphism.
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Theorem We have G = K AK and the restriction map
L(G/K)" 3 f = fla € L*(A, W[ du)" ~ L* (AT, dp)
IS an unitary isomorphism.

» This reduces the analysis of K-invariant functions on G/ K to analysis of
W -invariant functions on the Euclidean space A ~ «a.
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Theorem We have G = K AK and the restriction map
L(G/K)" 3 f = fla € L*(A, W[ du)" ~ L* (AT, dp)
IS an unitary isomorphism.

» This reduces the analysis of K-invariant functions on G/ K to analysis of
W -invariant functions on the Euclidean space A ~ «a.

» Next we consider the effect on the Heat equation. For that let H4, ..., H,
be a orthonormal basis of a and A™? = {a € A | (V&) a™ # 1}.

- p. 13/19



Theorem We have G = K AK and the restriction map
L(G/K)® > f = fla € L*(A, W]~ du)" ~ L*(A™, dp)
IS an unitary isomorphism.

» This reduces the analysis of K-invariant functions on G/ K to analysis of
W -invariant functions on the Euclidean space A ~ «a.

» Next we consider the effect on the Heat equation. For that let H4, ..., H,
be a orthonormal basis of a and A™9 = {a € A | (Vo) a® # 1}.

» Let (-, -) be a W-invariant inner product on a (and by duality on a*). Chose
he € a be such that (X, h,) = a(X), (o, 8) = (Ha, Hg), and - for a # 0 -

[ = — gy

(ov,c)

|
I
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Theorem We have G = K AK and the restriction map
L(G/K)® > f = fla € L*(A, W]~ du)" ~ L*(A™, dp)
IS an unitary isomorphism.

» This reduces the analysis of K-invariant functions on G/ K to analysis of
W -invariant functions on the Euclidean space A ~ «a.

» Next we consider the effect on the Heat equation. For that let H4, ..., H,
be a orthonormal basis of a and A™9 = {a € A | (Vo) a® # 1}.

» Let (-, -) be a W-invariant inner product on a (and by duality on a*). Chose
he € a be such that (X, h,) = a(X), (o, 8) = (Ha, Hg), and - for a # 0 -

Ho = oy han

» Define a W-invariant differential operator L on A9 by
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Theorem (The radial part of the Laplacian) We have

(Af)|aes = L(f]ar)
forall f € C>*(G/K)E.
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Theorem (The radial part of the Laplacian) We have

(Af)laes = L(f]awo)
forall f € C>°(G/K)¥.
» Hence the heat equation for K-invariant functions on G/K corresponds to
the Cauchy problem on A™9 (or A™)
Lu(a,t) = 0Owla,t)

Y u(at) T% fla) € L2(AT,dp)
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Theorem (The radial part of the Laplacian) We have

(Af)|ars = L(f|ares)
for all f € C*(G/K)E.

» Hence the heat equation for K-invariant functions on G/K corresponds to
the Cauchy problem on A™9 (or A™)

Lu(a,t) = Owla,t)

Y u(at) T% fla) € L2(AT,dp)

» The important observation now is, that every thing in (*) is independent of

G /K, it only depends on g, the set of roots A and the multiplicity function
m: o — mg!
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Theorem (The radial part of the Laplacian) We have

(Af)|ars = L(f|ares)
for all f € C*(G/K)E.

» Hence the heat equation for K-invariant functions on G/K corresponds to
the Cauchy problem on A™9 (or A™)

Lu(a,t) = Owla,t)

©) w(a,t) =% f(a) € L2(AT, du)

» The important observation now is, that every thing in (*) is independent of

G /K, it only depends on a, the set of roots A and the multiplicity function
m: o — mg!

» So from now on m : A — [0, 00) is a Weyl group invariant function,
defined on a root system A in a finite dimensional Euclidean space a.
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Theorem (The radial part of the Laplacian) We have

(Af)|ars = L(f|ares)
for all f € C*(G/K)E.

» Hence the heat equation for K-invariant functions on G/K corresponds to
the Cauchy problem on A™9 (or A™)

0 Lu(a,t) = Owla,t)
u(a,t) =% fla) € LA(AT,dp)
» The important observation now is, that every thing in (*) is independent of

G /K, it only depends on a, the set of roots A and the multiplicity function
m: o — mg!

» So from now on m : A — [0, 00) is a Weyl group invariant function,
defined on a root system A in a finite dimensional Euclidean space a.
» The density function and the differential operator L is defined as before.
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» What is missing is a nice Fourier analysis on a with respect to the
measure dp. In particular: What are the special functions that generalize

the exponential functions z — ey (z) = e!*®)?
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» The was done by E. Opdam and G. Heckman in a series of article,
starting around 1988
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as for the spherical functions on G/K and show that
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starting around 1988

» What they did was to define for each A € ag a function - the generalized
hypergeometric functions - ¢, : A — C using the same expansion formula
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» What is missing is a nice Fourier analysis on a with respect to the
measure dp. In particular: What are the special functions that generalize

the exponential functions = — ey (z) = e*(M®)?

» The was done by E. Opdam and G. Heckman in a series of article,
starting around 1988

» What they did was to define for each A € ag a function - the generalized
hypergeometric functions - ¢, : A — C using the same expansion formula
as for the spherical functions on G/K and show that

e ), extends to a holomorphic function on a complex neighborhood of A in
Ac = ac/Z{miH, | a € A};
e v, = ¢, If and only if there exists a w € W such that wA = y;

o Lipx = (A A) — (p, p))pr Where 2p = 7 | 1 mac.
e Growth estimates for ¢, (aexpiX) for X € Q2 where

Q={Xea| VaeA)|a(X)| <n/2}.
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Define the Hypergeometric Fourier transform by

A) = F(V /f Dp-n(@)di= W] [ f(@)p-in(a)die
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Define the Hypergeometric Fourier transform by

N=I0) = [ f@p-a@di=1W] [ f@p-a@du

A+

» Define c : ai — C by the same formula as the Harish-Chandra c-function
(product and quotients of I'-functions) and set dv(\) = [c(i\)| ™t d.
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Define the Hypergeometric Fourier transform by

A) = F(V /f Qdu=W| [ F@)p_ia)dy.

A+

» Define c : ai — C by the same formula as the Harish-Chandra c-function
(product and quotients of I'-functions) and set dv(\) = [c(i\)| ™t d.

Theorem (Heckmann-Opdam) The Fourier transform extends to an unitary
Isomorphism

L3(A,dp)V ~ L2(a*,dv)"
Furthermore, if f € C>°(A)" then

Fa) =W [ FO)gan(@ vy

and

FLHN) = =M+ 1) F () -
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Let us put this together in a commutative diagram:

L2(A, dp)V —— L?(A, da)™ ™)

fl |

2( 4% %% 2( 4% T(W
L#(a*, dv) —W>L(a,d)\)()
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Let us put this together in a commutative diagram:

L2(A, dp)V —— L?(A, da)™ ™)

fl |

2( 4% w 2( 4% T(W
L*(a*, dv) —@>L(a,d>\)()

e F, is the usual Fourier transform on A: Fa(f)(\) = [, f(a)a™"* da
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Let us put this together in a commutative diagram:

L2(A, dp)V —— L?(A, da)™ ™)

fl |

2( y* w 2( a% T(W
L*(a*, dv) —@>L(a,d)\)()

e F, is the usual Fourier transform on A: Fa(f)(\) = [, f(a)a™"* da

e U is the linear map F + c(—i\)"1F()\)
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Let us put this together in a commutative diagram:

L2(A, dp)V —— L?(A, da)™ ™)

fl |

2( y* w 2( a% T(W
L*(a*, dv) —@>L(a,d)\)()

e F, is the usual Fourier transform on A: Fa(f)(\) = [, f(a)a™"* da

e U is the linear map F + c(—i\)"1F()\)
e 7 is the action 7(w)F(\) = c(iw™\) /c(i\) F(w™1)\)
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Let us put this together in a commutative diagram:

L2(A, dp)V —— L?(A, da)™ ™)

fl |

2( y* w 2( a% T(W
L*(a*, dv) —@>L(a,d)\)()

e F, is the usual Fourier transform on A: Fa(f)(\) = [, f(a)a™"* da

e U is the linear map F + c(—i\)"1F()\)

e 7 is the action 7(w)F(\) = c(iw™\) /c(i\) F(w™1)\)
e and the isometry A
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Let us put this together in a commutative diagram:

L2(A,dp)V —— L?(A, da)™ ™)

fl |

2 ( ok %4 2 (% T(W
L*(a*,dv) —@>L(a,d)\)()

e F, is the usual Fourier transform on A: Fa(f)(\) = [, f(a)a™"* da

e U is the linear map F + c(—i\)"1F()\)

e 7 is the action 7(w)F(\) = c(iw™t\)/c(i\) F(w™1\)
e and the isometry A is constructed so as to make the diagram commutative.
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Let us put this together in a commutative diagram:

L2(A,dp)V —— L?(A, da)™ ™)

fl |

2 ( ok %4 2 (% T(W
L*(a*,dv) —@>L(a,d)\)()

e F, is the usual Fourier transform on A: Fa(f)(\) = [, f(a)a™"* da

e U is the linear map F + c(—i\)"1F()\)

e 7 is the action 7(w)F(\) = c(iw™t\)/c(i\) F(w™1\)
e and the isometry A is constructed so as to make the diagram commutative.
» Then

A(Lf)(a) = (Aa —1pI*)A(f)(a)

reducing the our problem to a shifted heat equation on A ~ a:

(Aa — |pP)ula,t) = dpu(x, )
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Theorem (O+S, 2005) 1) The solution of the heat equation is given by

u(a, t) = [W]~2 / et F N pin (@ dv(\)  f € LR(A)V .
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Theorem (O+S, 2005) 1) The solution of the heat equation is given by
ulat) = WI72 [ e OPRDfogpn@d)  f e L)Y

Let H,; be the space of holomorphic function on F' : Aexp{) — C such that
A(F') extends to a 7(WW)-invariant holomorphic function on ac such that

|F||2 = e2tlel’ / IAF(X +iY)|? dpe (X + 1Y) < 00.
ac
Then H; is a Hilbert space and

H,: I?(AY — H,

IS an unitary isomorphism. Here p; is the heat measure on the Euclidean
space a.
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Assume m,, = 2 for all , i.e., (a, A, m) corresponds to a Riemannian
symmetric space G /K with G complex.
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Assume m,, = 2 for all , i.e., (a, A, m) corresponds to a Riemannian
symmetric space G/K with G complex. Then, §(a)'/? =] ca+(a® —a™%)
has a holomorphic extension to Ac and A f(a) = §(a)'/%f(a).
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Assume m,, = 2 for all , i.e., (a, A, m) corresponds to a Riemannian
symmetric space G/K with G complex. Then, §(a)'/? =] ca+(a® —a™)
has a holomorphic extension to Ac and A f(a) = §(a)'/%f(a).

Theorem (Hall+Mitchell) Assume that G is complex. Let f € L*(G/K)¥,
and let u(x,t) = H; f(x) be the solution to the heat equation. The map

X — §(exp X)2u(exp X, t), X € a, has a holomorphic extension to ac such
that

111 = / (5Y2u)(X + Y, 1) 2e2°F dpy (X + 1Y)
ac
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Assume m,, = 2 for all , i.e., (a, A, m) corresponds to a Riemannian
symmetric space G/K with G complex. Then, §(a)'/? =] ca+(a® —a™)
has a holomorphic extension to Ac and A f(a) = §(a)'/%f(a).

Theorem (Hall+Mitchell) Assume that G is complex. Let f € L*(G/K)¥,
and let u(x,t) = H; f(x) be the solution to the heat equation. The map

X — §(exp X)2u(exp X, t), X € a, has a holomorphic extension to ac such
that

111 = / (5Y2u)(X + Y, 1) 2e2°F dpy (X + 1Y)
ac

Conversely, any meromorphic function «(Z) which is invariant under W
and which satisfies

/ (52u) (X + iY) 2Pl duy (X + 1Y) < oo
ac

is the Segal-Bargmann tranform H, f for some f ¢ L?>(G/K)¥.
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