Math 7311, Analysis 1, Homework \#5. Due Monday, Sept

 24, at 11:30 in Class1) Let (X, \mathcal{A}) be a measurable space and Y a non-empty set. If f : $X \rightarrow Y$ is a function define $\mathcal{B}=\left\{A \subseteq Y \mid f^{-1}(A) \in \mathcal{A}\right\}$. Show that \mathcal{B} is a σ-algebra.
2) (Exercise 3.27, p. 52). For $\epsilon>0$ construct a open dense subset $U_{\epsilon} \subset \mathbb{R}^{n}$ such that $\lambda\left(U_{\epsilon}\right)<\epsilon$ where λ is the Lebesgue measure on \mathbb{R}^{n}. (Think about $\mathbb{Q}^{n} \subset \mathbb{R}^{n}$.)
3) Let (X, \mathcal{A}) be a measurable space such that $\mathcal{A} \neq \mathcal{P}(X)$. Construct a function $f: X \rightarrow \mathbb{R}$ which is not measurable but $|f|$ is measurable.
4) (Compare to Bartle: The Elements of Integration and Lebesgue Measure, p. 26.)
a) Let $E \subset \mathbb{R}$ be open. Then $\lambda(E)=0$ if and only if $E=\emptyset$.
b) If $K \subset \mathbb{R}$ is compact, then $\lambda(K)<\infty$.
