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The Heat equation, the Segal-Bargmann transform and
generalizations

Based on joint work with

• B. Krötz

• B. Ørsted

• H. Schlichtkrull

• R. Stanton
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Organizations

1. The heat equation on R
n.

2. The Fock space and the Segal-Bargmann Transform.
3. Remarks and Comments.
4. Generalizations and the Restriction Principle.

5. Structure Theory.
6. Spherical Functions and the Fourier Transform.
7. The Crown and the Heat Kernel.
8. The Abel Transform and the Heat Kernel.
9. The Faraut-Gutzmer Formula and the Orbital Integral.

10. The Image of the Segal-Bargmann transform on G/K.
11. The K-invariant case (more than one section)
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1. The heat equation on R
n

◮ Consider the Laplace operator

∆ =
n∑

j=1

∂2

∂x2
j

on R
n.
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1. The heat equation on R
n

◮ Consider the Laplace operator

∆ =
n∑

j=1

∂2

∂x2
j

on R
n.

◮ The heat equation is the Cauchy problem

∆u(x, t) = ∂tu(x, t)

lim
t→0+

u(x, t) = f(x)

where we can take f ∈ L2(Rn), a distribution, a hyperfunction, or from
another class of analytic objects.
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◮ Formally we write
u(x, t) = et∆f(x)
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◮ Formally we write

u(x, t) = et∆f(x) = Htf(x)
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◮ Formally we write

u(x, t) = et∆f(x) = Htf(x)

where {et∆ = Ht}t≥0 is the heat semigroup . It is a linear map
Ht : L2(Rn) → L2(Rn), but also a smoothing operator as we will see.
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◮ Formally we write

u(x, t) = et∆f(x) = Htf(x)

where {et∆ = Ht}t≥0 is the heat semigroup . It is a linear map
Ht : L2(Rn) → L2(Rn), but also a smoothing operator as we will see.

◮ To actually solve the equation, we proceed by applying the Fourier
transform

f 7→ F(f) = f̂ , λ 7→ (2π)−n/2

∫
f(x)e−ix·λ dx

using that
F(∆f)(λ) = −|λ|2f̂(λ)

and get the simple differential equation for t 7→ û(λ, t):
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◮ Formally we write

u(x, t) = et∆f(x) = Htf(x)

where {et∆ = Ht}t≥0 is the heat semigroup . It is a linear map
Ht : L2(Rn) → L2(Rn), but also a smoothing operator as we will see.

◮ To actually solve the equation, we proceed by applying the Fourier
transform

f 7→ F(f) = f̂ , λ 7→ (2π)−n/2

∫
f(x)e−ix·λ dx

using that
F(∆f)(λ) = −|λ|2f̂(λ)

and get the simple differential equation for t 7→ û(λ, t):

∂tû(λ, t) = −|λ|2û(λ, t) , û(λ, 0) = f̂(λ) .
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◮ The solution to this differential equation is û(λ, t) = f̂(λ)e−t|λ|2
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◮ The solution to this differential equation is û(λ, t) = f̂(λ)e−t|λ|2 and we
get the Fourier Transform Formula for the solution:

Htf(x) = (2π)−n/2

∫
f̂(λ)e−|λ|2teiλ·x dλ (0.1)
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◮ The solution to this differential equation is û(λ, t) = f̂(λ)e−t|λ|2 and we
get the Fourier Transform Formula for the solution:

Htf(x) = (2π)−n/2

∫
f̂(λ)e−|λ|2teiλ·x dλ (0.1)

◮ The heat kernel ht is the solution to the heat equation with f = δ0. Using
that the δ-distribution has Fourier transform δ̂0(λ) = (2π)−n/2 we get

Htδ0(x) = ht(x) = (2π)−n

∫
e−|λ|2teix·λ dλ

=
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◮ The solution to this differential equation is û(λ, t) = f̂(λ)e−t|λ|2 and we
get the Fourier Transform Formula for the solution:

Htf(x) = (2π)−n/2

∫
f̂(λ)e−|λ|2teiλ·x dλ (0.1)

◮ The heat kernel ht is the solution to the heat equation with f = δ0. Using
that the δ-distribution has Fourier transform δ̂0(λ) = (2π)−n/2 we get

Htδ0(x) = ht(x) = (2π)−n

∫
e−|λ|2teix·λ dλ

= (4πt)−n/2e−|x|2/4t
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◮ The solution to this differential equation is û(λ, t) = f̂(λ)e−t|λ|2 and we
get the Fourier Transform Formula for the solution:

Htf(x) = (2π)−n/2

∫
f̂(λ)e−|λ|2teiλ·x dλ (0.1)

◮ The heat kernel ht is the solution to the heat equation with f = δ0. Using
that the δ-distribution has Fourier transform δ̂0(λ) = (2π)−n/2 we get

Htδ0(x) = ht(x) = (2π)−n

∫
e−|λ|2teix·λ dλ

= (4πt)−n/2e−|x|2/4t

◮ It is clear from this formula, that Rn ∋ x 7→ ht(x) ∈ R+ has a holomorphic
extension to C

n given by

ht(z) = (4πt)−n/2e−z2/4t , z2 = z2
1 + . . .+ z2

n .
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◮ Note
∂t(f ∗ ht) = f ∗ (∂tht) = f ∗ (∆ht) = ∆(f ∗ ht)

and
lim

t→0+
f ∗ ht = f ∗ δ0 = f
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◮ Note
∂t(f ∗ ht) = f ∗ (∂tht) = f ∗ (∆ht) = ∆(f ∗ ht)

and
lim

t→0+
f ∗ ht = f ∗ δ0 = f

and we get the heat kernel formula for the solution:

Htf(x) = f ∗ ht(x) = (4πt)−n/2

∫
f(y)e−(x−y)2/(4t) dy (0.2)
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◮ Note
∂t(f ∗ ht) = f ∗ (∂tht) = f ∗ (∆ht) = ∆(f ∗ ht)

and
lim

t→0+
f ∗ ht = f ∗ δ0 = f

and we get the heat kernel formula for the solution:

Htf(x) = f ∗ ht(x) = (4πt)−n/2

∫
f(y)e−(x−y)2/(4t) dy (0.2)

◮ We read of from (0.1) or (0.2) that the function x 7→ Htf(x) has a
holomorphic extension to Cn:

Htf(z) = (4πt)−n/2

∫
f(y)e−(z−y)2/4t dy

=
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◮ Note
∂t(f ∗ ht) = f ∗ (∂tht) = f ∗ (∆ht) = ∆(f ∗ ht)

and
lim

t→0+
f ∗ ht = f ∗ δ0 = f

and we get the heat kernel formula for the solution:

Htf(x) = f ∗ ht(x) = (4πt)−n/2

∫
f(y)e−(x−y)2/(4t) dy (0.2)

◮ We read of from (0.1) or (0.2) that the function x 7→ Htf(x) has a
holomorphic extension to Cn:

Htf(z) = (4πt)−n/2

∫
f(y)e−(z−y)2/4t dy

= (2π)−n/2

∫
f̂(λ)e−λ2teiz·λ dλ
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◮ Note
∂t(f ∗ ht) = f ∗ (∂tht) = f ∗ (∆ht) = ∆(f ∗ ht)

and
lim

t→0+
f ∗ ht = f ∗ δ0 = f

and we get the heat kernel formula for the solution:

Htf(x) = f ∗ ht(x) = (4πt)−n/2

∫
f(y)e−(x−y)2/(4t) dy (0.2)

◮ We read of from (0.1) or (0.2) that the function x 7→ Htf(x) has a
holomorphic extension to Cn:

Htf(z) = (4πt)−n/2

∫
f(y)e−(z−y)2/4t dy

= (2π)−n/2

∫
f̂(λ)e−λ2teiz·λ dλ

where z · λ =
∑n

j=1 zjλj .
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The map Ht : L2(Rn) → O(Cn) is the Segal-Bargmann transform.
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The map Ht : L2(Rn) → O(Cn) is the Segal-Bargmann transform.

◮ Note, that we have really only used the following:

1. We have a Fourier transform that such that

F(∆g)(λ) = −|λ|2F(g)(λ)

to derive the Fourier transform form for the solution and to find an explicit
expression for the heat kernel.
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The map Ht : L2(Rn) → O(Cn) is the Segal-Bargmann transform.

◮ Note, that we have really only used the following:

1. We have a Fourier transform that such that

F(∆g)(λ) = −|λ|2F(g)(λ)

to derive the Fourier transform form for the solution and to find an explicit
expression for the heat kernel.

2. In using (0.1) that the exponential function λ 7→ eλ(z) = eiz·λ grows much
slower than

λ 7→ f̂(λ)e−|λ|2t

to show that the solution extends to a holomorphic function on Cn.
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The map Ht : L2(Rn) → O(Cn) is the Segal-Bargmann transform.

◮ Note, that we have really only used the following:

1. We have a Fourier transform that such that

F(∆g)(λ) = −|λ|2F(g)(λ)

to derive the Fourier transform form for the solution and to find an explicit
expression for the heat kernel.

2. In using (0.1) that the exponential function λ 7→ eλ(z) = eiz·λ grows much
slower than

λ 7→ f̂(λ)e−|λ|2t

to show that the solution extends to a holomorphic function on Cn.

3. Or in using (0.2) that heat kernel ht has a holomorphic extension to C
n

and y 7→ ht(z − y) grows much slower than

y 7→ f(y)e−y2/(4t) .
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2. The Fock space and the Segal-Bargmann Transform
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2. The Fock space and the Segal-Bargmann Transform

◮ We will now describe the image of the Segal-Bargmann transform. For
that we define a positive weight function by

ωR
n

t (y) = ωt(x) = (2πt)−n/2e−y2/2t = ht/2(y)



- p. 8/54

2. The Fock space and the Segal-Bargmann Transform

◮ We will now describe the image of the Segal-Bargmann transform. For
that we define a positive weight function by

ωR
n

t (y) = ωt(x) = (2πt)−n/2e−y2/2t = ht/2(y)

and a measure on Cn by

dµt(x+ iy) = ωt(y) dxdy .
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2. The Fock space and the Segal-Bargmann Transform

◮ We will now describe the image of the Segal-Bargmann transform. For
that we define a positive weight function by

ωR
n

t (y) = ωt(x) = (2πt)−n/2e−y2/2t = ht/2(y)

and a measure on Cn by

dµt(x+ iy) = ωt(y) dxdy .

Set

Ht(C
n) = {F ∈ O(Cn) | ‖F‖2

t :=

∫

Cn

|F (x+ iy)|2 dµt <∞} .
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Theorem 0.1 (Segal-Bargmann, 1956-1978/1961, . . . ). The following holds:

1. Ht(C
n) is a Hilbert space with continuous point evaluation, i.e., the maps

Ht(C
n) ∋ F 7→ evz(F ) = F (z) ∈ C , z ∈ C

n

are continuous. In particular, with LyF (x) = F (x− y) and

Kw(z) = K(z, w) := Ht(Lw̄ht)(z) = (8πt)−n/2e−(z−w̄)2/8t ,

we have Kw ∈ Ht(C
n) and F (w) = (F,Kw) for all F ∈ Ht(C

n), i.e.,

K(z, w) is the reproducing kernel for Ht(C
n)

2. Ht : L2(Rn) → Ht(C
n) is an unitary isomorphism.

3. If f ∈ S(Rn), then f(x) =

∫

Rn

Htf(x+ iy)ht(y) dy.
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Few words on the proof, but note that I will not prove the surjectivity or that
Ht is an isometry.

=

=

=
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Few words on the proof, but note that I will not prove the surjectivity or that
Ht is an isometry.

◮ For (2) we simply calculate the norm on the right hand side. Note that all
functions involved are positive, so that there is no problem using Fubini’s
Theorem:

=

=

=
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Few words on the proof, but note that I will not prove the surjectivity or that
Ht is an isometry.

◮ For (2) we simply calculate the norm on the right hand side. Note that all
functions involved are positive, so that there is no problem using Fubini’s
Theorem:

Let c = (2πt)−n/2 = (
∫
e−y2/2t dy)−1:

c

∫∫
|Htf(x+ iy)|2 dx e−y2/2t dy = c

∫∫
|Ĥtf(λ)|2e−2y·λe−y2/2tdλdy

=

=

=

=
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Few words on the proof, but note that I will not prove the surjectivity or that
Ht is an isometry.

◮ For (2) we simply calculate the norm on the right hand side. Note that all
functions involved are positive, so that there is no problem using Fubini’s
Theorem:

Let c = (2πt)−n/2 = (
∫
e−y2/2t dy)−1:

c

∫∫
|Htf(x+ iy)|2 dx e−y2/2t dy = c

∫∫
|Ĥtf(λ)|2e−2y·λe−y2/2tdλdy

= c

∫∫
|f̂(λ)|2e−(2tλ2+2y·λ+ y2

2t
)dλdy

=

=

=
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Few words on the proof, but note that I will not prove the surjectivity or that
Ht is an isometry.

◮ For (2) we simply calculate the norm on the right hand side. Note that all
functions involved are positive, so that there is no problem using Fubini’s
Theorem:
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e−y2/2t dy)−1:
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= c

∫∫
|f̂(λ)|2e−(2tλ2+2y·λ+ y2

2t
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=

∫
|f̂(λ)|2

(
c

∫
e−(y+2tλ)2/2tdy

)
dλ

=

=
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Theorem:
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2t
)dλdy

=

∫
|f̂(λ)|2

(
c

∫
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=
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Few words on the proof, but note that I will not prove the surjectivity or that
Ht is an isometry.

◮ For (2) we simply calculate the norm on the right hand side. Note that all
functions involved are positive, so that there is no problem using Fubini’s
Theorem:

Let c = (2πt)−n/2 = (
∫
e−y2/2t dy)−1:

c

∫∫
|Htf(x+ iy)|2 dx e−y2/2t dy = c

∫∫
|Ĥtf(λ)|2e−2y·λe−y2/2tdλdy

= c

∫∫
|f̂(λ)|2e−(2tλ2+2y·λ+ y2

2t
)dλdy

=

∫
|f̂(λ)|2

(
c

∫
e−(y+2tλ)2/2tdy

)
dλ

=

∫
|f̂(λ)|2 dλ

= ‖f‖2
2
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◮ The proof of the inversion formula is similar. Let c = (4πt)−n/2:
∫
Htf(x+ iy)ht(y) dy

(0.1)
=

∫ (∫
e−tλ2

f̂(λ)ei(x+iy)·λ dλ

)
ht(y) dy

=

=

=

=
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◮ The proof of the inversion formula is similar. Let c = (4πt)−n/2:
∫
Htf(x+ iy)ht(y) dy

(0.1)
=

∫ (∫
e−tλ2

f̂(λ)ei(x+iy)·λ dλ

)
ht(y) dy

= c

∫
e−tλ2

f̂(λ)eix·λ
(∫

e−y·λe−y2/4t dy

)
dλ

=

=

=
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◮ The proof of the inversion formula is similar. Let c = (4πt)−n/2:
∫
Htf(x+ iy)ht(y) dy

(0.1)
=

∫ (∫
e−tλ2

f̂(λ)ei(x+iy)·λ dλ

)
ht(y) dy

= c

∫
e−tλ2

f̂(λ)eix·λ
(∫

e−y·λe−y2/4t dy

)
dλ

= c

∫
f̂(λ)eix·λ

(∫
e−

(2tλ+y)2

4t dy

)
dλ

=

=
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◮ The proof of the inversion formula is similar. Let c = (4πt)−n/2:
∫
Htf(x+ iy)ht(y) dy

(0.1)
=

∫ (∫
e−tλ2

f̂(λ)ei(x+iy)·λ dλ

)
ht(y) dy

= c

∫
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(∫
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= c

∫
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(∫
e−

(2tλ+y)2
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)
dλ

=
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f̂(λ)eix·λ dλ

=
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◮ The proof of the inversion formula is similar. Let c = (4πt)−n/2:
∫
Htf(x+ iy)ht(y) dy

(0.1)
=

∫ (∫
e−tλ2

f̂(λ)ei(x+iy)·λ dλ

)
ht(y) dy

= c

∫
e−tλ2

f̂(λ)eix·λ
(∫

e−y·λe−y2/4t dy

)
dλ

= c

∫
f̂(λ)eix·λ

(∫
e−

(2tλ+y)2

4t dy

)
dλ

=

∫
f̂(λ)eix·λ dλ

= f(x) .
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◮ For the formula for the reproducing kernel we – again – assume that Ht

is an unitary isomorphism.
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◮ For the formula for the reproducing kernel we – again – assume that Ht

is an unitary isomorphism.

◮ So let F ∈ Ht(C
n) and f ∈ L2(Rn) such that F = Htf . Then

F (w) = Htf(w)

=

∫
f(x)ht(x− w) dx ht even

= (f, Lw̄ht)L2

= (Htf,Ht(Lw̄ht))Ht
Ht unitary

= (F,Ht(Lw̄ht))Ht
.
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◮ For the formula for the reproducing kernel we – again – assume that Ht

is an unitary isomorphism.

◮ So let F ∈ Ht(C
n) and f ∈ L2(Rn) such that F = Htf . Then

F (w) = Htf(w)

=

∫
f(x)ht(x− w) dx ht even

= (f, Lw̄ht)L2

= (Htf,Ht(Lw̄ht))Ht
Ht unitary

= (F,Ht(Lw̄ht))Ht
.

◮ Thus

K(z, w) = Ht(λ(w̄)ht)(z)

= (λ(w̄)ht) ∗ ht(z)

= ht ∗ ht(z − w̄)

= h2t(z − w̄) the semigroup property.
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3. Remarks and Comments

◮ Note first of all, that we can interpret Cn as the cotangent bundle T ∗(Rn),
where the y-variable in z = x+ iy is an element of T ∗

x Rn. Hence the
Segal-Bargmann transform is some kind of quantization.
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◮ Note first of all, that we can interpret Cn as the cotangent bundle T ∗(Rn),
where the y-variable in z = x+ iy is an element of T ∗

x Rn. Hence the
Segal-Bargmann transform is some kind of quantization.

◮ Note also, that in the definition of the norm and in the inversion formula
we only weight the cotangent variable y ∈ T ∗

x (Rn) and the weights are given
by the heat kernel.
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where the y-variable in z = x+ iy is an element of T ∗

x Rn. Hence the
Segal-Bargmann transform is some kind of quantization.

◮ Note also, that in the definition of the norm and in the inversion formula
we only weight the cotangent variable y ∈ T ∗

x (Rn) and the weights are given
by the heat kernel.

◮ There are other versions of the Segal-Bargmann transform in the
literature. In particular, for the physics and infinite dimensional analysis, as
well as in the original works, the space L2(Rn) was replaced by the
weighted L2-space L2(Rn, dνn), where

dνn(x) = ht(x)dx

the heat kernel measure on Rn.
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3. Remarks and Comments

◮ Note first of all, that we can interpret Cn as the cotangent bundle T ∗(Rn),
where the y-variable in z = x+ iy is an element of T ∗

x Rn. Hence the
Segal-Bargmann transform is some kind of quantization.

◮ Note also, that in the definition of the norm and in the inversion formula
we only weight the cotangent variable y ∈ T ∗

x (Rn) and the weights are given
by the heat kernel.

◮ There are other versions of the Segal-Bargmann transform in the
literature. In particular, for the physics and infinite dimensional analysis, as
well as in the original works, the space L2(Rn) was replaced by the
weighted L2-space L2(Rn, dνn), where

dνn(x) = ht(x)dx

the heat kernel measure on Rn. On the image side the measure is then

dσn
t (z) = (2πt)−ne−|z|2/2tdxdy
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◮ Denote the corresponding space of L2-holomorphic functions by Ft(C
n).

It is still holds, that the Segal-Bargmann transform

L2(Rn, dν) ∋ f 7→ f ∗ ht ∈ Ft(C
n)

is an unitary isomorphism. This normalization has several advantages.



- p. 14/54

◮ Denote the corresponding space of L2-holomorphic functions by Ft(C
n).

It is still holds, that the Segal-Bargmann transform

L2(Rn, dν) ∋ f 7→ f ∗ ht ∈ Ft(C
n)

is an unitary isomorphism. This normalization has several advantages.

◮ It is very easy to find the reproducing kernel for the space Ft(C
n). It is

Kt(z, w) = (2πt)−nez·w̄/2t .
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◮ Denote the corresponding space of L2-holomorphic functions by Ft(C
n).

It is still holds, that the Segal-Bargmann transform

L2(Rn, dν) ∋ f 7→ f ∗ ht ∈ Ft(C
n)

is an unitary isomorphism. This normalization has several advantages.

◮ It is very easy to find the reproducing kernel for the space Ft(C
n). It is

Kt(z, w) = (2πt)−nez·w̄/2t .

◮ For the proof, one notice that the polynomials ζα(z) = zα are dense in
F(Cn) and therefore one only has to prove zα = (ζα, Kz) for all α, and this
reduces to a simple one-dimensional integral.
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◮ Denote the corresponding space of L2-holomorphic functions by Ft(C
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L2(Rn, dν) ∋ f 7→ f ∗ ht ∈ Ft(C
n)

is an unitary isomorphism. This normalization has several advantages.

◮ It is very easy to find the reproducing kernel for the space Ft(C
n). It is

Kt(z, w) = (2πt)−nez·w̄/2t .

◮ For the proof, one notice that the polynomials ζα(z) = zα are dense in
F(Cn) and therefore one only has to prove zα = (ζα, Kz) for all α, and this
reduces to a simple one-dimensional integral.

◮ Connection to the theory of orthogonal polynomials: There are constants
cα (easy to calculate) such that {cαζα}α∈N0 is an orthogonal basis for
Ht(C

n, dσt) and there are constants (again easy to calculate) such that
H∗

t (ζα) = dαhα, where hα is the Hermite polynomial.
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◮ Furthermore, the measures on both sides are probability measures, and
n-fold product of the one-dimensional measures in the coordinates.



- p. 15/54

◮ Furthermore, the measures on both sides are probability measures, and
n-fold product of the one-dimensional measures in the coordinates.

◮ We can take the limit as n→ ∞. Consider the projections
prn : Rn → Rn−1. This gives us isometric maps maps

prn
∗ : L2(Rn−1, dνn−1) → L2(Rn, dνn) , f 7→ f ◦ prn

and we have a sequence of commutative diagrams

· · · → L2(Rn−1, dνn−1)

Hn−1
t

��

prn
∗

// L2(Rn, dνn)

Hn
t

��

prn+1
∗

// · · · L2(R∞, dν∞)

H∞

t

��

· · · → Ht(C
n−1, dσn−1

t )
prn

∗

// Ht(C
n, dσn

t )
prn+1

∗

// · · · Ht(C
∞, dσ∞

t )
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◮ Sometimes, in particular studying the Schrödinger representation of the
Heisenberg group, one uses the Segal-Bargmann transform

St : L2(Rn, dx) → Ft(C
n) .

One of the idea is, that Ft(C
n) is a much simpler space than L2(Rn) to work

with. Also, the canonical commutation rules, the creation operator and the
annulation operator have simpler form in Ft(C

n).
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◮ Sometimes, in particular studying the Schrödinger representation of the
Heisenberg group, one uses the Segal-Bargmann transform

St : L2(Rn, dx) → Ft(C
n) .

One of the idea is, that Ft(C
n) is a much simpler space than L2(Rn) to work

with. Also, the canonical commutation rules, the creation operator and the
annulation operator have simpler form in Ft(C

n).
In this case - as I will prove later - the Segal-Bargmann transform is given
by:

St(f)(z) = (πt)−n/4

∫
f(y)e−

1
2t

(y2−2xy+ x2

2 ) dy .
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◮ Sometimes, in particular studying the Schrödinger representation of the
Heisenberg group, one uses the Segal-Bargmann transform

St : L2(Rn, dx) → Ft(C
n) .

One of the idea is, that Ft(C
n) is a much simpler space than L2(Rn) to work

with. Also, the canonical commutation rules, the creation operator and the
annulation operator have simpler form in Ft(C

n).
In this case - as I will prove later - the Segal-Bargmann transform is given
by:

St(f)(z) = (πt)−n/4

∫
f(y)e−

1
2t

(y2−2xy+ x2

2 ) dy .

◮ The connection to the theory of special functions is, this case, a multiple
of the Hermite functions are mapped into a multiple of the polynomials ζα.
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4. Generalizations and the Restriction Principle.
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◮ Before I prove the unitarity of the Segal-Bargmann transform St let me
make some general remarks about the underlying idea and general
principle behind a transform like St.
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◮ Before I prove the unitarity of the Segal-Bargmann transform St let me
make some general remarks about the underlying idea and general
principle behind a transform like St.

◮ Let MC be a complex analytic manifold (i.e., MC = Cn) and M ⊂MC a
totally real analytic submanifold. Thus the restriction map

O(MC) ∋ F 7→ F |M ∈ A(M)

is injective.
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4. Generalizations and the Restriction Principle.

◮ Before I prove the unitarity of the Segal-Bargmann transform St let me
make some general remarks about the underlying idea and general
principle behind a transform like St.

◮ Let MC be a complex analytic manifold (i.e., MC = Cn) and M ⊂MC a
totally real analytic submanifold. Thus the restriction map

O(MC) ∋ F 7→ F |M ∈ A(M)

is injective.

◮ Let F(MC) be a Hilbert space of holomorphic function on MC such that
the point-evaluation maps F 7→ F (w) are continuous and hence given by
the inner product with an element Kw ∈ F(MC):

∀F ∈ F(MC) : F (w) = (F,Kw)
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◮ The function K : MC ×MC → C, K(z, w) = Kw(z) is reproducing kernel
of F(MC). It satisfies:
1. K is holomorphic in the first variable and anti-holomorphic in the second

variable.
2. K(z, w) = K(w, z) because

Kw(z) = (Kw, Kz) = (Kz, Kw) = Kz(w) = K(w, z) .

3. ‖Kw‖2 = K(w,w) ≥ 0.
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◮ The function K : MC ×MC → C, K(z, w) = Kw(z) is reproducing kernel
of F(MC). It satisfies:
1. K is holomorphic in the first variable and anti-holomorphic in the second

variable.
2. K(z, w) = K(w, z) because

Kw(z) = (Kw, Kz) = (Kz, Kw) = Kz(w) = K(w, z) .

3. ‖Kw‖2 = K(w,w) ≥ 0.

◮ Furthermore, the linear hull of {Kx}x∈M is dense in F(MC) and hence:

the reproducing kernel determines F(MC),
knowing K(z, w) is the same as knowing F(MC).
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◮ The function K : MC ×MC → C, K(z, w) = Kw(z) is reproducing kernel
of F(MC). It satisfies:
1. K is holomorphic in the first variable and anti-holomorphic in the second

variable.
2. K(z, w) = K(w, z) because

Kw(z) = (Kw, Kz) = (Kz, Kw) = Kz(w) = K(w, z) .

3. ‖Kw‖2 = K(w,w) ≥ 0.

◮ Furthermore, the linear hull of {Kx}x∈M is dense in F(MC) and hence:

the reproducing kernel determines F(MC),
knowing K(z, w) is the same as knowing F(MC).

◮ Assume that F is orthogonal to the linear span of {Kx}x∈M . Then
F (x) = (F,Kx) = 0 for all x ∈M and hence F |M = 0. As M is a totally real
submanifold, it follows that F = 0.
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We now make the following assumption: There exists a measure µ on M
and a holomorphic function D : MC → C, D|M > 0, D(z) 6= 0, such that
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We now make the following assumption: There exists a measure µ on M
and a holomorphic function D : MC → C, D|M > 0, D(z) 6= 0, such that

1. For all F ∈ F(MC) we have

R(F ) := (DF )|M ∈ L2(M,µ) .

2. R(F(MC)) is dense in L2(M) (can be dropped, but then we have only a
partial isometry later).

3. R : F(MC) → L2(M) is a closed operator.
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We now make the following assumption: There exists a measure µ on M
and a holomorphic function D : MC → C, D|M > 0, D(z) 6= 0, such that

1. For all F ∈ F(MC) we have

R(F ) := (DF )|M ∈ L2(M,µ) .

2. R(F(MC)) is dense in L2(M) (can be dropped, but then we have only a
partial isometry later).

3. R : F(MC) → L2(M) is a closed operator.

◮ Then R∗ : L2(M,dµ) → F(MC) is densely defined and

R∗ = U
√
RR∗

where U : L2(M,dµ) → F(MC) is an unitary isomorphism by definition.
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We now make the following assumption: There exists a measure µ on M
and a holomorphic function D : MC → C, D|M > 0, D(z) 6= 0, such that

1. For all F ∈ F(MC) we have

R(F ) := (DF )|M ∈ L2(M,µ) .

2. R(F(MC)) is dense in L2(M) (can be dropped, but then we have only a
partial isometry later).

3. R : F(MC) → L2(M) is a closed operator.

◮ Then R∗ : L2(M,dµ) → F(MC) is densely defined and

R∗ = U
√
RR∗

where U : L2(M,dµ) → F(MC) is an unitary isomorphism by definition.

◮ We call U the generalized Segal-Bargmann transform .
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◮ Note the following:

R∗f(w) = (R∗f,Kw)F = (f,RKw) =

∫

M

f(y)D(y)K(w, y) dx

and hence

RR∗f(x) =

∫

M

f(y)D(x)D(y)K(y, x) dµ(y) .

Hence RR∗ is always an integral operator.
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◮ Note the following:

R∗f(w) = (R∗f,Kw)F = (f,RKw) =

∫

M

f(y)D(y)K(w, y) dx

and hence

RR∗f(x) =

∫

M

f(y)D(x)D(y)K(y, x) dµ(y) .

Hence RR∗ is always an integral operator.

◮ Furthermore, by multiplying by U∗, and then using that
√
RR∗ is

self-adjoint, we get the following formula for RU and then U :

U∗R∗ = RU =
√
RR∗

or
Uf(x) = D(x)−1

︸ ︷︷ ︸
holomorphic

√
RR∗(f)(x) .
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◮ Note the following:

R∗f(w) = (R∗f,Kw)F = (f,RKw) =

∫

M

f(y)D(y)K(w, y) dx

and hence

RR∗f(x) =

∫

M

f(y)D(x)D(y)K(y, x) dµ(y) .

Hence RR∗ is always an integral operator.

◮ Furthermore, by multiplying by U∗, and then using that
√
RR∗ is

self-adjoint, we get the following formula for RU and then U :

U∗R∗ = RU =
√
RR∗

or
Uf(x) = D(x)−1

︸ ︷︷ ︸
holomorphic

√
RR∗(f)(x) .

◮ But what is
√
RR∗?
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◮ We apply this now to M = Rn ⊂ Cn, F = Ft and D(z) = ht(z). Then:

RR∗f(x) =

∫
f(y)ht(x)ht(y)K(x, y) dy

= 2−n(πt)−3n/2f ∗ ht(x) .
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◮ We apply this now to M = Rn ⊂ Cn, F = Ft and D(z) = ht(z). Then:

RR∗f(x) =

∫
f(y)ht(x)ht(y)K(x, y) dy

= 2−n(πt)−3n/2f ∗ ht(x) .

◮ As {Ht}t≥0 is a semi-group it follows that
√
RR∗f(x) = 2−n/2(πt)−3n/4f ∗ ht/2(x)

and hence

Uf(x) = ht(x)
−12−n/2(πt)−3n/4f ∗ ht2(x)

= (πt)−n/4

∫
f(y)e−

1
2t

(y2−2xy+ x2

2 ) dy .
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◮ We apply this now to M = Rn ⊂ Cn, F = Ft and D(z) = ht(z). Then:

RR∗f(x) =

∫
f(y)ht(x)ht(y)K(x, y) dy

= 2−n(πt)−3n/2f ∗ ht(x) .

◮ As {Ht}t≥0 is a semi-group it follows that
√
RR∗f(x) = 2−n/2(πt)−3n/4f ∗ ht/2(x)

and hence

Uf(x) = ht(x)
−12−n/2(πt)−3n/4f ∗ ht2(x)

= (πt)−n/4

∫
f(y)e−

1
2t

(y2−2xy+ x2

2 ) dy .

◮ Thus U = St and St is an unitary isomorphism.
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◮ Let me know recollect the problems/phylosophy for the general case:
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◮ Let me know recollect the problems/phylosophy for the general case:

◮ If M is a Riemannian manifold, then the elliptic differential operator ∆ is
well defined and invariant under isometries of M . Let dσ be the volume form
on M . Then the heat equation is given as before:

∆u(x, t) = ∂tu(x, t) , lim
t→0+

u(x, t) = f(x) ∈ L2(M,dσ) .

and the solution is (by definition) given by

Htf(x) = et∆f(x) .
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◮ Let me know recollect the problems/phylosophy for the general case:

◮ If M is a Riemannian manifold, then the elliptic differential operator ∆ is
well defined and invariant under isometries of M . Let dσ be the volume form
on M . Then the heat equation is given as before:

∆u(x, t) = ∂tu(x, t) , lim
t→0+

u(x, t) = f(x) ∈ L2(M,dσ) .

and the solution is (by definition) given by

Htf(x) = et∆f(x) .

◮ But more importantly, there exists a function ht(x, y), the heat kernel,
such that:

• ht(x, y) = ht(y, x) ≥ 0;
• dµt(y) = ht(x, y)dσ(y) is a probability measure on M ;
• If g : M →M is an isometry, then ht(gx, gy) = h(x, y) .

• Htf(x) =

∫

M

f(y)ht(x, y) dσ(y);
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◮ But to generalize the previous results one need to find a “natural”
complexification MC for M such that ht, and Htf extend to holomorphic
functions on MC.
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◮ But to generalize the previous results one need to find a “natural”
complexification MC for M such that ht, and Htf extend to holomorphic
functions on MC.

◮ Then we have to find a Hilbert space Ht(MC) ⊂ O(MC) such that the
transform

L2(M) ∋ f 7→ Htf ∈ Ht(MC)

becomes an unitary isomorphism. In particular, what is the “natural”
generalization of the measure µt?
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◮ But to generalize the previous results one need to find a “natural”
complexification MC for M such that ht, and Htf extend to holomorphic
functions on MC.

◮ Then we have to find a Hilbert space Ht(MC) ⊂ O(MC) such that the
transform

L2(M) ∋ f 7→ Htf ∈ Ht(MC)

becomes an unitary isomorphism. In particular, what is the “natural”
generalization of the measure µt?

◮ There is one class of Riemannian manifolds where a natural
complexification exists. Those are the Riemannian symmetric spaces G/K,
where G is a connected and semisimple Lie group.
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◮ But to generalize the previous results one need to find a “natural”
complexification MC for M such that ht, and Htf extend to holomorphic
functions on MC.

◮ Then we have to find a Hilbert space Ht(MC) ⊂ O(MC) such that the
transform

L2(M) ∋ f 7→ Htf ∈ Ht(MC)

becomes an unitary isomorphism. In particular, what is the “natural”
generalization of the measure µt?

◮ There is one class of Riemannian manifolds where a natural
complexification exists. Those are the Riemannian symmetric spaces G/K,
where G is a connected and semisimple Lie group.

• B. Hall in 1997 for compact connected Lie groups. Here

G = M ⊂ GC = MC ≃ T ∗G .

Here GC is a complex Lie group with Lie algebra gC = g ⊗R C, i.e.,

G = SO(n) ⊂ SO(n,C) ≃ SO(n) × exp{X ∈ iM(n,R) | X∗ = X} .
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• M.B. Stenzel in 1999 for symmetric spaces M = G/K, where G is
compact. Here MC = GC/KC ≃ T (G/K)∗. Here G is a compact connected
Lie group, τ : G→ G is a non-trivial involution and

K = Gτ = {g ∈ G | τ(g) = g}

i.e, Sn = SO(n+ 1)/SO(n).

Note, that Hall’s result is a special case as G ≃ G×G/G with
τ(a, b) = (b, a).
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compact. Here MC = GC/KC ≃ T (G/K)∗. Here G is a compact connected
Lie group, τ : G→ G is a non-trivial involution and

K = Gτ = {g ∈ G | τ(g) = g}

i.e, Sn = SO(n+ 1)/SO(n).

Note, that Hall’s result is a special case as G ≃ G×G/G with
τ(a, b) = (b, a).

• The restriction principle was formulated in general by G. Ólafsson and B.
Ørsted in 1996, but it had been applied earlier by G. Zhang and B. Ørsted in
special cases.
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• M.B. Stenzel in 1999 for symmetric spaces M = G/K, where G is
compact. Here MC = GC/KC ≃ T (G/K)∗. Here G is a compact connected
Lie group, τ : G→ G is a non-trivial involution and

K = Gτ = {g ∈ G | τ(g) = g}

i.e, Sn = SO(n+ 1)/SO(n).

Note, that Hall’s result is a special case as G ≃ G×G/G with
τ(a, b) = (b, a).

• The restriction principle was formulated in general by G. Ólafsson and B.
Ørsted in 1996, but it had been applied earlier by G. Zhang and B. Ørsted in
special cases.

• B. Hall and J.J. Mitchell did the case M = G/K where G is complex or of
rank one in 2004.
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• B. Krötz, G. Ólafsson, and R. Stanton: 2005 the general case G/K where
G is non-compact and semisimple and K is a maximal compact subgroup,
i.e., SL(n,R)/SO(n).
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• B. Krötz, G. Ólafsson, and R. Stanton: 2005 the general case G/K where
G is non-compact and semisimple and K is a maximal compact subgroup,
i.e., SL(n,R)/SO(n).

◮ A different formula for the K-invariant function on G/K and
generalization to arbitrary non-negative multiplicity functions by G. Ólafsson
and H. Schlichtkrull (Copenhagen) in 2005, to appear in Adv. Math.
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• B. Krötz, G. Ólafsson, and R. Stanton: 2005 the general case G/K where
G is non-compact and semisimple and K is a maximal compact subgroup,
i.e., SL(n,R)/SO(n).

◮ A different formula for the K-invariant function on G/K and
generalization to arbitrary non-negative multiplicity functions by G. Ólafsson
and H. Schlichtkrull (Copenhagen) in 2005, to appear in Adv. Math.

◮ One of the reasons, that it took so long to get from the compact case to
the non-compact case is, that it was not so clear, what the right
complexification of G/K is. It is the Akhiezer-Gindikin domain also called
the complex crown which I will define in a moment. But first we will need
some basic structure theory for semisimple symmetric space of the
non-compact type.
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◮ G a connected, non-compact semisimple Lie group with finite center

◮ K ⊂ G a maximal compact subgroup, and θ : G→ G the corresponding
Cartan involution:

K = Gθ = {g ∈ G | θ(g) = g} .
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◮ G a connected, non-compact semisimple Lie group with finite center

◮ K ⊂ G a maximal compact subgroup, and θ : G→ G the corresponding
Cartan involution:

K = Gθ = {g ∈ G | θ(g) = g} .

◮ Denote the corresponding involution on the Lie algebra g by the same
letter θ and let

k = {X ∈ g | θ(X) = X}
p = {X ∈ g | θ(X) = −X}
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5. Structure Theory

◮ G a connected, non-compact semisimple Lie group with finite center

◮ K ⊂ G a maximal compact subgroup, and θ : G→ G the corresponding
Cartan involution:

K = Gθ = {g ∈ G | θ(g) = g} .

◮ Denote the corresponding involution on the Lie algebra g by the same
letter θ and let

k = {X ∈ g | θ(X) = X}
p = {X ∈ g | θ(X) = −X}

◮ We have the Cartan decomposition

g = k ⊕ p .

.
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◮ Our standard example is G = SL(n,R), K = SO(n) and θ(g) = (g−1)T .
The corresponding involution on the Lie algebra

sl(n,R) = {X ∈Mn(R) | Tr(X) = 0}

is θ(X) = −XT . The decomposition g = k ⊕ p corresponds to the
decomposition of sl(n,R) into skew-symmetric (= k) and symmetric (= p)
matrices .
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◮ Our standard example is G = SL(n,R), K = SO(n) and θ(g) = (g−1)T .
The corresponding involution on the Lie algebra

sl(n,R) = {X ∈Mn(R) | Tr(X) = 0}

is θ(X) = −XT . The decomposition g = k ⊕ p corresponds to the
decomposition of sl(n,R) into skew-symmetric (= k) and symmetric (= p)
matrices .

◮ Recall the linear map ad(X) : g → g, Y 7→ [X,Y ] and define an inner
product on g by

(X,Y ) = −Tr(ad(X), ad(θ(Y )))
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sl(n,R) = {X ∈Mn(R) | Tr(X) = 0}

is θ(X) = −XT . The decomposition g = k ⊕ p corresponds to the
decomposition of sl(n,R) into skew-symmetric (= k) and symmetric (= p)
matrices .

◮ Recall the linear map ad(X) : g → g, Y 7→ [X,Y ] and define an inner
product on g by

(X,Y ) = −Tr(ad(X), ad(θ(Y )))

◮ On sl(n,R) this is
(X,Y ) = 2nTr(XY T ) .
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◮ Our standard example is G = SL(n,R), K = SO(n) and θ(g) = (g−1)T .
The corresponding involution on the Lie algebra

sl(n,R) = {X ∈Mn(R) | Tr(X) = 0}

is θ(X) = −XT . The decomposition g = k ⊕ p corresponds to the
decomposition of sl(n,R) into skew-symmetric (= k) and symmetric (= p)
matrices .

◮ Recall the linear map ad(X) : g → g, Y 7→ [X,Y ] and define an inner
product on g by

(X,Y ) = −Tr(ad(X), ad(θ(Y )))

◮ On sl(n,R) this is
(X,Y ) = 2nTr(XY T ) .

◮ If X ∈ p then ad(X)∗ = ad(X), i.e., ad(X) is symmetric.
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◮ Let a ≃ R
n (for some n) be a maximal abelian subspace of p, i.e., all

diagonal matrices with trace zero.

m =

∆ =
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n (for some n) be a maximal abelian subspace of p, i.e., all

diagonal matrices with trace zero.

◮ Then {ad(X) | X ∈ a} is a commuting family of symmetric operators and
has therefore a joint basis for g of eigenvectors. Thus we set:

gα =

m =

∆ =
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diagonal matrices with trace zero.

◮ Then {ad(X) | X ∈ a} is a commuting family of symmetric operators and
has therefore a joint basis for g of eigenvectors. Thus we set:

gα = {X ∈ g | (∀H ∈ a) [H,X ] = α(H)X} , α ∈ a∗ \ {0}
m =

∆ =
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◮ Let a ≃ R
n (for some n) be a maximal abelian subspace of p, i.e., all

diagonal matrices with trace zero.

◮ Then {ad(X) | X ∈ a} is a commuting family of symmetric operators and
has therefore a joint basis for g of eigenvectors. Thus we set:

gα = {X ∈ g | (∀H ∈ a) [H,X ] = α(H)X} , α ∈ a∗ \ {0}
m = zk(a) = {X ∈ g | (∀H ∈ a) [H,X ] = 0} ⊂ zg(a) = m ⊕ a

∆ =
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◮ Let a ≃ R
n (for some n) be a maximal abelian subspace of p, i.e., all

diagonal matrices with trace zero.

◮ Then {ad(X) | X ∈ a} is a commuting family of symmetric operators and
has therefore a joint basis for g of eigenvectors. Thus we set:

gα = {X ∈ g | (∀H ∈ a) [H,X ] = α(H)X} , α ∈ a∗ \ {0}
m = zk(a) = {X ∈ g | (∀H ∈ a) [H,X ] = 0} ⊂ zg(a) = m ⊕ a

∆ = {α ∈ a∗ \ {0} | gα = {0}} .
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◮ Let a ≃ R
n (for some n) be a maximal abelian subspace of p, i.e., all

diagonal matrices with trace zero.

◮ Then {ad(X) | X ∈ a} is a commuting family of symmetric operators and
has therefore a joint basis for g of eigenvectors. Thus we set:

gα = {X ∈ g | (∀H ∈ a) [H,X ] = α(H)X} , α ∈ a∗ \ {0}
m = zk(a) = {X ∈ g | (∀H ∈ a) [H,X ] = 0} ⊂ zg(a) = m ⊕ a

∆ = {α ∈ a∗ \ {0} | gα = {0}} .

◮ Let X ∈ a be such that α(X) 6= 0 for all α ∈ ∆. This is possible as set
{H ∈ a | (∃α ∈ ∆)α(H) = 0} is a finite union of hyperplanes and hence
nowhere dense.
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n (for some n) be a maximal abelian subspace of p, i.e., all

diagonal matrices with trace zero.

◮ Then {ad(X) | X ∈ a} is a commuting family of symmetric operators and
has therefore a joint basis for g of eigenvectors. Thus we set:

gα = {X ∈ g | (∀H ∈ a) [H,X ] = α(H)X} , α ∈ a∗ \ {0}
m = zk(a) = {X ∈ g | (∀H ∈ a) [H,X ] = 0} ⊂ zg(a) = m ⊕ a

∆ = {α ∈ a∗ \ {0} | gα = {0}} .

◮ Let X ∈ a be such that α(X) 6= 0 for all α ∈ ∆. This is possible as set
{H ∈ a | (∃α ∈ ∆)α(H) = 0} is a finite union of hyperplanes and hence
nowhere dense.

◮ Let ∆+ := {α ∈ ∆ | α(X) > 0}. Then – as α ◦ θ = −α – we have

∆ = ∆∪̇(−∆+) and (∆+ + ∆+) ∩ ∆ ⊂ ∆+ .
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◮ As [gλ, gµ] ⊆ gµ+λ it follows that

n :=
⊕

α∈∆+

gα

is a nilpotent Lie algebra such that

[m ⊕ a, n] ⊆ n

=
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◮ As [gλ, gµ] ⊆ gµ+λ it follows that

n :=
⊕

α∈∆+

gα

is a nilpotent Lie algebra such that

[m ⊕ a, n] ⊆ n

and – with n := θ(n) = ⊕α∈−∆gα –

g =
⊕

α∈∆

gα ⊕ m ⊕ a︸ ︷︷ ︸
the zero eigenspace

= n ⊕ m ⊕ a ⊕ n

=

=
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◮ As [gλ, gµ] ⊆ gµ+λ it follows that

n :=
⊕

α∈∆+

gα

is a nilpotent Lie algebra such that

[m ⊕ a, n] ⊆ n

and – with n := θ(n) = ⊕α∈−∆gα –

g =
⊕

α∈∆

gα ⊕ m ⊕ a︸ ︷︷ ︸
the zero eigenspace

= n ⊕ m ⊕ a ⊕ n

= (
⊕

α∈∆+

(id + θ)(gα) ⊕ m)

︸ ︷︷ ︸
=k

⊕a ⊕ n

=
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◮ As [gλ, gµ] ⊆ gµ+λ it follows that

n :=
⊕

α∈∆+

gα

is a nilpotent Lie algebra such that

[m ⊕ a, n] ⊆ n

and – with n := θ(n) = ⊕α∈−∆gα –

g =
⊕

α∈∆

gα ⊕ m ⊕ a︸ ︷︷ ︸
the zero eigenspace

= n ⊕ m ⊕ a ⊕ n

= (
⊕

α∈∆+

(id + θ)(gα) ⊕ m)

︸ ︷︷ ︸
=k

⊕a ⊕ n

= k ⊕ a ⊕ n the Iwasawa decomposition
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◮ On the group level this corresponds to

Theorem 0.2 (Iwasawa Decomposition). The map

N ×A×K ∋ (n, a, k) 7→ nak ∈ G

is an analytic isomorphism. We write

x =
∈N

n(x)
∈A

a(x)
∈K

k(x)

for the unique decomposition of x ∈ G. In particular G/K ≃ N × A.
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◮ On the group level this corresponds to

Theorem 0.3 (Iwasawa Decomposition). The map

N ×A×K ∋ (n, a, k) 7→ nak ∈ G

is an analytic isomorphism. We write

x =
∈N

n(x)
∈A

a(x)
∈K

k(x)

for the unique decomposition of x ∈ G. In particular G/K ≃ N × A.

◮ We assume that G ⊂ GC, where Lie(GC) = g ⊗ C. Then we can
complexify all the groups under consideration and obtain NC, AC and KC.
Then NCACKC ⊂ GC is open and dense but not equal to GC. Furthermore,
the decomposition

x = n(x)a(x)k(x) ∈ NCACKC

is not unique in general.
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◮ For our standard example this corresponds to:

a = {diag(xi) |
∑

xi = 0}

= {x ∈ R
n | x1 + x2 + . . .+ xn = 0} ≃ R

n−1

A =

∆ =

∆+ =

N =
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◮ For our standard example this corresponds to:

a = {diag(xi) |
∑

xi = 0}

= {x ∈ R
n | x1 + x2 + . . .+ xn = 0} ≃ R

n−1

A = {diag(ai) | (∀i)ai > 0, a1 · · ·an = 1}
∆ =

∆+ =

N =
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◮ For our standard example this corresponds to:

a = {diag(xi) |
∑

xi = 0}

= {x ∈ R
n | x1 + x2 + . . .+ xn = 0} ≃ R

n−1

A = {diag(ai) | (∀i)ai > 0, a1 · · ·an = 1}
∆ = set of αij : diag(xk) 7→ xi − xj , i 6= j

∆+ =

N =
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◮ For our standard example this corresponds to:

a = {diag(xi) |
∑

xi = 0}

= {x ∈ R
n | x1 + x2 + . . .+ xn = 0} ≃ R

n−1

A = {diag(ai) | (∀i)ai > 0, a1 · · ·an = 1}
∆ = set of αij : diag(xk) 7→ xi − xj , i 6= j

∆+ = {αij | i < j}
N =
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◮ For our standard example this corresponds to:

a = {diag(xi) |
∑

xi = 0}

= {x ∈ R
n | x1 + x2 + . . .+ xn = 0} ≃ R

n−1

A = {diag(ai) | (∀i)ai > 0, a1 · · ·an = 1}
∆ = set of αij : diag(xk) 7→ xi − xj , i 6= j

∆+ = {αij | i < j}
N = {(xij) | i > j : xij = 0, xii = 1}
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◮ For our standard example this corresponds to:

a = {diag(xi) |
∑

xi = 0}

= {x ∈ R
n | x1 + x2 + . . .+ xn = 0} ≃ R

n−1

A = {diag(ai) | (∀i)ai > 0, a1 · · ·an = 1}
∆ = set of αij : diag(xk) 7→ xi − xj , i 6= j

∆+ = {αij | i < j}
N = {(xij) | i > j : xij = 0, xii = 1}

◮ The Iwasawa decomposition follows directly from the Gram-Schmidt
orthogonalization.
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◮ For our standard example this corresponds to:

a = {diag(xi) |
∑

xi = 0}

= {x ∈ R
n | x1 + x2 + . . .+ xn = 0} ≃ R

n−1

A = {diag(ai) | (∀i)ai > 0, a1 · · ·an = 1}
∆ = set of αij : diag(xk) 7→ xi − xj , i 6= j

∆+ = {αij | i < j}
N = {(xij) | i > j : xij = 0, xii = 1}

◮ The Iwasawa decomposition follows directly from the Gram-Schmidt
orthogonalization.

◮ Note, for n = 2 this is
(
a b

c d

)
=

(
1 ac+bd

c2+d2

0 1

)(
1√

c2+d2 0

0
√
c2 + d2

)(
d√

c2+d2

−c√
c2+d2

c√
c2+d2

d√
c2+d2

)

and this breaks down as c2 + d2 = 0.
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6. Spherical Functions and the Fourier Transform
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6. Spherical Functions and the Fourier Transform

◮ We will also need the Weyl group. It is the finite reflection group in O(a)
generated by the reflections rα in the hyperplanes α = 0. It is denoted by
W . We have

W ≃ NK(a)/M M = ZK(a) .

Permutation of the coordinates for our standard case.
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6. Spherical Functions and the Fourier Transform

◮ We will also need the Weyl group. It is the finite reflection group in O(a)
generated by the reflections rα in the hyperplanes α = 0. It is denoted by
W . We have

W ≃ NK(a)/M M = ZK(a) .

Permutation of the coordinates for our standard case.
◮ For a differential operator D : Cc(G/K) → Cc(G/K) and g ∈ G, let

(g ·D)(f) = D(f ◦ Lg−1f) ◦ Lg .

Then D is G-invariant if g ·D = D for all g ∈ G. Thus D is G-invariant if and
only if D commutes with translation

D(f ◦ Lg) = [D(f)] ◦ Lg .

Denote by D(G/K) the commutative algebra of all invariant differential
operators on G/K. On Rn this is just the algebra of constant coefficient
differential operators D(Rn) = C[∂1, . . . , ∂n].
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◮ For λ ∈ a∗
C

let

ϕλ(x) :=

∫

K

a(kx)λ+ρ dk .

The functions ϕλ are the spherical functionson G/K. We have

ϕλ = ϕµ ⇐⇒ ∃w ∈W : λ = wµ .
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◮ For λ ∈ a∗
C

let

ϕλ(x) :=

∫

K

a(kx)λ+ρ dk .

The functions ϕλ are the spherical functionson G/K. We have

ϕλ = ϕµ ⇐⇒ ∃w ∈W : λ = wµ .

◮ The spherical functions are K-invariant eigenfunctions of D(G/K). In
particular for the Laplace operator ∆G/K ∈ D(G/K):

∆G/Kϕλ = (λ2 − |ρ|2)ϕλ

where mα = dim gα and

ρ =
1

2

∑

α∈∆+

mαα .
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◮ For λ ∈ a∗
C

let

ϕλ(x) :=

∫

K

a(kx)λ+ρ dk .

The functions ϕλ are the spherical functionson G/K. We have

ϕλ = ϕµ ⇐⇒ ∃w ∈W : λ = wµ .

◮ The spherical functions are K-invariant eigenfunctions of D(G/K). In
particular for the Laplace operator ∆G/K ∈ D(G/K):

∆G/Kϕλ = (λ2 − |ρ|2)ϕλ

where mα = dim gα and

ρ =
1

2

∑

α∈∆+

mαα .

◮ In the harmonic analysis of K-invariant functions on G/K they play the
same role as the exponential functions eλ(x) = eλ·x on R

n. We will discuss
that in more details later on.
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◮ Let
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◮ Let
• B = M\K where M = ZK(A),
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◮ Let
• B = M\K where M = ZK(A),
• a∗+ = {λ ∈ a∗ | (∀α ∈ ∆+)(λ, α) > 0} it is a fundamental domain for the
W -action on a∗.
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◮ Let
• B = M\K where M = ZK(A),
• a∗+ = {λ ∈ a∗ | (∀α ∈ ∆+)(λ, α) > 0} it is a fundamental domain for the
W -action on a∗.

• dσ(b, λ) = db dλ
|c(λ)|2 where c(λ) is the Harish-Chandra c-function.
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◮ Let
• B = M\K where M = ZK(A),
• a∗+ = {λ ∈ a∗ | (∀α ∈ ∆+)(λ, α) > 0} it is a fundamental domain for the
W -action on a∗.

• dσ(b, λ) = db dλ
|c(λ)|2 where c(λ) is the Harish-Chandra c-function.

◮ For f ∈ Cc(G/K) define the Fourier transform f̂ : B × a∗
C

, of f by

f̂(b, λ) =

∫

G/K

f(x)a(bx)ρ−iλ dx .
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◮ Let
• B = M\K where M = ZK(A),
• a∗+ = {λ ∈ a∗ | (∀α ∈ ∆+)(λ, α) > 0} it is a fundamental domain for the
W -action on a∗.

• dσ(b, λ) = db dλ
|c(λ)|2 where c(λ) is the Harish-Chandra c-function.

◮ For f ∈ Cc(G/K) define the Fourier transform f̂ : B × a∗
C

, of f by

f̂(b, λ) =

∫

G/K

f(x)a(bx)ρ−iλ dx .

Theorem 0.3 (Helgason). 1. The Fourier transform extends to an unitary

isomorphism F : L2(G/K) → L2(B × a∗, dσ)+some W -invariance.

2. If f ∈ Cc(G/K) then f(x) = c

∫

B×a∗
f̂(b, λ)a(bx)iλ+ρ dσ.

3. We have F(∆G/Kf)(b, λ) = (λ2 − ρ2)f̂(b, λ).
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◮ For K-invariant functions, this reduces to the Harish-Chandra spherical
Fourier transform

f̂(λ) =

∫
f(x)ϕ−iλ(x) dx .

and the spherical Fourier transform extends to an unitary isomorphism

L2(G/K)K ∋ f 7→ f̂ ∈ L2(a∗,
dλ

|c(λ)|2 )W ≃ L2(a∗+, |W | dλ

|c(λ)|2 )
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◮ For K-invariant functions, this reduces to the Harish-Chandra spherical
Fourier transform

f̂(λ) =

∫
f(x)ϕ−iλ(x) dx .

and the spherical Fourier transform extends to an unitary isomorphism

L2(G/K)K ∋ f 7→ f̂ ∈ L2(a∗,
dλ

|c(λ)|2 )W ≃ L2(a∗+, |W | dλ

|c(λ)|2 )

with inversion formula

f(x) =
1

|W |

∫

a∗

+

f̂(λ)ϕiλ(x)
dλ

|c(λ)|2 .
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◮ Using the Fourier transform and part (3) of Helgason’s Theorem we get
the following form for the solution of the heat equation:

Htf(x) =

∫
e−(λ2+ρ2)tf̂(b, λ) a(bx)iλ+ρ dσ(b, λ)

= f ∗ ht(x) .

Note the ρ2-shift!
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◮ Using the Fourier transform and part (3) of Helgason’s Theorem we get
the following form for the solution of the heat equation:

Htf(x) =

∫
e−(λ2+ρ2)tf̂(b, λ) a(bx)iλ+ρ dσ(b, λ)

= f ∗ ht(x) .

Note the ρ2-shift!

◮ For the heat kernel we get the expression:

ht(x) =
1

|W |

∫

a∗

+

e−(|λ|2+|ρ|2)tϕiλ(x)
dλ

|c(λ)|2

=
1

|W |2
∫

a∗

e−(|λ|2+|ρ|2)tϕiλ(x)
dλ

|c(λ)|2 .
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◮ Using the Fourier transform and part (3) of Helgason’s Theorem we get
the following form for the solution of the heat equation:

Htf(x) =

∫
e−(λ2+ρ2)tf̂(b, λ) a(bx)iλ+ρ dσ(b, λ)

= f ∗ ht(x) .

Note the ρ2-shift!

◮ For the heat kernel we get the expression:

ht(x) =
1

|W |

∫

a∗

+

e−(|λ|2+|ρ|2)tϕiλ(x)
dλ

|c(λ)|2

=
1

|W |2
∫

a∗

e−(|λ|2+|ρ|2)tϕiλ(x)
dλ

|c(λ)|2 .

◮ So, how far does x 7→ ht(x) extend? Or, how far does x 7→ ϕλ(x) extend,
and what is the growth of the extension?
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7. The Crown and the Heat Kernel
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7. The Crown and the Heat Kernel

◮ We define

Ω = {X ∈ a | (∀α ∈ ∆) |α(X)| < π/2} W − invariant polytope

Ξ = G exp(iΩ) · xo ⊂ GC/KC

where xo is the base point eKC ⊂ GC/KC. Then Ξ is an open G-invariant
subset of GC/KC, the Akhiezer-Gindikin domain or complex crown . It has
been studied by several group of people: Barchini, Burns + Halverscheid +
Hind, Huckleberry, Krötz + Stanton, Wolf and others.



- p. 37/54

7. The Crown and the Heat Kernel

◮ We define

Ω = {X ∈ a | (∀α ∈ ∆) |α(X)| < π/2} W − invariant polytope

Ξ = G exp(iΩ) · xo ⊂ GC/KC

where xo is the base point eKC ⊂ GC/KC. Then Ξ is an open G-invariant
subset of GC/KC, the Akhiezer-Gindikin domain or complex crown . It has
been studied by several group of people: Barchini, Burns + Halverscheid +
Hind, Huckleberry, Krötz + Stanton, Wolf and others.

◮ Its importance in harmonic analysis on G/K comes from the following.
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7. The Crown and the Heat Kernel

◮ We define

Ω = {X ∈ a | (∀α ∈ ∆) |α(X)| < π/2} W − invariant polytope

Ξ = G exp(iΩ) · xo ⊂ GC/KC

where xo is the base point eKC ⊂ GC/KC. Then Ξ is an open G-invariant
subset of GC/KC, the Akhiezer-Gindikin domain or complex crown . It has
been studied by several group of people: Barchini, Burns + Halverscheid +
Hind, Huckleberry, Krötz + Stanton, Wolf and others.

◮ Its importance in harmonic analysis on G/K comes from the following.

Theorem 0.4 (Krötz+Stanton, ...). 1. We have Ξ ⊂ NCAC · xo and the

Iwasawa projection Ξ ∋ ξ 7→ a(ξ) ∈ AC is well defined and

holomorphic.

2. Ξ is a maximal G-invariant domain in GC/KC such that all the joint

eigenfunctions for D(G/K) extends to holomorphic functions on Ξ.
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◮ It follows that the spherical functions extends to Ξ. With some extra work,

involving the the growth of the spherical functions we have:

Theorem 0.5 (Krötz+Stanton). The heat kernel extends to a holomorphic

function on Ξ given by the same formula

ht(ξ) =
1

|W |

∫

a∗
+

e−(|λ|2+|ρ|2)tϕiλ(ξ) dσ(λ) .
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◮ It follows that the spherical functions extends to Ξ. With some extra work,

involving the the growth of the spherical functions we have:

Theorem 0.5 (Krötz+Stanton). The heat kernel extends to a holomorphic

function on Ξ given by the same formula

ht(ξ) =
1

|W |

∫

a∗
+

e−(|λ|2+|ρ|2)tϕiλ(ξ) dσ(λ) .

◮ As a consequence we have that each solution to the heat
equation f ∗ ht, f ∈ L2(G/K) extends to a holomorphic function
on Ξ:

Htf(ξ) =

∫

G

f(gxo)ht(g
−1ξ) dg .

As before, the problem is then to determine the image of
Ht : L2(G/K) → O(Ξ).



- p. 39/54

8. The Abel Transform and the Heat Kernel
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8. The Abel Transform and the Heat Kernel

◮ Recall that
∫

G/K

f(x) dx =

∫

A

∫

N

f(na · xo)a
−2ρ dnda =

∫

A

∫

N

f(an · xo)a
2ρ dnda .

For a K-invariant f function on G/K, say of compact support, define the
Abel transform of f by

A(f)(a) = aρ

∫

N

f(an) dn

︸ ︷︷ ︸
The Radon Transform

= a−ρ

∫

N

f(na) dn (0.3)

using the notation (exp(X))λ = eλ(X). Then A(f) is a W -invariant function
on A.
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The Radon Transform
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N
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using the notation (exp(X))λ = eλ(X). Then A(f) is a W -invariant function
on A. and we have

A(∆G/Kf) = (∆A − |ρ|2)A(f) . (0.4)
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Abel transform of f by
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∫

N

f(an) dn

︸ ︷︷ ︸
The Radon Transform

= a−ρ

∫

N

f(na) dn (0.3)

using the notation (exp(X))λ = eλ(X). Then A(f) is a W -invariant function
on A. and we have

A(∆G/Kf) = (∆A − |ρ|2)A(f) . (0.4)
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◮ We have the following Fourier slice theorem for K-invariant functions:

f̂(λ) =

∫

G/K

f(x)ϕ−iλ(x) dx

=

∫

G/K

f(x)a(k−1x)−iλ+ρ dx

=

∫

A

(
a−ρ

∫

N

f(na · xo) dn

)
a−iλ da

= FA(A(f))(λ)
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◮ We have the following Fourier slice theorem for K-invariant functions:

f̂(λ) =

∫

G/K

f(x)ϕ−iλ(x) dx

=

∫

G/K

f(x)a(k−1x)−iλ+ρ dx

=

∫

A

(
a−ρ

∫

N

f(na · xo) dn

)
a−iλ da

= FA(A(f))(λ)

◮ Or
FG/K = FA ◦ A .
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◮ We have the following Fourier slice theorem for K-invariant functions:

f̂(λ) =

∫

G/K

f(x)ϕ−iλ(x) dx

=

∫

G/K

f(x)a(k−1x)−iλ+ρ dx

=

∫

A

(
a−ρ

∫

N

f(na · xo) dn

)
a−iλ da

= FA(A(f))(λ)

◮ Or
FG/K = FA ◦ A .

◮ Equation (0.4) implies also that

ht(expX) = e−|ρ|2t
︸ ︷︷ ︸

the ρ−shift

A−1
︸︷︷︸

a shift operator

(
(4πt)−n/2e−|X|2/4t

)

︸ ︷︷ ︸
the heat kernel on A

.
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◮ Define

ψλ(expX) =
1

|W |
∑

w∈W

ewλ(X)

a holomorphic function on a∗
C

.
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◮ Define

ψλ(expX) =
1

|W |
∑

w∈W

ewλ(X)

a holomorphic function on a∗
C

.

◮ Then the equation FG/K = FA ◦ A implies that A∗(ψλ) = ϕλ. The
Abel/Radon transform shifts the “flat” case to the ”curved” case!
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◮ Define

ψλ(expX) =
1

|W |
∑

w∈W

ewλ(X)
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◮ Define

ψλ(expX) =
1

|W |
∑

w∈W

ewλ(X)

a holomorphic function on a∗
C

.

◮ Then the equation FG/K = FA ◦ A implies that A∗(ψλ) = ϕλ. The
Abel/Radon transform shifts the “flat” case to the ”curved” case!

◮ Define now the pseudo-differential operator D on A by:

D = F−1
A ◦ 1

|c(λ)|2 ◦ FG/K

or – for “good” – W -invariant functions:

Dh(a) =

∫

a∗

+

then the multiplier︷ ︸︸ ︷
FG/K(h)(λ)
︸ ︷︷ ︸

Firt the FT on G/K

1

|c(λ)|2 ψiλ(a) dλ

︸ ︷︷ ︸
back using F−1

A

.
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9. The Faraut-Gutzmer Formula and the Orbital Integral

◮ For sufficiently decreasing functions h : Ξ → C we define the G-orbital
integral Oh : 2iΩ → C by

Oh(Y ) =

∫

G

h(g exp

(
i

2
Y

)
· xo) dg .
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◮ We define now G(Ξ) ⊂ O(Ξ) to be the space of holomorphic functions F
on Ξ such that

F |G/K ∈ L2(G/K)
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9. The Faraut-Gutzmer Formula and the Orbital Integral

◮ For sufficiently decreasing functions h : Ξ → C we define the G-orbital
integral Oh : 2iΩ → C by

Oh(Y ) =

∫

G

h(g exp

(
i

2
Y

)
· xo) dg .

◮ We define now G(Ξ) ⊂ O(Ξ) to be the space of holomorphic functions F
on Ξ such that

F |G/K ∈ L2(G/K)

and for all Y ∈ a:
∫

|f̂(b, λ)|2 ψiλ(exp iY ) dσ(b, λ) <∞ .
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The following theorem is the replacement for what we used earlier:
∫

|F (x+ iy)|2 dx =

∫
|F(F |Rn)(λ)|2 e−2λ·y dλ .

It has several applications in harmonic analysis on G/K:
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The following theorem is the replacement for what we used earlier:
∫

|F (x+ iy)|2 dx =

∫
|F(F |Rn)(λ)|2 e−2λ·y dλ .

It has several applications in harmonic analysis on G/K:

Theorem 0.5 (Faraut). Let F ∈ G(Ξ) and Y ∈ Ω. Set

f = F |G/K ∈ L2(G/K). Then
∫

G

|F (g exp iY )|2 dg =

∫
|f̂(b, λ)|2ϕiλ(exp(2iY )) dσ(b, λ) .
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The following theorem is the replacement for what we used earlier:
∫

|F (x+ iy)|2 dx =

∫
|F(F |Rn)(λ)|2 e−2λ·y dλ .

It has several applications in harmonic analysis on G/K:

Theorem 0.5 (Faraut). Let F ∈ G(Ξ) and Y ∈ Ω. Set

f = F |G/K ∈ L2(G/K). Then
∫

G

|F (g exp iY )|2 dg =

∫
|f̂(b, λ)|2ϕiλ(exp(2iY )) dσ(b, λ) .

◮ It follows that O|F |2 is defined for all F ∈ G(Ξ) and defines a
holomorphic function on A exp(2iΩ) given by (f = F |G/K):

O|F |2(expZ) =

∫
|f̂(b, λ)|2ϕiλ(expZ) dσ .



- p. 44/54

10. The Image of the Segal-Bargmann Transform



- p. 44/54

10. The Image of the Segal-Bargmann Transform

◮ We have now set every thing up to state (and prove) what the image of
the Segal-Bargmann transform in this case is. Define a ρ-shifted density
function by

ωt(a expY ) :=
etρ2

|W |︸︷︷︸
takes care of the ρ−shift

(
(2πt)−n/2e−|Y |2/2t

)

︸ ︷︷ ︸
the density for a

.
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10. The Image of the Segal-Bargmann Transform

◮ We have now set every thing up to state (and prove) what the image of
the Segal-Bargmann transform in this case is. Define a ρ-shifted density
function by

ωt(a expY ) :=
etρ2

|W |︸︷︷︸
takes care of the ρ−shift

(
(2πt)−n/2e−|Y |2/2t

)

︸ ︷︷ ︸
the density for a

.

◮ Define a “norm” on G(Ξ) by

‖F‖2
t =

∫

a

DO|F |2(exp iY )ωt(Y ) dY

and set
Ft(Ξ) = {F ∈ G(Ξ) | ‖F‖t <∞} .



- p. 45/54

Theorem 0.6 (KÓS). The Segal-Bargmann transform is an unitary

isomorphism

Ht : L2(G/K) → Ft(Ξ) .



- p. 45/54

Theorem 0.6 (KÓS). The Segal-Bargmann transform is an unitary

isomorphism

Ht : L2(G/K) → Ft(Ξ) .

◮ What is needed in the proof is:

FG/K(Htf)(b, λ) = FG/K(f ∗ ht)(b, λ)

= f̂(b, λ)ĥt(b, λ)

= e−t(λ2+ρ2)f̂(b, λ)
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Theorem 0.6 (KÓS). The Segal-Bargmann transform is an unitary

isomorphism

Ht : L2(G/K) → Ft(Ξ) .

◮ What is needed in the proof is:

FG/K(Htf)(b, λ) = FG/K(f ∗ ht)(b, λ)

= f̂(b, λ)ĥt(b, λ)

= e−t(λ2+ρ2)f̂(b, λ)

And hence, with F = Htf :
∫
DO|F |2(iY )ωt(Y )dY

=

∫∫
|f̂(b, λ)|2e−t(λ2+ρ2)ψλ(2iY )ωt(Y ) dσdY
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Then we only need that
∫

a

ψλ(2iY )ωt(Y )dY = et(λ2+ρ2) .
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Then we only need that
∫

a

ψλ(2iY )ωt(Y )dY = et(λ2+ρ2) .

10. The K-invariant case
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Then we only need that
∫

a

ψλ(2iY )ωt(Y )dY = et(λ2+ρ2) .

10. The K-invariant case

What we need first for the K-invariant case is the following simple theorem.
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Theorem 0.6 We have G = KAK and the restriction map

L2(G/K)K ∋ f 7→ f |A ∈ L2(A, |W |−1dµ)W ≃ L2(A+, dµ)

is an unitary isomorphism.
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L2(G/K)K ∋ f 7→ f |A ∈ L2(A, |W |−1dµ)W ≃ L2(A+, dµ)

is an unitary isomorphism.

◮ This reduces the analysis of K-invariant functions on G/K to analysis of
W -invariant functions on the Euclidean space A ≃ a.
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◮ Next we consider the effect on the Heat equation. For that let H1, . . . , Hn

be a orthonormal basis of a and Areg = {a ∈ A | (∀α) aα 6= 1}.
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Theorem 0.6 We have G = KAK and the restriction map

L2(G/K)K ∋ f 7→ f |A ∈ L2(A, |W |−1dµ)W ≃ L2(A+, dµ)

is an unitary isomorphism.

◮ This reduces the analysis of K-invariant functions on G/K to analysis of
W -invariant functions on the Euclidean space A ≃ a.
◮ Next we consider the effect on the Heat equation. For that let H1, . . . , Hn

be a orthonormal basis of a and Areg = {a ∈ A | (∀α) aα 6= 1}.
◮ Let (·, ·) be a W -invariant inner product on a (and by duality on a∗).
Chose hα ∈ a be such that (X, hα) = α(X), (α, β) = (Hα, Hβ), and - for
α 6= 0 - Hα = 2

(α,α)hα.
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Theorem 0.6 We have G = KAK and the restriction map

L2(G/K)K ∋ f 7→ f |A ∈ L2(A, |W |−1dµ)W ≃ L2(A+, dµ)

is an unitary isomorphism.

◮ This reduces the analysis of K-invariant functions on G/K to analysis of
W -invariant functions on the Euclidean space A ≃ a.
◮ Next we consider the effect on the Heat equation. For that let H1, . . . , Hn

be a orthonormal basis of a and Areg = {a ∈ A | (∀α) aα 6= 1}.
◮ Let (·, ·) be a W -invariant inner product on a (and by duality on a∗).
Chose hα ∈ a be such that (X, hα) = α(X), (α, β) = (Hα, Hβ), and - for
α 6= 0 - Hα = 2

(α,α)hα.
◮ Define a W -invariant differential operator L on Areg by

L =
n∑

j=1

∂(Hj)
2 +

∑

α∈∆+

mα
1 + e−2α

1 − e−2α
∂(hα) .
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Theorem 0.7 (The radial part of the Laplacian) We have

(∆f)|Areg = L(f |Areg)

for all f ∈ C∞(G/K)K .
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Theorem 0.7 (The radial part of the Laplacian) We have

(∆f)|Areg = L(f |Areg)

for all f ∈ C∞(G/K)K .

◮ Hence the heat equation for K-invariant functions on G/K corresponds
to the Cauchy problem on Areg (or A+)

(*)
Lu(a, t) = ∂tu(a, t)

u(a, t)
t→0+

−→ f(a) ∈ L2(A+, dµ)
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to the Cauchy problem on Areg (or A+)

(*)
Lu(a, t) = ∂tu(a, t)

u(a, t)
t→0+

−→ f(a) ∈ L2(A+, dµ)

◮ The important observation now is, that every thing in (*) as well as the
Harish-Chandra c-function is independent of G/K, it only depends on
◮ the space a ≃ R

n,
◮ the set of roots ∆ and
◮ multiplicity function m : α→ mα!
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◮ the space a ≃ R
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◮ multiplicity function m : α→ mα!

◮ So from now on m : ∆ → [0,∞) is a Weyl group invariant function,
defined on a root system ∆ in a finite dimensional Euclidean space a.
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Theorem 0.7 (The radial part of the Laplacian) We have

(∆f)|Areg = L(f |Areg)

for all f ∈ C∞(G/K)K .

◮ Hence the heat equation for K-invariant functions on G/K corresponds
to the Cauchy problem on Areg (or A+)

(*)
Lu(a, t) = ∂tu(a, t)

u(a, t)
t→0+

−→ f(a) ∈ L2(A+, dµ)

◮ The important observation now is, that every thing in (*) as well as the
Harish-Chandra c-function is independent of G/K, it only depends on
◮ the space a ≃ R

n,
◮ the set of roots ∆ and
◮ multiplicity function m : α→ mα!

◮ So from now on m : ∆ → [0,∞) is a Weyl group invariant function,
defined on a root system ∆ in a finite dimensional Euclidean space a.
◮ The density function and the differential operator L is defined as before.
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◮ What is missing is a good Fourier analysis on a with respect to the
measure dµ.
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◮ What is missing is a good Fourier analysis on a with respect to the
measure dµ.

◮ This theory was developed by E. Opdam and G. Heckman in a series of
article, starting around 1988

◮ What they did was to define for each λ ∈ a∗
C

a function - the generalized
hypergeometric functions - ϕλ : A→ C using the Harish-Chandra expansion

ϕλ(a) =
∑

w∈W

c(wλ)Ψwλ(a)

where Ψµ is defined by an infinite sum involving exponentials and rational
functions Γµ(λ) that depend on mα in a rational way, and hence make sense
for all multiplicity functions!



- p. 49/54

◮ What is missing is a good Fourier analysis on a with respect to the
measure dµ.

◮ This theory was developed by E. Opdam and G. Heckman in a series of
article, starting around 1988

◮ What they did was to define for each λ ∈ a∗
C

a function - the generalized
hypergeometric functions - ϕλ : A→ C using the Harish-Chandra expansion

ϕλ(a) =
∑

w∈W

c(wλ)Ψwλ(a)

where Ψµ is defined by an infinite sum involving exponentials and rational
functions Γµ(λ) that depend on mα in a rational way, and hence make sense
for all multiplicity functions!

◮ Note, that the properties of the spherical functions follows from the
defining integral formula. It was therefore a non-trivial task to prove the
following using only the expansion formula:
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◮ What they did was to define for each λ ∈ a∗
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a function - the generalized
hypergeometric functions - ϕλ : A→ C using the Harish-Chandra expansion

ϕλ(a) =
∑

w∈W

c(wλ)Ψwλ(a)

where Ψµ is defined by an infinite sum involving exponentials and rational
functions Γµ(λ) that depend on mα in a rational way, and hence make sense
for all multiplicity functions!

◮ Note, that the properties of the spherical functions follows from the
defining integral formula. It was therefore a non-trivial task to prove the
following using only the expansion formula:
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◮ ϕλ extends to a holomorphic function on a tubular neighborhood of A in
AC = aC/Z{πiHα | α ∈ ∆}. What was not stated was how big this
neighborhood is;
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◮ Growth estimates for ϕλ(a exp iX) for X ∈ Ω where

Ω = {X ∈ a | (∀α ∈ ∆) |α(X)| < π/2} .
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◮ ϕλ extends to a holomorphic function on a tubular neighborhood of A in
AC = aC/Z{πiHα | α ∈ ∆}. What was not stated was how big this
neighborhood is;

◮ ϕλ = ϕµ if and only if there exists a w ∈W such that wλ = µ;

◮ Lϕλ = ((λ, λ) − (ρ, ρ))ϕλ where 2ρ =
∑

α∈∆+ mαα.

◮ Growth estimates for ϕλ(a exp iX) for X ∈ Ω where

Ω = {X ∈ a | (∀α ∈ ∆) |α(X)| < π/2} .

◮ With those tools available, one defines the Hypergeometric Fourier
transform by

Ff(λ) = f̂(λ) =

∫

A

f(a)ϕ−iλ(a) dµ = |W |
∫

A+

f(a)ϕ−iλ(a) dµ .
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◮ Define c : a∗
C
→ C by the same formula as the Harish-Chandra c-function

(product and quotients of Γ-functions) and set dν(λ) = |c(iλ)|−1 dλ.
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◮ Define c : a∗
C
→ C by the same formula as the Harish-Chandra c-function

(product and quotients of Γ-functions) and set dν(λ) = |c(iλ)|−1 dλ.

Theorem 0.8 (Heckmann-Opdam) The Fourier transform extends to an
unitary isomorphism

L2(A, dµ)W ≃ L2(a∗, dν)W .

Furthermore, if f ∈ C∞
c (A)W then

f(a) = |W |−1

∫

a∗

f̂(λ)ϕiλ(a) dν(λ)

and
F(Lf)(λ) = −(|λ|2 + |ρ|2)F(f)(λ) .
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Let us put this together in a commutative diagram:

L2(A, dµ)W

F
��

// L2(A, da)τ(W )

FA

��

L2(a∗, dν)W
Ψ

// L2(a∗, dλ)τ(W )
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Let us put this together in a commutative diagram:

L2(A, dµ)W

F
��

// L2(A, da)τ(W )

FA

��

L2(a∗, dν)W
Ψ

// L2(a∗, dλ)τ(W )

• FA is the usual Fourier transform on A: FA(f)(λ) =
∫

A
f(a)a−iλ da
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• FA is the usual Fourier transform on A: FA(f)(λ) =
∫

A
f(a)a−iλ da

• Ψ is the linear map F 7→ c(−iλ)−1F (λ)
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L2(A, dµ)W

F
��

// L2(A, da)τ(W )

FA

��

L2(a∗, dν)W
Ψ

// L2(a∗, dλ)τ(W )

• FA is the usual Fourier transform on A: FA(f)(λ) =
∫

A
f(a)a−iλ da

• Ψ is the linear map F 7→ c(−iλ)−1F (λ)

• τ is the action τ(w)F (λ) = c(iw−1λ)/c(iλ)F (w−1λ)
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F
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// L2(A, da)τ(W )

FA

��

L2(a∗, dν)W
Ψ

// L2(a∗, dλ)τ(W )

• FA is the usual Fourier transform on A: FA(f)(λ) =
∫

A
f(a)a−iλ da

• Ψ is the linear map F 7→ c(−iλ)−1F (λ)

• τ is the action τ(w)F (λ) = c(iw−1λ)/c(iλ)F (w−1λ)
• and the isometry Λ
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F
��

Λ
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FA

��

L2(a∗, dν)W
Ψ

// L2(a∗, dλ)τ(W )

• FA is the usual Fourier transform on A: FA(f)(λ) =
∫

A
f(a)a−iλ da

• Ψ is the linear map F 7→ c(−iλ)−1F (λ)

• τ is the action τ(w)F (λ) = c(iw−1λ)/c(iλ)F (w−1λ)
• and the isometry Λ
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Let us put this together in a commutative diagram:

L2(A, dµ)W

F
��

Λ
// L2(A, da)τ(W )

FA

��

L2(a∗, dν)W
Ψ

// L2(a∗, dλ)τ(W )

• FA is the usual Fourier transform on A: FA(f)(λ) =
∫

A
f(a)a−iλ da

• Ψ is the linear map F 7→ c(−iλ)−1F (λ)

• τ is the action τ(w)F (λ) = c(iw−1λ)/c(iλ)F (w−1λ)
• and the isometry Λ is constructed so as to make the diagram commutative.
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Let us put this together in a commutative diagram:

L2(A, dµ)W

F
��

Λ
// L2(A, da)τ(W )

FA

��

L2(a∗, dν)W
Ψ

// L2(a∗, dλ)τ(W )

• FA is the usual Fourier transform on A: FA(f)(λ) =
∫

A
f(a)a−iλ da

• Ψ is the linear map F 7→ c(−iλ)−1F (λ)

• τ is the action τ(w)F (λ) = c(iw−1λ)/c(iλ)F (w−1λ)
• and the isometry Λ is constructed so as to make the diagram commutative.
◮ Then

Λ(Lf)(a) = (∆A − |ρ|2)Λ(f)(a)

reducing the our problem to a shifted heat equation on A ≃ a:

(∆A − |ρ|2)u(a, t) = ∂tu(x, t)
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Theorem 0.9 (Ó+S, 2005) 1) The solution of the heat equation is given by

u(a, t) = |W |−2

∫

a∗

e−t(|λ|2+|ρ|2)f̂(λ)ϕiλ(a) dν(λ) f ∈ L2(A)W .
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Theorem 0.9 (Ó+S, 2005) 1) The solution of the heat equation is given by
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e−t(|λ|2+|ρ|2)f̂(λ)ϕiλ(a) dν(λ) f ∈ L2(A)W .

Let Ht be the space of holomorphic function on F : A exp iΩ → C such that
Λ(F ) extends to a τ(W )-invariant holomorphic function on aC such that

‖F‖2
t = e2t|ρ|2

∫

aC

|ΛF (X + iY )|2 dµt(X + iY ) <∞ .

Then Ht is a Hilbert space and

Ht : L2(A)W → Ht

is an unitary isomorphism. Here µt is the heat measure on the Euclidean
space a.
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Assume mα = 2 for all α, i.e., (a,∆,m) corresponds to a Riemannian
symmetric space G/K with G complex.
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Assume mα = 2 for all α, i.e., (a,∆,m) corresponds to a Riemannian
symmetric space G/K with G complex. Then, δ(a)1/2 =

∏
α∈∆+(aα − a−α)

has a holomorphic extension to AC and Λf(a) = δ(a)1/2f(a).
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Theorem 0.10 (Hall+Mitchell) Assume that G is complex. Let
f ∈ L2(G/K)K , and let u(x, t) = Htf(x) be the solution to the heat
equation. The map X 7→ δ(expX)1/2u(expX, t), X ∈ a, has a holomorphic
extension to aC such that

‖f‖2 =

∫

aC

|(δ1/2u)(X + iY, t)|2e2t|ρ|2 dµt(X + iY )
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Theorem 0.10 (Hall+Mitchell) Assume that G is complex. Let
f ∈ L2(G/K)K , and let u(x, t) = Htf(x) be the solution to the heat
equation. The map X 7→ δ(expX)1/2u(expX, t), X ∈ a, has a holomorphic
extension to aC such that

‖f‖2 =

∫

aC

|(δ1/2u)(X + iY, t)|2e2t|ρ|2 dµt(X + iY )

Conversely, any meromorphic function u(Z) which is invariant under W
and which satisfies

∫

aC

|(δ1/2u)(X + iY )|2e2t|ρ|2 dµt(X + iY ) <∞

is the Segal-Bargmann tranform Htf for some f ∈ L2(G/K)K .


