THE IMAGE OF THE SEGAL-BARGMANN TRANSFORM SYMMETRIC SPACES AND GENERALIZATIONS

Joint work with

H. Schlichtkrull

To appear in Advances in Mathematics

 \blacktriangleright *M* a Riemannian manifold

 \blacktriangleright *M* a Riemannian manifold

 \blacktriangleright Δ the Laplace operator

$$\Delta = \frac{1}{\sqrt{g}} \sum_{k} \partial_k \sum_{i} g^{ik} \sqrt{g} \partial_i \,.$$

where $g = \det(g_{ij})$

- \blacktriangleright *M* a Riemannian manifold
- \blacktriangleright Δ the Laplace operator

$$\Delta = \frac{1}{\sqrt{g}} \sum_{k} \partial_k \sum_{i} g^{ik} \sqrt{g} \partial_i \,.$$

where $g = \det(g_{ij})$ \blacktriangleright The Heat equation is

$$\Delta u(x,t) = \partial_t u(x,t)$$
$$\lim_{t \to o^+} u(x,t) = f(x)$$

Where f is in $L^2(M)$ or a distribution.

► The solution can be written as

$$u(x,t) = e^{t\Delta} f(x) =: H_t f(x) .$$

► The solution can be written as

$$u(x,t) = e^{t\Delta} f(x) =: H_t f(x) .$$

▶ But more importantly, there exists a function $h_t(x, y)$, the heat kernel, such that:

•
$$h_t(x,y) = h_t(y,x) \ge 0;$$

• $d\mu_t(y) = h_t(x, y)dy$ is a probability measure on M;

•
$$H_t f(x) = \int_M f(y) h_t(x, y) \, dy;$$

► The solution can be written as

$$u(x,t) = e^{t\Delta} f(x) =: H_t f(x) .$$

▶ But more importantly, there exists a function $h_t(x, y)$, the heat kernel, such that:

•
$$h_t(x,y) = h_t(y,x) \ge 0;$$

• $d\mu_t(y) = h_t(x, y)dy$ is a probability measure on M;

•
$$H_t f(x) = \int_M f(y) h_t(x, y) \, dy;$$

▶ In some special cases there is a "natural" complexification $M_{\mathbb{C}}$ of M, such that the heat kernel $x \mapsto h_t(x, y)$ and the function $H_t f$ extends to a holomorphic function on $M_{\mathbb{C}}$. The task is then to define a Hilbert space $\mathcal{H}_t(M_{\mathbb{C}})$ of holomorphic functions on $M_{\mathbb{C}}$ such that the transfrom

 $L^2(M) \ni f \mapsto H_t f \in \mathcal{H}_t(M_{\mathbb{C}})$

becomes an unitary isomorphism.

2. The case $M = \mathbb{R}^n$

► As a motivation - and as a tool for our more general result - let us start with the case $M = \mathbb{R}^n$.

2. The case $M = \mathbb{R}^n$

► As a motivation - and as a tool for our more general result - let us start with the case $M = \mathbb{R}^n$.

► The first simple remark is, that in general the heat kernel is invariant under isometries, i.e. if $\varphi : M \to M$ is an isometry, then

 $h_t(x,y) = h_t(\varphi(x),\varphi(y))$

It follows that the heat kernel on \mathbb{R}^n is a function of one variable

 $h_t(x,y) = h_t(x-y) \,.$

2. The case $M = \mathbb{R}^n$

► As a motivation - and as a tool for our more general result - let us start with the case $M = \mathbb{R}^n$.

► The first simple remark is, that in general the heat kernel is invariant under isometries, i.e. if $\varphi: M \to M$ is an isometry, then

 $h_t(x,y) = h_t(\varphi(x),\varphi(y))$

It follows that the heat kernel on \mathbb{R}^n is a function of one variable

 $h_t(x,y) = h_t(x-y) \,.$

▶ By definition, the heat kernel is a solution to the heat equation with $f = \delta_0$. Taking the Fourier transform (in the space variable x) the heat equation is transformed into the simple differential equation in the time variable:

$$\partial_t \widehat{h_t}(\lambda) = -|\lambda|^2 \widehat{h_t}(\lambda), \qquad \lim_{t \to 0+} \widehat{h_t}(\lambda) = (2\pi)^{-n/2}$$

► This gives
$$\widehat{h_t}(\lambda) = (2\pi)^{-n/2} e^{-|\lambda|^2 t}$$

.

► This gives $\widehat{h_t}(\lambda) = (2\pi)^{-n/2} e^{-|\lambda|^2 t}$.

► By taking the inverse Fourier transform:

$$h_t(x) = (4\pi t)^{-n/2} e^{-|x|^2/4t}$$
.

► This gives $\widehat{h_t}(\lambda) = (2\pi)^{-n/2} e^{-|\lambda|^2 t}$.

► By taking the inverse Fourier transform:

$$h_t(x) = (4\pi t)^{-n/2} e^{-|x|^2/4t}$$
.

► It is clear from this explicit formula, that

$$h_t(z) = (4\pi t)^{-n/2} e^{-z^2/4t}, \qquad z^2 = z_1^2 + \ldots + z_n^2$$

gives a holomorphic extension of the heat kernel to $\mathbb{C}^n \simeq T(\mathbb{R}^n)^*$, the complexification of \mathbb{R}^n .

$$H_t f(z) = f * h_t(z) = (4\pi t)^{-n/2} \int_{\mathbb{R}^n} f(y) e^{-(z-y)^2/4t} \, dy$$

$$H_t f(z) = f * h_t(z) = (4\pi t)^{-n/2} \int_{\mathbb{R}^n} f(y) e^{-(z-y)^2/4t} \, dy$$

▶ To describe the Hilbert space $\mathcal{H}_t(\mathbb{C}^n)$ define a positive weight function by

$$\omega_t^{\mathbb{R}^n}(x) = \omega_t(x) = (2\pi t)^{-n/2} e^{-x^2/2t} = h_{t/2}(x)$$

$$H_t f(z) = f * h_t(z) = (4\pi t)^{-n/2} \int_{\mathbb{R}^n} f(y) e^{-(z-y)^2/4t} \, dy$$

▶ To describe the Hilbert space $\mathcal{H}_t(\mathbb{C}^n)$ define a positive weight function by

$$\omega_t^{\mathbb{R}^n}(x) = \omega_t(x) = (2\pi t)^{-n/2} e^{-x^2/2t} = h_{t/2}(x)$$

and a measure on \mathbb{C}^n by

$$d\mu_t(x+iy) = \omega_t(y) \, dx dy$$
 .

$$H_t f(z) = f * h_t(z) = (4\pi t)^{-n/2} \int_{\mathbb{R}^n} f(y) e^{-(z-y)^2/4t} \, dy$$

▶ To describe the Hilbert space $\mathcal{H}_t(\mathbb{C}^n)$ define a positive weight function by

$$\omega_t^{\mathbb{R}^n}(x) = \omega_t(x) = (2\pi t)^{-n/2} e^{-x^2/2t} = h_{t/2}(x)$$

and a measure on \mathbb{C}^n by

$$d\mu_t(x+iy) = \omega_t(y) \, dx dy \, .$$

and set

$$\mathcal{H}_t(\mathbb{C}^n) = \left\{ F \in \mathcal{O}(\mathbb{C}^n) \mid \|F\|_t^2 := \int_{\mathbb{C}^n} |F(x+iy)|^2 \, d\mu_t < \infty \right\}.$$

$$H_t f(z) = f * h_t(z) = (4\pi t)^{-n/2} \int_{\mathbb{R}^n} f(y) e^{-(z-y)^2/4t} \, dy$$

► To describe the Hilbert space $\mathcal{H}_t(\mathbb{C}^n)$ define a positive weight function by

$$\omega_t^{\mathbb{R}^n}(x) = \omega_t(x) = (2\pi t)^{-n/2} e^{-x^2/2t} = h_{t/2}(x)$$

and a measure on \mathbb{C}^n by

$$d\mu_t(x+iy) = \omega_t(y) \, dx dy \, .$$

and set

$$\mathcal{H}_t(\mathbb{C}^n) = \left\{ F \in \mathcal{O}(\mathbb{C}^n) \mid \|F\|_t^2 := \int_{\mathbb{C}^n} |F(x+iy)|^2 \, d\mu_t < \infty \right\}.$$

▶ Note, that we only put a weight on the fibers $x + i\mathbb{R}^n$. If one wants to consider the infinite dimensional case, it is necessary to weight both variables.

Theorem (Segal-Bargmann)

- 1. $\mathcal{H}_t(\mathbb{C}^n)$ is a Hilbert space with continuous point evaluation.
- 2. We have $H_t(L^2(\mathbb{R}^n)) \subseteq \mathcal{H}_t(\mathbb{C}^n)$ and the map $H_t: L^2(\mathbb{R}^n) \to \mathcal{H}_t(\mathbb{C}^n)$ is a unitary isomorphism.

3. If $f \in L^2(\mathbb{R}^n)$, then

$$f(x) = \int_{\mathbb{R}^n} H_t f(x+iy) h_t(y) \, dy \, .$$

Theorem (Segal-Bargmann)

- 1. $\mathcal{H}_t(\mathbb{C}^n)$ is a Hilbert space with continuous point evaluation.
- 2. We have $H_t(L^2(\mathbb{R}^n)) \subseteq \mathcal{H}_t(\mathbb{C}^n)$ and the map $H_t: L^2(\mathbb{R}^n) \to \mathcal{H}_t(\mathbb{C}^n)$ is a unitary isomorphism.
- 3. If $f \in L^2(\mathbb{R}^n)$, then

$$f(x) = \int_{\mathbb{R}^n} H_t f(x + iy) h_t(y) \, dy \, .$$

▶ The obvious problem in the general case is: What is $M_{\mathbb{C}}$?

Theorem (Segal-Bargmann)

- 1. $\mathcal{H}_t(\mathbb{C}^n)$ is a Hilbert space with continuous point evaluation.
- 2. We have $H_t(L^2(\mathbb{R}^n)) \subseteq \mathcal{H}_t(\mathbb{C}^n)$ and the map $H_t: L^2(\mathbb{R}^n) \to \mathcal{H}_t(\mathbb{C}^n)$ is a unitary isomorphism.
- 3. If $f \in L^2(\mathbb{R}^n)$, then

$$f(x) = \int_{\mathbb{R}^n} H_t f(x+iy) h_t(y) \, dy \, .$$

- ▶ The obvious problem in the general case is: What is $M_{\mathbb{C}}$?
- ► And: What is a natural generalization of the measure $d\mu_t$?

• B. Hall in 1997 for compact Lie groups and then M.B. Stenzel in 1999 for symmetric spaces M = G/K, where G is compact. Here $M_{\mathbb{C}} = G_{\mathbb{C}}/K_{\mathbb{C}} \simeq T(G/K)^*$.

• B. Hall in 1997 for compact Lie groups and then M.B. Stenzel in 1999 for symmetric spaces M = G/K, where G is compact. Here $M_{\mathbb{C}} = G_{\mathbb{C}}/K_{\mathbb{C}} \simeq T(G/K)^*$.

• This was put in a more general/abstract framework by G. Ólafsson and B. Ørsted using polarization of the restriction map (\rightarrow quantization)

 $\mathcal{O}(M_{\mathbb{C}}) \ni F \mapsto \chi F|_{G/K} \in L^2(M)$

• B. Hall in 1997 for compact Lie groups and then M.B. Stenzel in 1999 for symmetric spaces M = G/K, where G is compact. Here $M_{\mathbb{C}} = G_{\mathbb{C}}/K_{\mathbb{C}} \simeq T(G/K)^*$.

• This was put in a more general/abstract framework by G. Ólafsson and B. Ørsted using polarization of the restriction map (\rightarrow quantization)

 $\mathcal{O}(M_{\mathbb{C}}) \ni F \mapsto \chi F|_{G/K} \in L^2(M)$

• B. Hall and J.J. Mitchell in 2004 the case M = G/K where G is complex or of rank one.

• B. Hall in 1997 for compact Lie groups and then M.B. Stenzel in 1999 for symmetric spaces M = G/K, where G is compact. Here $M_{\mathbb{C}} = G_{\mathbb{C}}/K_{\mathbb{C}} \simeq T(G/K)^*$.

• This was put in a more general/abstract framework by G. Ólafsson and B. Ørsted using polarization of the restriction map (\rightarrow quantization)

 $\mathcal{O}(M_{\mathbb{C}}) \ni F \mapsto \chi F|_{G/K} \in L^2(M)$

• B. Hall and J.J. Mitchell in 2004 the case M = G/K where G is complex or of rank one.

• Then B. Krötz, R. Stanton and G. Ólafsson the general case G/K in 2005.

• B. Hall in 1997 for compact Lie groups and then M.B. Stenzel in 1999 for symmetric spaces M = G/K, where G is compact. Here $M_{\mathbb{C}} = G_{\mathbb{C}}/K_{\mathbb{C}} \simeq T(G/K)^*$.

• This was put in a more general/abstract framework by G. Ólafsson and B. Ørsted using polarization of the restriction map (\rightarrow quantization)

 $\mathcal{O}(M_{\mathbb{C}}) \ni F \mapsto \chi F|_{G/K} \in L^2(M)$

• B. Hall and J.J. Mitchell in 2004 the case M = G/K where G is complex or of rank one.

Then B. Krötz, R. Stanton and G. Ólafsson the general case *G*/*K* in 2005.
 ▶ Here, I would like to discuss a new joint work with H. Schlichtkrull (Copenhagen) on the *K*-invariant functions on *G*/*K* and some generalizations. To appear in Adv. Math.

3. *K*-invariant functions on G/K and the Opdam-Heckmann theory

3. $K\mbox{-invariant}$ functions on G/K and the

Opdam-Heckmann theory

► *G* a connected, non-compact semisimple Lie group with finite center, $K \subset G$ a maximal compact subgroup, and $\theta : G \to G$ the corresponding Cartan involution:

 $K = G^{\theta} = \{g \in G \mid \theta(g) = g\}.$

Denote the corresponding involution on the Lie algebra \mathfrak{g} by the same letter θ .

3. $K\mbox{-invariant}$ functions on G/K and the

Opdam-Heckmann theory

► *G* a connected, non-compact semisimple Lie group with finite center, $K \subset G$ a maximal compact subgroup, and $\theta : G \to G$ the corresponding Cartan involution:

 $K = G^{\theta} = \{g \in G \mid \theta(g) = g\}.$

Denote the corresponding involution on the Lie algebra \mathfrak{g} by the same letter θ .

► Think of $G = SL(n, \mathbb{R})$, K = SO(n) and $\theta(g) = (g^{-1})^T$. The corresponding involution on the Lie algebra

$$\mathfrak{sl}(n,\mathbb{R}) = \{ X \in M_n(\mathbb{R}) \mid \mathrm{Tr}(X) = 0 \}$$

is simply $\theta(X) = -X^T$.

► Let $\mathfrak{k} = \{X \in \mathfrak{g} \mid \theta(X) = X\}$ and $\mathfrak{p} = \{X \in \mathfrak{g} \mid \theta(X) = -X\}$. Then

 $\mathfrak{g} = \mathfrak{k} \oplus \mathfrak{p}$.

► Let
$$\mathfrak{k} = \{X \in \mathfrak{g} \mid \theta(X) = X\}$$
 and $\mathfrak{p} = \{X \in \mathfrak{g} \mid \theta(X) = -X\}$. Then
 $\mathfrak{g} = \mathfrak{k} \oplus \mathfrak{p}$.

► Corresponds to the decomposition of $sl(n, \mathbb{R})$ into skew-symmetric and symmetric matrices.

► Let
$$\mathfrak{k} = \{X \in \mathfrak{g} \mid \theta(X) = X\}$$
 and $\mathfrak{p} = \{X \in \mathfrak{g} \mid \theta(X) = -X\}$. Then
 $\mathfrak{g} = \mathfrak{k} \oplus \mathfrak{p}$.

• Corresponds to the decomposition of $sl(n, \mathbb{R})$ into skew-symmetric and symmetric matrices.

▶ Let $\mathfrak{a} \simeq \mathbb{R}^n$ be a maximal abelian subspace of \mathfrak{p} , i.e., all diagonal matrices with trace zero.

► Let
$$\mathfrak{k} = \{X \in \mathfrak{g} \mid \theta(X) = X\}$$
 and $\mathfrak{p} = \{X \in \mathfrak{g} \mid \theta(X) = -X\}$. Then
 $\mathfrak{g} = \mathfrak{k} \oplus \mathfrak{p}$.

► Corresponds to the decomposition of $sl(n, \mathbb{R})$ into skew-symmetric and symmetric matrices.

▶ Let $\mathfrak{a} \simeq \mathbb{R}^n$ be a maximal abelian subspace of \mathfrak{p} , i.e., all diagonal matrices with trace zero.

▶ Then each $ad(X) : \mathfrak{g} \to \mathfrak{g}, Y \mapsto [X, Y]$, is semisimple and

$$\mathfrak{g} = \mathfrak{m} \oplus \mathfrak{a} \oplus \bigoplus_{lpha \in \Delta} \mathfrak{g}^{lpha}$$

where

► Let
$$\mathfrak{k} = \{X \in \mathfrak{g} \mid \theta(X) = X\}$$
 and $\mathfrak{p} = \{X \in \mathfrak{g} \mid \theta(X) = -X\}$. Then
 $\mathfrak{g} = \mathfrak{k} \oplus \mathfrak{p}$.

► Corresponds to the decomposition of $sl(n, \mathbb{R})$ into skew-symmetric and symmetric matrices.

▶ Let $\mathfrak{a} \simeq \mathbb{R}^n$ be a maximal abelian subspace of \mathfrak{p} , i.e., all diagonal matrices with trace zero.

▶ Then each $ad(X) : \mathfrak{g} \to \mathfrak{g}, Y \mapsto [X, Y]$, is semisimple and

$$\mathfrak{g}=\mathfrak{m}\oplus\mathfrak{a}\oplusigoplus_{lpha\in\Delta}\mathfrak{g}^lpha$$

where

•
$$\mathfrak{m} = \{Y \in \mathfrak{k} \mid (\forall X \in \mathfrak{a}) [X, Y] = 0\}$$

► Let
$$\mathfrak{k} = \{X \in \mathfrak{g} \mid \theta(X) = X\}$$
 and $\mathfrak{p} = \{X \in \mathfrak{g} \mid \theta(X) = -X\}$. Then
 $\mathfrak{g} = \mathfrak{k} \oplus \mathfrak{p}$.

► Corresponds to the decomposition of $sl(n, \mathbb{R})$ into skew-symmetric and symmetric matrices.

▶ Let $\mathfrak{a} \simeq \mathbb{R}^n$ be a maximal abelian subspace of \mathfrak{p} , i.e., all diagonal matrices with trace zero.

▶ Then each $ad(X) : \mathfrak{g} \to \mathfrak{g}, Y \mapsto [X, Y]$, is semisimple and

$$\mathfrak{g}=\mathfrak{m}\oplus\mathfrak{a}\oplusigoplus_{lpha\in\Delta}\mathfrak{g}^lpha$$

where

•
$$\mathfrak{m} = \{Y \in \mathfrak{k} \mid (\forall X \in \mathfrak{a}) [X, Y] = 0\}$$

• $\alpha \in \mathfrak{a}^* \setminus \{0\}$ and $\mathfrak{g}^{\alpha} = \{Y \in \mathfrak{g} \mid (\forall X \in \mathfrak{a}) [X, Y] = \alpha(X)Y\}$ the joint α -eigenspace

► Let
$$\mathfrak{k} = \{X \in \mathfrak{g} \mid \theta(X) = X\}$$
 and $\mathfrak{p} = \{X \in \mathfrak{g} \mid \theta(X) = -X\}$. Then
 $\mathfrak{g} = \mathfrak{k} \oplus \mathfrak{p}$.

► Corresponds to the decomposition of $sl(n, \mathbb{R})$ into skew-symmetric and symmetric matrices.

▶ Let $\mathfrak{a} \simeq \mathbb{R}^n$ be a maximal abelian subspace of \mathfrak{p} , i.e., all diagonal matrices with trace zero.

▶ Then each $ad(X) : \mathfrak{g} \to \mathfrak{g}, Y \mapsto [X, Y]$, is semisimple and

$$\mathfrak{g}=\mathfrak{m}\oplus\mathfrak{a}\oplusigoplus_{lpha\in\Delta}\mathfrak{g}^{lpha}$$

where

•
$$\mathfrak{m} = \{Y \in \mathfrak{k} \mid (\forall X \in \mathfrak{a}) [X, Y] = 0\}$$

• $\alpha \in \mathfrak{a}^* \setminus \{0\}$ and $\mathfrak{g}^{\alpha} = \{Y \in \mathfrak{g} \mid (\forall X \in \mathfrak{a}) [X, Y] = \alpha(X)Y\}$ the joint α -eigenspace

• $\Delta = \{ \alpha \in \mathfrak{a}^* \setminus \{0\} \mid \mathfrak{g}^\alpha \neq \{0\} \}.$

For $\alpha \in \Delta$ let $r_{\alpha} : \mathfrak{a} \to \mathfrak{a}$ be the reflection in the hyperplane $\alpha(X) = 0$ and let W be the finite reflection group - the Weyl group - generated by r_{α} , $\alpha \in \Delta$.

For $\alpha \in \Delta$ let $r_{\alpha} : \mathfrak{a} \to \mathfrak{a}$ be the reflection in the hyperplane $\alpha(X) = 0$ and let W be the finite reflection group - the Weyl group - generated by r_{α} , $\alpha \in \Delta$.

► The open cone $\mathfrak{a}^+ = \{X \in \mathfrak{a} \mid (\forall \alpha \in \Delta^+) \alpha(X) > 0\}$ is a fundamental domain for *W*. Set:

 $A = \exp(\mathfrak{a})$ and $A^+ = \exp(\mathfrak{a}^+)$

and note that $exp : \mathfrak{a} \to A$ is an analytic isomorphism.

For $\alpha \in \Delta$ let $r_{\alpha} : \mathfrak{a} \to \mathfrak{a}$ be the reflection in the hyperplane $\alpha(X) = 0$ and let W be the finite reflection group - the Weyl group - generated by r_{α} , $\alpha \in \Delta$.

► The open cone $\mathfrak{a}^+ = \{X \in \mathfrak{a} \mid (\forall \alpha \in \Delta^+) \alpha(X) > 0\}$ is a fundamental domain for *W*. Set:

 $A = \exp(\mathfrak{a})$ and $A^+ = \exp(\mathfrak{a}^+)$

and note that $exp : \mathfrak{a} \to A$ is an analytic isomorphism.

• Set
$$m_{\alpha} = \dim \mathfrak{g}^{\alpha}$$
 and $a^{\alpha} = e^{\alpha(\log a)}$

$$\delta(a) = \prod_{\alpha \in \Delta^+} |a^{\alpha} - a^{-\alpha}|^{m_{\alpha}}$$
 and $d\mu(a) = \delta(a)da$

For or standard example we have: $\blacktriangleright \Delta = \{\epsilon_{ij}\}$ where $\epsilon_{ij}(X) = x_i - x_j$.

► $\Delta = \{\epsilon_{ij}\}$ where $\epsilon_{ij}(X) = x_i - x_j$.

► W is the set of permutations $\sigma((x_{ii})) = (x_{\sigma(i)\sigma(i)})$.

► $\Delta = \{\epsilon_{ij}\}$ where $\epsilon_{ij}(X) = x_i - x_j$.

- ► W is the set of permutations $\sigma((x_{ii})) = (x_{\sigma(i)\sigma(i)})$.
- ► A^+ is the set of diagonal matrices (a_{ii}) with

 $a_{11} > a_{22} > \ldots > a_{nn}$

► $\Delta = \{\epsilon_{ij}\}$ where $\epsilon_{ij}(X) = x_i - x_j$.

- ► W is the set of permutations $\sigma((x_{ii})) = (x_{\sigma(i)\sigma(i)})$.
- ► A^+ is the set of diagonal matrices (a_{ii}) with

 $a_{11} > a_{22} > \ldots > a_{nn}$

$$\delta(a) = \prod_{i < j} \left(a_i / a_j - a_j / a_i \right) \, .$$

 $L^{2}(G/K)^{K} \ni f \mapsto f|_{A} \in L^{2}(A, |W|^{-1}d\mu)^{W} \simeq L^{2}(A^{+}, d\mu)$

is an unitary isomorphism.

 $L^{2}(G/K)^{K} \ni f \mapsto f|_{A} \in L^{2}(A, |W|^{-1}d\mu)^{W} \simeq L^{2}(A^{+}, d\mu)$

is an unitary isomorphism.

► This reduces the analysis of *K*-invariant functions on G/K to analysis of *W*-invariant functions on the Euclidean space $A \simeq \mathfrak{a}$.

 $L^{2}(G/K)^{K} \ni f \mapsto f|_{A} \in L^{2}(A, |W|^{-1}d\mu)^{W} \simeq L^{2}(A^{+}, d\mu)$

is an unitary isomorphism.

► This reduces the analysis of *K*-invariant functions on G/K to analysis of *W*-invariant functions on the Euclidean space $A \simeq \mathfrak{a}$.

► Next we consider the effect on the Heat equation. For that let H_1, \ldots, H_n be a orthonormal basis of a and $A^{\text{reg}} = \{a \in A \mid (\forall \alpha) a^{\alpha} \neq 1\}$.

$$L^{2}(G/K)^{K} \ni f \mapsto f|_{A} \in L^{2}(A, |W|^{-1}d\mu)^{W} \simeq L^{2}(A^{+}, d\mu)$$

is an unitary isomorphism.

► This reduces the analysis of *K*-invariant functions on G/K to analysis of *W*-invariant functions on the Euclidean space $A \simeq \mathfrak{a}$.

► Next we consider the effect on the Heat equation. For that let H_1, \ldots, H_n be a orthonormal basis of \mathfrak{a} and $A^{\mathsf{reg}} = \{a \in A \mid (\forall \alpha) a^{\alpha} \neq 1\}$.

▶ Let (\cdot, \cdot) be a *W*-invariant inner product on a (and by duality on \mathfrak{a}^*). Chose $h_{\alpha} \in \mathfrak{a}$ be such that $(X, h_{\alpha}) = \alpha(X)$, $(\alpha, \beta) = (H_{\alpha}, H_{\beta})$, and - for $\alpha \neq 0$ - $H_{\alpha} = \frac{2}{(\alpha, \alpha)}h_{\alpha}$.

$$L^{2}(G/K)^{K} \ni f \mapsto f|_{A} \in L^{2}(A, |W|^{-1}d\mu)^{W} \simeq L^{2}(A^{+}, d\mu)$$

is an unitary isomorphism.

► This reduces the analysis of *K*-invariant functions on G/K to analysis of *W*-invariant functions on the Euclidean space $A \simeq \mathfrak{a}$.

► Next we consider the effect on the Heat equation. For that let H_1, \ldots, H_n be a orthonormal basis of \mathfrak{a} and $A^{\mathsf{reg}} = \{a \in A \mid (\forall \alpha) a^{\alpha} \neq 1\}$.

► Let (\cdot, \cdot) be a *W*-invariant inner product on \mathfrak{a} (and by duality on \mathfrak{a}^*). Chose $h_{\alpha} \in \mathfrak{a}$ be such that $(X, h_{\alpha}) = \alpha(X)$, $(\alpha, \beta) = (H_{\alpha}, H_{\beta})$, and - for $\alpha \neq 0$ - $H_{\alpha} = \frac{2}{(\alpha, \alpha)}h_{\alpha}$.

▶ Define a *W*-invariant differential operator *L* on A^{reg} by

$$L = \sum_{j=1}^{n} \partial (H_j)^2 + \sum_{\alpha \in \Delta^+} m_\alpha \frac{1 + e^{-2\alpha}}{1 - e^{-2\alpha}} \partial (h_\alpha) \,.$$

 $(\Delta f)|_{A^{\rm reg}} = L(f|_{A^{\rm reg}})$

for all $f \in C^{\infty}(G/K)^K$.

 $(\Delta f)|_{A^{\rm reg}} = L(f|_{A^{\rm reg}})$

for all $f \in C^{\infty}(G/K)^K$.

► Hence the heat equation for *K*-invariant functions on G/K corresponds to the Cauchy problem on A^{reg} (or A^+)

(*)
$$Lu(a,t) = \partial_t u(a,t)$$
$$u(a,t) \xrightarrow{t \to 0^+} f(a) \in L^2(A^+, d\mu)$$

 $(\Delta f)|_{A^{\rm reg}} = L(f|_{A^{\rm reg}})$

for all $f \in C^{\infty}(G/K)^K$.

► Hence the heat equation for *K*-invariant functions on G/K corresponds to the Cauchy problem on A^{reg} (or A^+)

(*)
$$Lu(a,t) = \partial_t u(a,t)$$
$$u(a,t) \xrightarrow{t \to 0^+} f(a) \in L^2(A^+, d\mu)$$

► The important observation now is, that every thing in (*) is independent of G/K, it only depends on \mathfrak{a} , the set of roots Δ and the multiplicity function $m : \alpha \to m_{\alpha}!$

 $(\Delta f)|_{A^{\rm reg}} = L(f|_{A^{\rm reg}})$

for all $f \in C^{\infty}(G/K)^K$.

► Hence the heat equation for *K*-invariant functions on G/K corresponds to the Cauchy problem on A^{reg} (or A^+)

(*)
$$Lu(a,t) = \partial_t u(a,t)$$
$$u(a,t) \xrightarrow{t \to 0^+} f(a) \in L^2(A^+, d\mu)$$

► The important observation now is, that every thing in (*) is independent of G/K, it only depends on \mathfrak{a} , the set of roots Δ and the multiplicity function $m : \alpha \to m_{\alpha}!$

► So from now on $m : \Delta \to [0, \infty)$ is a Weyl group invariant function, defined on a root system Δ in a finite dimensional Euclidean space \mathfrak{a} .

 $(\Delta f)|_{A^{\rm reg}} = L(f|_{A^{\rm reg}})$

for all $f \in C^{\infty}(G/K)^K$.

► Hence the heat equation for *K*-invariant functions on G/K corresponds to the Cauchy problem on A^{reg} (or A^+)

(*)
$$\begin{array}{rcl} Lu(a,t) &=& \partial_t u(a,t)\\ u(a,t) & \stackrel{t \to 0^+}{\longrightarrow} & f(a) \in L^2(A^+,d\mu) \end{array}$$

► The important observation now is, that every thing in (*) is independent of G/K, it only depends on \mathfrak{a} , the set of roots Δ and the multiplicity function $m : \alpha \to m_{\alpha}!$

So from now on m : ∆ → [0,∞) is a Weyl group invariant function, defined on a root system ∆ in a finite dimensional Euclidean space a.
 The density function and the differential operator L is defined as before.

► The was done by E. Opdam and G. Heckman in a series of article, starting around 1988

► The was done by E. Opdam and G. Heckman in a series of article, starting around 1988

▶ What they did was to define for each $\lambda \in \mathfrak{a}_{\mathbb{C}}^*$ a function - the generalized hypergeometric functions - $\varphi_{\lambda} : A \to \mathbb{C}$ using the same expansion formula as for the spherical functions on G/K and show that

► The was done by E. Opdam and G. Heckman in a series of article, starting around 1988

▶ What they did was to define for each $\lambda \in \mathfrak{a}_{\mathbb{C}}^*$ a function - the generalized hypergeometric functions - $\varphi_{\lambda} : A \to \mathbb{C}$ using the same expansion formula as for the spherical functions on G/K and show that

• φ_{λ} extends to a holomorphic function on a complex neighborhood of A in $A_{\mathbb{C}} = \mathfrak{a}_{\mathbb{C}}/\mathbb{Z}\{\pi i H_{\alpha} \mid \alpha \in \Delta\};$

► The was done by E. Opdam and G. Heckman in a series of article, starting around 1988

▶ What they did was to define for each $\lambda \in \mathfrak{a}_{\mathbb{C}}^*$ a function - the generalized hypergeometric functions - $\varphi_{\lambda} : A \to \mathbb{C}$ using the same expansion formula as for the spherical functions on G/K and show that

- φ_{λ} extends to a holomorphic function on a complex neighborhood of A in $A_{\mathbb{C}} = \mathfrak{a}_{\mathbb{C}}/\mathbb{Z}\{\pi i H_{\alpha} \mid \alpha \in \Delta\};$
- $\varphi_{\lambda} = \varphi_{\mu}$ if and only if there exists a $w \in W$ such that $w\lambda = \mu$;

► The was done by E. Opdam and G. Heckman in a series of article, starting around 1988

▶ What they did was to define for each $\lambda \in \mathfrak{a}_{\mathbb{C}}^*$ a function - the generalized hypergeometric functions - $\varphi_{\lambda} : A \to \mathbb{C}$ using the same expansion formula as for the spherical functions on G/K and show that

- φ_{λ} extends to a holomorphic function on a complex neighborhood of A in $A_{\mathbb{C}} = \mathfrak{a}_{\mathbb{C}}/\mathbb{Z}\{\pi i H_{\alpha} \mid \alpha \in \Delta\};$
- $\varphi_{\lambda} = \varphi_{\mu}$ if and only if there exists a $w \in W$ such that $w\lambda = \mu$;
- $L\varphi_{\lambda} = ((\lambda, \lambda) (\rho, \rho))\varphi_{\lambda}$ where $2\rho = \sum_{\alpha \in \Delta^{+}} m_{\alpha}\alpha$.

► The was done by E. Opdam and G. Heckman in a series of article, starting around 1988

▶ What they did was to define for each $\lambda \in \mathfrak{a}_{\mathbb{C}}^*$ a function - the generalized hypergeometric functions - $\varphi_{\lambda} : A \to \mathbb{C}$ using the same expansion formula as for the spherical functions on G/K and show that

- φ_{λ} extends to a holomorphic function on a complex neighborhood of A in $A_{\mathbb{C}} = \mathfrak{a}_{\mathbb{C}}/\mathbb{Z}\{\pi i H_{\alpha} \mid \alpha \in \Delta\};$
- $\varphi_{\lambda} = \varphi_{\mu}$ if and only if there exists a $w \in W$ such that $w\lambda = \mu$;
- $L\varphi_{\lambda} = ((\lambda, \lambda) (\rho, \rho))\varphi_{\lambda}$ where $2\rho = \sum_{\alpha \in \Delta^{+}} m_{\alpha}\alpha$.
- Growth estimates for $\varphi_{\lambda}(a \exp iX)$ for $X \in \Omega$ where

 $\Omega = \{ X \in \mathfrak{a} \mid (\forall \alpha \in \Delta) \mid \alpha(X) \mid < \pi/2 \}.$

Define the Hypergeometric Fourier transform by

$$\mathcal{F}f(\lambda) = \hat{f}(\lambda) = \int_A f(a)\varphi_{-i\lambda}(a) \, d\mu = |W| \int_{A^+} f(a)\varphi_{-i\lambda}(a) \, d\mu \, .$$

Define the Hypergeometric Fourier transform by

$$\mathcal{F}f(\lambda) = \hat{f}(\lambda) = \int_A f(a)\varphi_{-i\lambda}(a) \, d\mu = |W| \int_{A^+} f(a)\varphi_{-i\lambda}(a) \, d\mu \, .$$

► Define $c : \mathfrak{a}_{\mathbb{C}}^* \to \mathbb{C}$ by the same formula as the Harish-Chandra *c*-function (product and quotients of Γ -functions) and set $d\nu(\lambda) = |c(i\lambda)|^{-1} d\lambda$.

Define the Hypergeometric Fourier transform by

$$\mathcal{F}f(\lambda) = \hat{f}(\lambda) = \int_A f(a)\varphi_{-i\lambda}(a) \, d\mu = |W| \int_{A^+} f(a)\varphi_{-i\lambda}(a) \, d\mu \, .$$

► Define $c : \mathfrak{a}_{\mathbb{C}}^* \to \mathbb{C}$ by the same formula as the Harish-Chandra *c*-function (product and quotients of Γ -functions) and set $d\nu(\lambda) = |c(i\lambda)|^{-1} d\lambda$.

Theorem (Heckmann-Opdam) The Fourier transform extends to an unitary isomorphism

$$L^2(A,d\mu)^W \simeq L^2(\mathfrak{a}^*,d\nu)^W$$

Furthermore, if $f \in C_c^{\infty}(A)^W$ then

$$f(a) = |W|^{-1} \int_{\mathfrak{a}^*} \hat{f}(\lambda) \varphi_{i\lambda}(a) \, d\nu(\lambda)$$

and

$$\mathcal{F}(Lf)(\lambda) = -(|\lambda|^2 + |\rho|^2)\mathcal{F}(f)(\lambda) \,.$$

$$\begin{array}{c} L^{2}(A,d\mu)^{W} \longrightarrow L^{2}(A,da)^{\tau(W)} \\ F \\ \downarrow \\ L^{2}(\mathfrak{a}^{*},d\nu)^{W} \xrightarrow{\Psi} L^{2}(\mathfrak{a}^{*},d\lambda)^{\tau(W)} \end{array}$$

$$\begin{array}{c} L^2(A, d\mu)^W \longrightarrow L^2(A, da)^{\tau(W)} \\ & \swarrow \\ \mathcal{F} \\ \downarrow \\ L^2(\mathfrak{a}^*, d\nu)^W \longrightarrow L^2(\mathfrak{a}^*, d\lambda)^{\tau(W)} \end{array}$$

• \mathcal{F}_A is the usual Fourier transform on A: $\mathcal{F}_A(f)(\lambda) = \int_A f(a) a^{-i\lambda} da$

$$\begin{array}{c} L^2(A, d\mu)^W \longrightarrow L^2(A, da)^{\tau(W)} \\ F \\ \downarrow \\ L^2(\mathfrak{a}^*, d\nu)^W \longrightarrow L^2(\mathfrak{a}^*, d\lambda)^{\tau(W)} \end{array}$$

- \mathcal{F}_A is the usual Fourier transform on A: $\mathcal{F}_A(f)(\lambda) = \int_A f(a) a^{-i\lambda} da$
- Ψ is the linear map $F \mapsto c(-i\lambda)^{-1}F(\lambda)$

$$\begin{array}{c} L^2(A, d\mu)^W \longrightarrow L^2(A, da)^{\tau(W)} \\ F \\ \downarrow \\ L^2(\mathfrak{a}^*, d\nu)^W \longrightarrow L^2(\mathfrak{a}^*, d\lambda)^{\tau(W)} \end{array}$$

- \mathcal{F}_A is the usual Fourier transform on A: $\mathcal{F}_A(f)(\lambda) = \int_A f(a) a^{-i\lambda} da$
- Ψ is the linear map $F \mapsto c(-i\lambda)^{-1}F(\lambda)$
- τ is the action $\tau(w)F(\lambda) = c(iw^{-1}\lambda)/c(i\lambda) F(w^{-1}\lambda)$

$$\begin{array}{c} L^2(A, d\mu)^W \longrightarrow L^2(A, da)^{\tau(W)} \\ F \\ \downarrow \\ L^2(\mathfrak{a}^*, d\nu)^W \longrightarrow L^2(\mathfrak{a}^*, d\lambda)^{\tau(W)} \end{array}$$

- \mathcal{F}_A is the usual Fourier transform on A: $\mathcal{F}_A(f)(\lambda) = \int_A f(a) a^{-i\lambda} da$
- Ψ is the linear map $F \mapsto c(-i\lambda)^{-1}F(\lambda)$
- τ is the action $\tau(w)F(\lambda) = c(iw^{-1}\lambda)/c(i\lambda) F(w^{-1}\lambda)$
- \bullet and the isometry Λ

$$\begin{array}{c|c} L^{2}(A,d\mu)^{W} & \xrightarrow{\Lambda} & L^{2}(A,da)^{\tau(W)} \\ & & \downarrow \\ \mathcal{F}_{\downarrow} & & \downarrow \\ L^{2}(\mathfrak{a}^{*},d\nu)^{W} & \xrightarrow{\Psi} & L^{2}(\mathfrak{a}^{*},d\lambda)^{\tau(W)} \end{array}$$

• \mathcal{F}_A is the usual Fourier transform on A: $\mathcal{F}_A(f)(\lambda) = \int_A f(a) a^{-i\lambda} da$

- Ψ is the linear map $F \mapsto c(-i\lambda)^{-1}F(\lambda)$
- τ is the action $\tau(w)F(\lambda) = c(iw^{-1}\lambda)/c(i\lambda) F(w^{-1}\lambda)$
- \bullet and the isometry Λ

$$\begin{array}{c|c} L^{2}(A,d\mu)^{W} & \xrightarrow{\Lambda} & L^{2}(A,da)^{\tau(W)} \\ & & \downarrow \mathcal{F}_{A} \\ L^{2}(\mathfrak{a}^{*},d\nu)^{W} & \xrightarrow{\Psi} & L^{2}(\mathfrak{a}^{*},d\lambda)^{\tau(W)} \end{array}$$

• \mathcal{F}_A is the usual Fourier transform on A: $\mathcal{F}_A(f)(\lambda) = \int_A f(a) a^{-i\lambda} da$

- Ψ is the linear map $F \mapsto c(-i\lambda)^{-1}F(\lambda)$
- τ is the action $\tau(w)F(\lambda) = c(iw^{-1}\lambda)/c(i\lambda) F(w^{-1}\lambda)$
- \bullet and the isometry Λ is constructed so as to make the diagram commutative.

$$\begin{array}{c|c} L^{2}(A,d\mu)^{W} & \xrightarrow{\Lambda} & L^{2}(A,da)^{\tau(W)} \\ & & \downarrow \mathcal{F}_{A} \\ L^{2}(\mathfrak{a}^{*},d\nu)^{W} & \xrightarrow{\Psi} & L^{2}(\mathfrak{a}^{*},d\lambda)^{\tau(W)} \end{array}$$

• \mathcal{F}_A is the usual Fourier transform on A: $\mathcal{F}_A(f)(\lambda) = \int_A f(a) a^{-i\lambda} da$

- Ψ is the linear map $F \mapsto c(-i\lambda)^{-1}F(\lambda)$
- τ is the action $\tau(w)F(\lambda) = c(iw^{-1}\lambda)/c(i\lambda)F(w^{-1}\lambda)$

and the isometry Λ is constructed so as to make the diagram commutative.
 Then

$$\Lambda(Lf)(a) = (\Delta_A - |\rho|^2)\Lambda(f)(a)$$

reducing the our problem to a shifted heat equation on $A \simeq \mathfrak{a}$:

$$(\Delta_A - |\rho|^2)u(a, t) = \partial_t u(x, t)$$

Theorem (Ó+S, 2005) 1) The solution of the heat equation is given by

$$u(a,t) = |W|^{-2} \int_{\mathfrak{a}^*} e^{-t(|\lambda|^2 + |\rho|^2)} \hat{f}(\lambda) \varphi_{i\lambda}(a) \, d\nu(\lambda) \qquad f \in L^2(A)^W.$$

Theorem (Ó+S, 2005) 1) The solution of the heat equation is given by

$$u(a,t) = |W|^{-2} \int_{\mathfrak{a}^*} e^{-t(|\lambda|^2 + |\rho|^2)} \hat{f}(\lambda) \varphi_{i\lambda}(a) \, d\nu(\lambda) \qquad f \in L^2(A)^W.$$

Let \mathcal{H}_t be the space of holomorphic function on $F : A \exp i\Omega \to \mathbb{C}$ such that $\Lambda(F)$ extends to a $\tau(W)$ -invariant holomorphic function on $\mathfrak{a}_{\mathbb{C}}$ such that

$$||F||_t^2 = e^{2t|\rho|^2} \int_{\mathfrak{a}_{\mathbb{C}}} |\Lambda F(X+iY)|^2 d\mu_t (X+iY) < \infty.$$

Then \mathcal{H}_t is a Hilbert space and

$$H_t: L^2(A)^W \to \mathcal{H}_t$$

is an unitary isomorphism. Here μ_t is the heat measure on the Euclidean space \mathfrak{a} .

Assume $m_{\alpha} = 2$ for all α , i.e., $(\mathfrak{a}, \Delta, m)$ corresponds to a Riemannian symmetric space G/K with G complex.

Assume $m_{\alpha} = 2$ for all α , i.e., $(\mathfrak{a}, \Delta, m)$ corresponds to a Riemannian symmetric space G/K with G complex. Then, $\delta(a)^{1/2} = \prod_{\alpha \in \Delta^+} (a^{\alpha} - a^{-\alpha})$ has a holomorphic extension to $A_{\mathbb{C}}$ and $\Lambda f(a) = \delta(a)^{1/2} f(a)$.

Assume $m_{\alpha} = 2$ for all α , i.e., $(\mathfrak{a}, \Delta, m)$ corresponds to a Riemannian symmetric space G/K with G complex. Then, $\delta(a)^{1/2} = \prod_{\alpha \in \Delta^+} (a^{\alpha} - a^{-\alpha})$ has a holomorphic extension to $A_{\mathbb{C}}$ and $\Lambda f(a) = \delta(a)^{1/2} f(a)$.

Theorem (Hall+Mitchell) Assume that *G* is complex. Let $f \in L^2(G/K)^K$, and let $u(x,t) = H_t f(x)$ be the solution to the heat equation. The map $X \mapsto \delta(\exp X)^{1/2} u(\exp X, t), X \in \mathfrak{a}$, has a holomorphic extension to $\mathfrak{a}_{\mathbb{C}}$ such that

$$||f||^{2} = \int_{\mathfrak{a}_{\mathbb{C}}} |(\delta^{1/2}u)(X+iY,t)|^{2} e^{2t|\rho|^{2}} d\mu_{t}(X+iY)$$

Assume $m_{\alpha} = 2$ for all α , i.e., $(\mathfrak{a}, \Delta, m)$ corresponds to a Riemannian symmetric space G/K with G complex. Then, $\delta(a)^{1/2} = \prod_{\alpha \in \Delta^+} (a^{\alpha} - a^{-\alpha})$ has a holomorphic extension to $A_{\mathbb{C}}$ and $\Lambda f(a) = \delta(a)^{1/2} f(a)$.

Theorem (Hall+Mitchell) Assume that *G* is complex. Let $f \in L^2(G/K)^K$, and let $u(x,t) = H_t f(x)$ be the solution to the heat equation. The map $X \mapsto \delta(\exp X)^{1/2} u(\exp X, t), X \in \mathfrak{a}$, has a holomorphic extension to $\mathfrak{a}_{\mathbb{C}}$ such that

$$||f||^{2} = \int_{\mathfrak{a}_{\mathbb{C}}} |(\delta^{1/2}u)(X+iY,t)|^{2} e^{2t|\rho|^{2}} d\mu_{t}(X+iY)$$

Conversely, any meromorphic function u(Z) which is invariant under W and which satisfies

$$\int_{\mathfrak{a}_{\mathbb{C}}} |(\delta^{1/2}u)(X+iY)|^2 e^{2t|\rho|^2} \, d\mu_t(X+iY) < \infty$$

is the Segal-Bargmann tranform $H_t f$ for some $f \in L^2(G/K)^K$.