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1. The Heat Equation

◮ M a Riemannian manifold
◮ ∆ the Laplace operator

∆ =
1√
g

∑

k

∂k

∑

i

gik√g∂i .

where g = det(gij)
◮ The Heat equation is

∆u(x, t) = ∂tu(x, t)

lim
t→o+

u(x, t) = f(x)

Where f is in L2(M) or a distribution.
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◮ The solution can be written as

u(x, t) = et∆f(x) =: Htf(x) .
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u(x, t) = et∆f(x) =: Htf(x) .

◮ But more importantly, there exists a function ht(x, y), the heat kernel,
such that:

• ht(x, y) = ht(y, x) ≥ 0;
• dµt(y) = ht(x, y)dy is a probability measure on M ;

• Htf(x) =

∫

M

f(y)ht(x, y) dy;
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◮ The solution can be written as

u(x, t) = et∆f(x) =: Htf(x) .

◮ But more importantly, there exists a function ht(x, y), the heat kernel,
such that:

• ht(x, y) = ht(y, x) ≥ 0;
• dµt(y) = ht(x, y)dy is a probability measure on M ;

• Htf(x) =

∫

M

f(y)ht(x, y) dy;

◮ In some special cases there is a “natural” complexification MC of M , such
that the heat kernel x 7→ ht(x, y) and the function Htf extends to a
holomorphic function on MC. The task is then to define a Hilbert space
Ht(MC) of holomorphic functions on MC such that the transfrom

L2(M) ∋ f 7→ Htf ∈ Ht(MC)

becomes an unitary isomorphism.
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2. The case M = R
n

◮ As a motivation - and as a tool for our more general result - let us start
with the case M = Rn.
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◮ As a motivation - and as a tool for our more general result - let us start
with the case M = Rn.
◮ The first simple remark is, that in general the heat kernel is invariant
under isometries, i.e. if ϕ : M → M is an isometry, then

ht(x, y) = ht(ϕ(x), ϕ(y))

It follows that the heat kernel on R
n is a function of one variable

ht(x, y) = ht(x − y) .
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2. The case M = R
n

◮ As a motivation - and as a tool for our more general result - let us start
with the case M = Rn.
◮ The first simple remark is, that in general the heat kernel is invariant
under isometries, i.e. if ϕ : M → M is an isometry, then

ht(x, y) = ht(ϕ(x), ϕ(y))

It follows that the heat kernel on R
n is a function of one variable

ht(x, y) = ht(x − y) .

◮ By definition, the heat kernel is a solution to the heat equation with f = δ0.
Taking the Fourier transform (in the space variable x) the heat equation is
transformed into the simple differential equation in the time variable:

∂tĥt(λ) = −|λ|2ĥt(λ), lim
t→0+

ĥt(λ) = (2π)−n/2



- p. 5/19

◮ This gives ĥt(λ) = (2π)−n/2e−|λ|2t .
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◮ This gives ĥt(λ) = (2π)−n/2e−|λ|2t .

◮ By taking the inverse Fourier transform:

ht(x) = (4πt)−n/2e−|x|2/4t .
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◮ This gives ĥt(λ) = (2π)−n/2e−|λ|2t .

◮ By taking the inverse Fourier transform:

ht(x) = (4πt)−n/2e−|x|2/4t .

◮ It is clear from this explicit formula, that

ht(z) = (4πt)−n/2e−z2/4t , z2 = z2
1 + . . . + z2

n

gives a holomorphic extension of the heat kernel to C
n ≃ T (Rn)∗, the

complexification of Rn.
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◮ This gives a holomorphic extension of Htf :

Htf(z) = f ∗ ht(z) = (4πt)−n/2

∫

Rn

f(y)e−(z−y)2/4t dy
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◮ This gives a holomorphic extension of Htf :

Htf(z) = f ∗ ht(z) = (4πt)−n/2

∫

Rn

f(y)e−(z−y)2/4t dy

◮ To describe the Hilbert space Ht(C
n) define a positive weight function by

ωR
n

t (x) = ωt(x) = (2πt)−n/2e−x2/2t = ht/2(x)
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◮ This gives a holomorphic extension of Htf :

Htf(z) = f ∗ ht(z) = (4πt)−n/2

∫
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f(y)e−(z−y)2/4t dy

◮ To describe the Hilbert space Ht(C
n) define a positive weight function by

ωR
n

t (x) = ωt(x) = (2πt)−n/2e−x2/2t = ht/2(x)

and a measure on C
n by
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|F (x + iy)|2 dµt < ∞} .



- p. 6/19

◮ This gives a holomorphic extension of Htf :

Htf(z) = f ∗ ht(z) = (4πt)−n/2

∫

Rn

f(y)e−(z−y)2/4t dy

◮ To describe the Hilbert space Ht(C
n) define a positive weight function by

ωR
n

t (x) = ωt(x) = (2πt)−n/2e−x2/2t = ht/2(x)

and a measure on C
n by

dµt(x + iy) = ωt(y) dxdy .

and set

Ht(C
n) = {F ∈ O(Cn) | ‖F‖2

t :=

∫

Cn

|F (x + iy)|2 dµt < ∞} .

◮ Note, that we only put a weight on the fibers x + iRn. If one wants to
consider the infinite dimensional case, it is necessary to weight both
variables.
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Theorem (Segal-Bargmann)
1. Ht(C

n) is a Hilbert space with continuous point evaluation.

2. We have Ht(L
2(Rn)) ⊆ Ht(C

n) and the map Ht : L2(Rn) → Ht(C
n) is a

unitary isomorphism.

3. If f ∈ L2(Rn), then

f(x) =

∫

Rn

Htf(x + iy)ht(y) dy .
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◮ The obvious problem in the general case is: What is MC?
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Theorem (Segal-Bargmann)
1. Ht(C

n) is a Hilbert space with continuous point evaluation.

2. We have Ht(L
2(Rn)) ⊆ Ht(C

n) and the map Ht : L2(Rn) → Ht(C
n) is a

unitary isomorphism.

3. If f ∈ L2(Rn), then

f(x) =

∫

Rn

Htf(x + iy)ht(y) dy .

◮ The obvious problem in the general case is: What is MC?

◮ And: What is a natural generalization of the measure dµt?
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◮ One class of spaces where such a complexification exists are the
Riemannian symmetric spaces G/K, where G is a connected and
semisimple Lie group.
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Riemannian symmetric spaces G/K, where G is a connected and
semisimple Lie group.
• B. Hall in 1997 for compact Lie groups and then M.B. Stenzel in 1999 for
symmetric spaces M = G/K, where G is compact. Here
MC = GC/KC ≃ T (G/K)∗.
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◮ One class of spaces where such a complexification exists are the
Riemannian symmetric spaces G/K, where G is a connected and
semisimple Lie group.
• B. Hall in 1997 for compact Lie groups and then M.B. Stenzel in 1999 for
symmetric spaces M = G/K, where G is compact. Here
MC = GC/KC ≃ T (G/K)∗.
• This was put in a more general/abstract framework by G. Ólafsson and B.
Ørsted using polarization of the restriction map (→ quantization)

O(MC) ∋ F 7→ χF |G/K ∈ L2(M)

• B. Hall and J.J. Mitchell in 2004 the case M = G/K where G is complex
or of rank one.
• Then B. Krötz, R. Stanton and G. Ólafsson the general case G/K in 2005.
◮ Here, I would like to discuss a new joint work with H. Schlichtkrull
(Copenhagen) on the K-invariant functions on G/K and some
generalizations. To appear in Adv. Math.
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3. K-invariant functions on G/K and the

Opdam-Heckmann theory
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3. K-invariant functions on G/K and the

Opdam-Heckmann theory

◮ G a connected, non-compact semisimple Lie group with finite center,
K ⊂ G a maximal compact subgroup, and θ : G → G the corresponding
Cartan involution:

K = Gθ = {g ∈ G | θ(g) = g} .

Denote the corresponding involution on the Lie algebra g by the same letter
θ.
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3. K-invariant functions on G/K and the

Opdam-Heckmann theory

◮ G a connected, non-compact semisimple Lie group with finite center,
K ⊂ G a maximal compact subgroup, and θ : G → G the corresponding
Cartan involution:

K = Gθ = {g ∈ G | θ(g) = g} .

Denote the corresponding involution on the Lie algebra g by the same letter
θ.
◮ Think of G = SL(n, R), K = SO(n) and θ(g) = (g−1)T . The corresponding
involution on the Lie algebra

sl(n, R) = {X ∈ Mn(R) | Tr(X) = 0}

is simply θ(X) = −XT .
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◮ Let k = {X ∈ g | θ(X) = X} and p = {X ∈ g | θ(X) = −X}. Then

g = k ⊕ p .
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◮ Let k = {X ∈ g | θ(X) = X} and p = {X ∈ g | θ(X) = −X}. Then

g = k ⊕ p .

◮ Corresponds to the decomposition of sl(n, R) into skew-symmetric and
symmetric matrices.
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◮ Corresponds to the decomposition of sl(n, R) into skew-symmetric and
symmetric matrices.
◮ Let a ≃ R

n be a maximal abelian subspace of p, i.e., all diagonal matrices
with trace zero.
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⊕

α∈∆

gα

where
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◮ Let k = {X ∈ g | θ(X) = X} and p = {X ∈ g | θ(X) = −X}. Then

g = k ⊕ p .

◮ Corresponds to the decomposition of sl(n, R) into skew-symmetric and
symmetric matrices.
◮ Let a ≃ R

n be a maximal abelian subspace of p, i.e., all diagonal matrices
with trace zero.
◮ Then each ad(X) : g → g, Y 7→ [X, Y ], is semisimple and

g = m ⊕ a ⊕
⊕

α∈∆

gα

where

• m = {Y ∈ k | (∀X ∈ a) [X, Y ] = 0}
• α ∈ a∗ \ {0} and gα = {Y ∈ g | (∀X ∈ a) [X, Y ] = α(X)Y } the joint
α-eigenspace
• ∆ = {α ∈ a∗ \ {0} | gα 6= {0}} .
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• Fix Z ∈ a such that α(Z) 6= 0 for all α ∈ ∆. Then ∆+ = {α | α(Z) > 0} is a
positive system of roots.
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◮ For α ∈ ∆ let rα : a → a be the reflection in the hyperplane α(X) = 0 and
let W be the finite reflection group - the Weyl group - generated by rα,
α ∈ ∆.
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positive system of roots.

◮ For α ∈ ∆ let rα : a → a be the reflection in the hyperplane α(X) = 0 and
let W be the finite reflection group - the Weyl group - generated by rα,
α ∈ ∆.

◮ The open cone a+ = {X ∈ a | (∀α ∈ ∆+) α(X) > 0} is a fundamental
domain for W . Set:

A = exp(a) and A+ = exp(a+)

and note that exp : a → A is an analytic isomorphism.
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• Fix Z ∈ a such that α(Z) 6= 0 for all α ∈ ∆. Then ∆+ = {α | α(Z) > 0} is a
positive system of roots.

◮ For α ∈ ∆ let rα : a → a be the reflection in the hyperplane α(X) = 0 and
let W be the finite reflection group - the Weyl group - generated by rα,
α ∈ ∆.

◮ The open cone a+ = {X ∈ a | (∀α ∈ ∆+) α(X) > 0} is a fundamental
domain for W . Set:

A = exp(a) and A+ = exp(a+)

and note that exp : a → A is an analytic isomorphism.

◮ Set mα = dimgα and aα = eα(log a)

δ(a) =
∏

α∈∆+

|aα − a−α|mα and dµ(a) = δ(a)da
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For or standard example we have:
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For or standard example we have:
◮ ∆ = {ǫij} where ǫij(X) = xi − xj .

◮ W is the set of permutations σ((xii)) = (xσ(i)σ(i)).

◮ A+ is the set of diagonal matrices (aii) with

a11 > a22 > . . . > ann

◮ and
δ(a) =

∏

i<j

(ai/aj − aj/ai) .
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Theorem We have G = KAK and the restriction map

L2(G/K)K ∋ f 7→ f |A ∈ L2(A, |W |−1dµ)W ≃ L2(A+, dµ)

is an unitary isomorphism.
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Theorem We have G = KAK and the restriction map

L2(G/K)K ∋ f 7→ f |A ∈ L2(A, |W |−1dµ)W ≃ L2(A+, dµ)

is an unitary isomorphism.

◮ This reduces the analysis of K-invariant functions on G/K to analysis of
W -invariant functions on the Euclidean space A ≃ a.
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◮ Next we consider the effect on the Heat equation. For that let H1, . . . , Hn

be a orthonormal basis of a and Areg = {a ∈ A | (∀α) aα 6= 1}.
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Hα = 2

(α,α)hα.
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Theorem We have G = KAK and the restriction map

L2(G/K)K ∋ f 7→ f |A ∈ L2(A, |W |−1dµ)W ≃ L2(A+, dµ)

is an unitary isomorphism.

◮ This reduces the analysis of K-invariant functions on G/K to analysis of
W -invariant functions on the Euclidean space A ≃ a.
◮ Next we consider the effect on the Heat equation. For that let H1, . . . , Hn

be a orthonormal basis of a and Areg = {a ∈ A | (∀α) aα 6= 1}.
◮ Let (·, ·) be a W -invariant inner product on a (and by duality on a∗). Chose
hα ∈ a be such that (X, hα) = α(X), (α, β) = (Hα, Hβ), and - for α 6= 0 -
Hα = 2

(α,α)hα.
◮ Define a W -invariant differential operator L on Areg by

L =
n∑

j=1

∂(Hj)
2 +

∑

α∈∆+

mα
1 + e−2α

1 − e−2α
∂(hα) .
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Theorem (The radial part of the Laplacian) We have

(∆f)|Areg = L(f |Areg)

for all f ∈ C∞(G/K)K .
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◮ Hence the heat equation for K-invariant functions on G/K corresponds to
the Cauchy problem on Areg (or A+)

(*)
Lu(a, t) = ∂tu(a, t)

u(a, t)
t→0+

−→ f(a) ∈ L2(A+, dµ)
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◮ So from now on m : ∆ → [0,∞) is a Weyl group invariant function,
defined on a root system ∆ in a finite dimensional Euclidean space a.
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Theorem (The radial part of the Laplacian) We have

(∆f)|Areg = L(f |Areg)

for all f ∈ C∞(G/K)K .

◮ Hence the heat equation for K-invariant functions on G/K corresponds to
the Cauchy problem on Areg (or A+)

(*)
Lu(a, t) = ∂tu(a, t)

u(a, t)
t→0+

−→ f(a) ∈ L2(A+, dµ)

◮ The important observation now is, that every thing in (*) is independent of
G/K, it only depends on a, the set of roots ∆ and the multiplicity function
m : α → mα!

◮ So from now on m : ∆ → [0,∞) is a Weyl group invariant function,
defined on a root system ∆ in a finite dimensional Euclidean space a.
◮ The density function and the differential operator L is defined as before.
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◮ What is missing is a nice Fourier analysis on a with respect to the
measure dµ. In particular: What are the special functions that generalize
the exponential functions x 7→ eλ(x) = ei(λ,x)?
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◮ What is missing is a nice Fourier analysis on a with respect to the
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• ϕλ extends to a holomorphic function on a complex neighborhood of A in
AC = aC/Z{πiHα | α ∈ ∆};
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α∈∆+ mαα.
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◮ What is missing is a nice Fourier analysis on a with respect to the
measure dµ. In particular: What are the special functions that generalize
the exponential functions x 7→ eλ(x) = ei(λ,x)?

◮ The was done by E. Opdam and G. Heckman in a series of article,
starting around 1988

◮ What they did was to define for each λ ∈ a∗
C

a function - the generalized
hypergeometric functions - ϕλ : A → C using the same expansion formula
as for the spherical functions on G/K and show that

• ϕλ extends to a holomorphic function on a complex neighborhood of A in
AC = aC/Z{πiHα | α ∈ ∆};
• ϕλ = ϕµ if and only if there exists a w ∈ W such that wλ = µ;
• Lϕλ = ((λ, λ) − (ρ, ρ))ϕλ where 2ρ =

∑
α∈∆+ mαα.

• Growth estimates for ϕλ(a exp iX) for X ∈ Ω where

Ω = {X ∈ a | (∀α ∈ ∆) |α(X)| < π/2} .
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Define the Hypergeometric Fourier transform by

Ff(λ) = f̂(λ) =

∫

A

f(a)ϕ−iλ(a) dµ = |W |
∫

A+

f(a)ϕ−iλ(a) dµ .
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Define the Hypergeometric Fourier transform by

Ff(λ) = f̂(λ) =

∫

A

f(a)ϕ−iλ(a) dµ = |W |
∫

A+

f(a)ϕ−iλ(a) dµ .

◮ Define c : a∗
C
→ C by the same formula as the Harish-Chandra c-function

(product and quotients of Γ-functions) and set dν(λ) = |c(iλ)|−1 dλ.

Theorem (Heckmann-Opdam) The Fourier transform extends to an unitary
isomorphism

L2(A, dµ)W ≃ L2(a∗, dν)W .

Furthermore, if f ∈ C∞
c (A)W then

f(a) = |W |−1

∫

a
∗

f̂(λ)ϕiλ(a) dν(λ)

and
F(Lf)(λ) = −(|λ|2 + |ρ|2)F(f)(λ) .
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Let us put this together in a commutative diagram:

L2(A, dµ)W

F

��

// L2(A, da)τ(W )

FA

��

L2(a∗, dν)W
Ψ

// L2(a∗, dλ)τ(W )
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Let us put this together in a commutative diagram:

L2(A, dµ)W

F

��

Λ
// L2(A, da)τ(W )

FA

��

L2(a∗, dν)W
Ψ

// L2(a∗, dλ)τ(W )

• FA is the usual Fourier transform on A: FA(f)(λ) =
∫

A
f(a)a−iλ da

• Ψ is the linear map F 7→ c(−iλ)−1F (λ)

• τ is the action τ(w)F (λ) = c(iw−1λ)/c(iλ) F (w−1λ)
• and the isometry Λ is constructed so as to make the diagram commutative.
◮ Then

Λ(Lf)(a) = (∆A − |ρ|2)Λ(f)(a)

reducing the our problem to a shifted heat equation on A ≃ a:

(∆A − |ρ|2)u(a, t) = ∂tu(x, t)
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Theorem (Ó+S, 2005) 1) The solution of the heat equation is given by

u(a, t) = |W |−2

∫

a
∗

e−t(|λ|2+|ρ|2)f̂(λ)ϕiλ(a) dν(λ) f ∈ L2(A)W .
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Theorem (Ó+S, 2005) 1) The solution of the heat equation is given by

u(a, t) = |W |−2

∫

a
∗

e−t(|λ|2+|ρ|2)f̂(λ)ϕiλ(a) dν(λ) f ∈ L2(A)W .

Let Ht be the space of holomorphic function on F : A exp iΩ → C such that
Λ(F ) extends to a τ(W )-invariant holomorphic function on aC such that

‖F‖2
t = e2t|ρ|2

∫

aC

|ΛF (X + iY )|2 dµt(X + iY ) < ∞ .

Then Ht is a Hilbert space and

Ht : L2(A)W → Ht

is an unitary isomorphism. Here µt is the heat measure on the Euclidean
space a.
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Assume mα = 2 for all α, i.e., (a, ∆, m) corresponds to a Riemannian
symmetric space G/K with G complex.
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has a holomorphic extension to AC and Λf(a) = δ(a)1/2f(a).
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Theorem (Hall+Mitchell) Assume that G is complex. Let f ∈ L2(G/K)K ,
and let u(x, t) = Htf(x) be the solution to the heat equation. The map
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Assume mα = 2 for all α, i.e., (a, ∆, m) corresponds to a Riemannian
symmetric space G/K with G complex. Then, δ(a)1/2 =

∏
α∈∆+(aα − a−α)

has a holomorphic extension to AC and Λf(a) = δ(a)1/2f(a).

Theorem (Hall+Mitchell) Assume that G is complex. Let f ∈ L2(G/K)K ,
and let u(x, t) = Htf(x) be the solution to the heat equation. The map
X 7→ δ(expX)1/2u(expX, t), X ∈ a, has a holomorphic extension to aC such
that

‖f‖2 =

∫

aC

|(δ1/2u)(X + iY, t)|2e2t|ρ|2 dµt(X + iY )

Conversely, any meromorphic function u(Z) which is invariant under W
and which satisfies

∫

aC

|(δ1/2u)(X + iY )|2e2t|ρ|2 dµt(X + iY ) < ∞

is the Segal-Bargmann tranform Htf for some f ∈ L2(G/K)K .


