Solution to the homework due 3-31-06

5.5-5: (a) The sequence $\sum_{k=1}^{\infty} e^{-k x}$ converges uniformly on $[1, \infty)$. For that note that on this interval we have

$$
e^{-k x} \leq e^{-k}=(1 / e)^{k}
$$

and the series $\sum_{k=1}^{\infty}(1 / e)^{k}$ converges. The claim follows then by the Weierstrass M-test.
(b) $\sum_{k=1}^{\infty} \frac{\sin (k x)}{k^{3}}$ converges uniformly on \mathbb{R} because

$$
\left|\frac{\sin (k x)}{k^{3}}\right| \leq \frac{1}{k^{3}}
$$

and the series $\sum_{k=1}^{\infty} 1 / k^{3}$ converges. The claim follows then by the Weierstrass M-test.
(c) The series $\sum_{k=1}^{\infty} \sin ^{k}(x)$ converges uniformly on $[0, \pi / 4]$ because on this interval $\left|\sin ^{k}(x)\right| \leq$ $(1 / \sqrt{2})^{k}$ and the series $\sum_{k=1}^{\infty}(1 / \sqrt{2})^{k}$ converges.
(d) No, the series $\sum_{k=1}^{\infty} \tan ^{k} x$ does not even converge at $x=\pi / 4$.
5.5-6: Let $f(x)=\sum_{k=1}^{\infty} \sin (k x) / k^{3}$ on \mathbb{R}. Show that $f \in C^{1}(\mathbb{R})$ and find an expression for $f^{\prime}(x)$ in terms of an infinite series.
Solution: We use Theorem 5.5.1 with $f_{k}(x)=\sin (k x) / k^{3}$. Then

$$
f_{k}^{\prime}(x)=\frac{\cos (k x)}{k^{2}}
$$

and, as the series $\sum_{k=1}^{\infty} k^{-2}$ converges, $\sum_{k=1}^{\infty} f_{k}^{\prime}(x)$ converges uniformly (and absolutely) on \mathbb{R}. As the series for $f(x)$ converges for all points, it follows that

$$
f^{\prime}(x)=\sum_{k=1}^{\infty} \frac{\cos (k x)}{k^{2}}
$$

by Theorem 5.5.1-c and f^{\prime} is continuous by 5.5.1-a.
5.6.-2 (Look for the statement in the book, p. 140)
a) We have

$$
\frac{1}{t}=\frac{1}{1-(1-t)}=\sum_{k=0}^{\infty}(1-t)^{k}=\sum_{k=0}^{\infty}(-1)^{k}(t-1)^{k}
$$

as long as $|t-1|<1$ of $t \in(0,2)$. If $t=2$, then we have

$$
\sum_{k=0}^{\infty}(-1)^{k}=1-1+1-1+\ldots
$$

which does not converge (note that $s_{n}=1$ if n is even and $s_{n}=0$ if n is odd.). For $t=0$ we have

$$
\sum_{k=0}^{\infty} 1=1+1+\ldots
$$

which does not converge.
(b) We have

$$
\begin{aligned}
\log x & =\int_{1}^{x} \frac{1}{t} d t \\
& =\int_{1}^{x} \sum_{k=0}^{\infty}(-1)^{k}(t-1)^{k} d t \\
& =\sum_{k=0}^{\infty}(-1)^{k} \int_{1}^{x}(t-1)^{k} d t \\
& =\sum_{k=0}^{\infty}(-1)^{k} \frac{1}{k+1} x^{k+1} \\
& =\sum_{k=1}^{\infty} \frac{(-1)^{k-1}}{k} x^{k} .
\end{aligned}
$$

Here we need the uniform convergence of the series

$$
\sum_{k=0}^{\infty}(-1)^{k}(t-1)^{k}
$$

on any closed subinterval $[\alpha, \beta] \subset(0,2)$ (see Theorem 5.6.1) to be able to apply Theorem 5.5.1-b.

