
An idea how to solve some of the problems

5.2-2. (a) Does not converge: By multiplying across we get

2k

2k2 − 1
≥ 1/2

k
⇔ 2k2 ≥ k2 − 1/2 ⇔ k2 ≥ −1/2

Hence
2k

2k2 − 1
≥ 1/2

k
.

As the series
∑

∞

k=1
1
k

diverges the same must hold for the original series.

(b) Converges: We have (k − 1)/(k2k) ≤ 2−k and the series
∑

∞

k=1 2−k converges.

(c) Divergent: In this case 1/(2k−1) > 1/(2k) (multiply in cross) and the series
∑

∞

k=1 1/k diverges.

(d) Divergent:

5.2-4. Assume first that p > 1 and take f(x) = x−p. Then f is monotonically decreasing to zero.
Furthermore

∫

∞

1

f(t)dt = lim
T→∞

∫ T

1

t−p dt = lim
T→∞

1

1 − p
T 1−p +

1

p − 1
=

1

p − 1
< ∞ .

The claim follows then from Theorem 5.2.2.

Let now p = 1. We have
∫ T

1
x−1 dx = log T → ∞ as T → ∞. It follows that

∫

∞

1
1/x dx does

not exists and hence
∑

∞

k=1 k−1 does not converge according to Theorem 5.2.2. If 0 ≤ p ≤ 1 then
1/kp ≥ 1/k and hence

∑

∞

k=1 k−p diverges.

5.2-8. Suppose xk ≥ 0 for all k ∈ N, and suppose that limk→∞
k
√

xk = L exists.

(a) If L > 1 then
∑

∞

k=1 xk diverges: Let 1 < r < L. Then there exists N ∈ N such that for all
n ≥ N we have r ≤ k

√
xk. Hence xk ≥ rk. The claim follows now because

∑

∞

k=N rk does not exists.

(b) If L < 1 then
∑

∞

k=1 xk converges: Let L < r < 1. Then there exists N ∈ N such that k
√

xk ≤ r
for all n ≥ N . This implies that xk ≤ rk and hence

∞
∑

k=1

xk = x1 + . . . + xN−1 +
∞
∑

k=N

xk

≤ x1 + . . . + xN−1 +

∞
∑

k=N

rk < ∞ .



Hence the series converges.

(c) If L = 1 there is no information: Let xk = 1 for all k. Then k
√

xk = 1 and the series
∑

∞

k=1 xk

diverges. On the other hand, if xk = k−2 then limk→∞
k
√

xk = 1 as we will see in a moment and this
time the series

∑

∞

k=1 xk converges.

Let n ∈ N and consider the sequence xk = k
√

kn. Taking the log we see that (using L’Hospital)

lim
k→∞

log xk = lim
k→∞

n log k

k
= lim

k→∞

n

k
= 0 .

Hence
lim
k→∞

xk = e0 = 1 .

5.2-11: Test for convergence:

(a)
∑

∞

k=0 k!/kk: Convergent because with xk = k!/kk we have

xk+1

xk
=

(k + 1)!kk

k!(k + 1)k+1
=

1

(1 + 1/k)k
→ 1/e < 1 .

(b)
∑

∞

k=0 k/e−k2

: Convergent because

(k + 1)ek2

ke(k+1)2
= (1 + 1/k)e−2k−1 → 0

as k → ∞.

(c)
∑

∞

k=2 1/(log k)k: Convergent. Use the root test (fill in the details).

5.3-1. We have
∞
∑

k=1

1

3k
− 1

4k
=

∞
∑

k=1

1

3k
−

∞
∑

k=1

1

4k
=

1

2
− 1

3
=

1

6

5.3-2. If the sequence {ck} is summable then it follows that ck is bounded, i.e., there exists a C > 0
such that |ck| ≤ C for all k (use that lim ck = 0). Hence

∞
∑

k=1

|ckx
k| ≤ C

∞
∑

k=1

|x|k < ∞



for 0 ≤ x < 1. If x = 1 then ckx
k = ck is summable by our assumption on ck.

5.3-6. We do (a) Let ε > 0 be given. Let N > 2/ε. Then, if n > m ≥ N there exists µ ∈ (1/n, 1/m)
such that

f(1/n) − f(1/m) = f ′(µ)

(

1

n
− 1

m

)

As |f ′(µ)| < 1 it follows that

|f(1/n) − f(1/m)| <

∣

∣

∣

∣

1

n
− 1

m

∣

∣

∣

∣

<
2

N
< ε .

It follows that {f(1/n)} is a Cauchy sequence and hence

lim
n→∞

f(1/n) = L

exists.

(b) Let now {xk} be an arbitrary sequence xk → 0. Then, by the same argument as above it
follows that {f(xk)} is a Cauchy sequence and hence lim f(xk) = L1 exists. Define a new sequence
y2k = 1/k and y2k+1 = xk. Then yk → 0 and the above argument show that limk f(yk) exists. Add
the details to show that this implies that L = L1 (use subsequence).

5.4-4. It was shown that all the limits exists, so we will not do it here (on an exam you would have
to do the details). Let v, w ∈ V and c ∈ R. Then

Tn(cv + w) = cTn(v) + Tn(w)

because Tn is linear. As all the limits exists we have:

T (cv + w) = lim
n→∞

(Tn(cv + w))

= lim
n→∞

(cTn(v) + Tn(w))

= c lim
n→∞

Tn(v) + lim
n→∞

Tn(w)

= cT (v) + T (w)

which shows that T is linear.

5.4-6. First we have to show that ‖ · ‖∞ is a norm on `∞. Let x = {xk}, y = {yk} ∈ `∞ and c ∈ R.
Note first that

|cxk + yk| ≤ |cxk| + |yk| = |c||xk| + |yk| .



Hence

‖cx + y‖∞ = sup
k

|cxk + yk|

≤ sup
k

(|cxk| + |yk|)

≤ |c| sup
k

|xk| + sup
k

|yk|

= |c|‖x‖∞ + ‖y‖∞

Furthermore ‖x‖ = 0 if and only if all xk = 0 which happen if and only if x = 0.
Next we have to show that `∞ is complete. Let {xn} be a Cauchy sequence in `∞. Let ε > 0 be
given. Then there exists N ∈ N such that for all n, m ≥ N we have

‖xn − xm‖∞ = sup
k

|xn
k − xm

k | < ε/2 .

It follows that the sequence {xn
k}n is a Cauchy sequence in R and hence there exists a xk ∈ R such

that xn
k → xk. Let x = {xk} we have to show that xn → x and that x ∈ `∞. Let N be as above.

Then
|xn

k − xm
k | < ε/2 .

Letting m → ∞ this implies that
|xn

k − xk| ≤ ε/2 < ε.

Thus
(∀n ≥ N) ‖xn − x‖∞ < ε

and
‖x‖∞ = ‖x − xN + xN‖∞ ≤ ‖x − xN‖∞ + ‖xN‖∞ < ε + ‖xN‖∞ < ∞ .

This proves both statements.

5.4-7: Recall that the sequence xn ∈ `1 is defined by xn
k = (n + 1)/(n2k).

a) Show that xn ∈ `1: We have

‖xn‖1 =

∞
∑

k=1

n + 1

n
2−k ≤ 2

∞
∑

k=1

2−k < ∞

because
n + 1

n
≤ 1 + 1/n ≤ 2 .



b) By the above we have that
lim

n→infty
xn

k = 2−k = xk

exists and the sequence x = {xk} is in `1 because
∑

∞

k=1 2−k < ∞.

c) We have |xn
k − xk| = 1

n2k . Furthermore
∑

∞

k=1 2−k = 1. Hence

‖xn − x‖1 =
∞
∑

k=1

|xn
k − xk| =

1

n
.

Let ε > 0. Let N ∈ N be such that N > 1/ε. Then, if n ≥ N we have

‖xn − x‖1 =
1

n
≤ 1

N
< ε .

5.4-8 In this problem we define xn by xn
k = 1 if k ≤ n and xn

k = k−2 if k > n.

(a) We have

‖xn‖1 =

∞
∑

k=1

xn
k = n +

∞
∑

k=n+1

k−2 < ∞ . (1)

Hence xn ∈ `1.

(b) Let k ∈ N, then for all n ≥ k we have xn
k = 1. Hence xk = limn→∞ xn

k = 1 for all k. In particular
x = {xk} 6∈ `1.

(c) The sequence {xn} can not be a Cauchy sequence because otherwise lim xn = x ∈ `1 would
exists.

5.5-2. If 0 ≤ α < 1 show that
∑

∞

k=1 xk conveges uniformly on [0, α].

Solution: We have Mk = supx∈[0,α] |xk| = αk and hence the series
∑

∞

k=1 Mk converges. The claim
follows by the Weierstrass M-test.

5.5-4: If
∑

∞

k=1 fk converges uniformly on D, prove that ‖fn‖ → 0 as n → ∞. Is the converse true?

Solution: As
∑

∞

k=1 fk converges uniformly it follows that the sequence of partial sums sn =
∑n

k=1 fk

is a Cauchy sequence in the supremum norm. Let ε > 0. Then there exists a N ∈ N such that

∀n, m ≥ N ‖sn − sm‖∞ < ε .

In particular for n > N :
‖fn‖∞ = ‖sn − sn−1‖∞ < ε .



The converse is not true. For that let fk(x) = 1
k

on [0, 1]. Then ‖fk‖ = 1/k → 0, but
∑

∞

k=1 fk(x)
does not even converge at x = 1.

5.5-5: (a) The sequence
∑

∞

k=1 e−kx converges uniformly on [1,∞). For that note that on this interval
we have

e−kx ≤ e−k = (1/e)k

and the series
∑

∞

k=1(1/e)
k converges. The claim follows then by the Weierstrass M -test.

(b)
∑

∞

k=1
sin(kx)

k3 converges uniformly on R because

∣

∣

∣

∣

sin(kx)

k3

∣

∣

∣

∣

≤ 1

k3

and the series
∑

∞

k=1 1/k3 converges. The claim follows then by the Weierstrass M -test.
(c) The series

∑

∞

k=1 sink(x) converges uniformly on [0, π/4] because on this interval | sink(x)| ≤
(1/

√
2)k and the series

∑

∞

k=1(1/
√

2)k converges.
(d) No, the series

∑

∞

k=1 tank x does not even converge at x = π/4.

5.6-2: (a) We have to show that

∞
∑

k=0

(−1)k

2k + 1
x2k+1 = x

∞
∑

k=0

(−1)k

2k + 1
x2k

converges uniformly on [−1, 1]. We note that for all x ∈ [−1, 1] the series
∑

∞

k=0
(−1)k

2k+1
x2k is alternating

and xk = x2k

2k+1
→ 0 monotonically. Hence

∑

k xk exists and by Theorem 5.1.2 we we have with

sn(x) =
∑n

k=0
(−1)k

2k+1
x2k and s(x) =

∑

∞

k=0
(−1)k

2k+1
x2k:

|xsn(x) − xs(x)| = |x||sn(x) − s(x)| ≤ xn+1 = x · x2n

2n + 2
≤ 1

2(n + 1)
.

Hence

‖
n
∑

k=0

(−1)k

2k + 1
x2k+1 − s(x)‖∞ ≤ 1

2(n + 1)

which proves the claim.

(b) Define g(x) =
∑

∞

k=0
(−1)k

2k+1
x2k then it follows by (a) and Theorem 5.5.1, part a, it follows that

g(x) is continuous on [−1, 1]. As g(x) = tan−1(x) for x ∈ (−1, 1) and tan−1 x is continuous, it
follows that g(±1) = tan−1(±1).



(c) We know that tan−1(1) = π
4
. Hence

π = 4 tan−1(1) = 4

∞
∑

k=0

(−1)k

2k + 1
.

5.6-4: We have
∑

∞

k=0 tk = 1
1−t

if |t| < 1. Hence, by Theorem 5.6.1 and Theorem 5.5.1:

∞
∑

k=0

tk+1

k + 1
=

∞
∑

k=1

tk

k
=

∫ t

0

du

1 − u
= − log(1 − u) .

Taking t = 1/2 we get
∞
∑

k=1

1

k2k
= − log(1/2) = log 2 .

5.6-5: Find the interval of convergence of the series
∑

ckx
k. We use the ratio test: In case

lim
k→∞

∣

∣

∣

∣

ck+1

ck

∣

∣

∣

∣

= L

exists, then

R =
1

L
.

(In case L = 0 this reads R = ∞ and L = ∞ reads R = 0.)

(a) ck = 1/(k!). Then
ck+1

ck

=
1

k + 1
→ 0 .

Hence the power series converges for all x ∈ R.

(b) a = −1 and ck = (−1)k+1/(k + 1). Then

lim
k→∞

∣

∣

∣

∣

ck+1

ck

∣

∣

∣

∣

= 1

and hence R = 1. If x = 0, then we have a alternating series so the power series converges at x = 0.
If x = −2 then we are looking at the series

∞
∑

k=0

(−1)2k+1

k + 1



which does not converge. So the power series converges on (−2, 1].

(c) ck = k!/kk so

ck+1/ck =
(k + 1)!kk

k!(k + 1)k+1
=

(

1

1 + 1/k

)k

→ 1/e .

What about the endpoint?

(d) ck = 1/kk. Then

ck+1/ck =
kk

(k + 1)k+1
=

1

k + 1

(

k

(k + 1)

)k

≤ 1

k + 1
→ 0 .

Hence the power series converges for all x ∈ R, i.e, R = ∞.

5.7-2: The function ex is analytic at 0 and so is tan−1(x). It follows by Theorem 5.7.3 that ex tan−1 x
is analytic at 0. There are two ways to find the coefficient of x4. First, just differentiate the function
four times and use that ck = f (k)(0)/k!. The other way is to use that if f(x) =

∑

∞

k=0 akx
k and

g(x) =
∑

∞

k=0 bkx
k for |x| ≤ R, then

fg(x) =
∞
∑

k=0

∞
∑

j=0

akbjx
j+k =

∞
∑

k=0

(

k
∑

j=0

ajbk−j

)

xk .

Hence the coefficient of xk is
k
∑

j=0

ajbk−j .

It follows then from formula (5.2) p. 140 that the coefficient of x4 is

4
∑

j=0

1

j!

(−1)4−j

2(4 − j) + 1
=

1

9
− 1

7
+

1

10
− 1

18
+

1

24
= simplify .

5.7-3: We have

tan−1(x) =
∞
∑

k=0

(−1)k

2k + 1
x2k+1 =

∞
∑

k=0

f (k)(0)

k!
xk .

Note, that the coefficients for the even powers of x are all zero. Hence f (even)(0) = 0. In particular
f (100)(0) = 0. We have 101 = 2 · 50 + 1, so k = 50, and hence

f (101)(0) = 101! · 1

101
= 100! .



5.7-4: (a) The function f(x) = |x| can not be analytic at zero, because it is not differentiable at
zero (recall: analytic functions are smooth!).

(b) The function can not be analytic at zero because we have

f (k−1)(x) =

{

k!x , x > 0
0 , x ≤

and this function is not differentiable at zero.

5.7-5: (a) True, the function is given by f(x) = x4 on the interval (0, 1).

(b) True, we have f(x) = 0 on the interval (−1, 0).

(c) No (see problem 5.7-3 with k = 4.

5.7-6. Let

f(x) =

{

e−1/x2

, x 6= 0
0 , x = 0

.

Note that f is ∞-times differentiable at all points x 6= 0 as that holds for the exponential function
and the function x 7→ −1/x2.

(a) To see if f ′(0) we need to see if the limit

lim
h→0

f(h) − f(0)

h
= lim

h→0

e−1/h2

h

exists. Note that this limit is of the form 0
0

so we can use L’Hospital. We set u = 1/h and consider
the limit u → ∞:

lim
h→0

e−1/h2

h
= lim

u→∞

u

eu2

= lim
u→∞

1

2ueu2

= 0

Hence, f ′(0) exists and is equal to zero, f ′(0) = 0.

Before we do the next parts let us note the following: Let k ∈ N, then

lim
h→0

e−1/h2

hk
= lim

u→∞

uk

eu2



= lim
u→∞

kuk−1

2ueu2

= lim
u→∞

k(k − 1)uk−2

2eu2 + 4u2eu2

= lim
u→∞

k!

q(u)eu2

= 0

where q(u) = 2kuk + . . . is a polynomial of degree k.

(b) We have

f ′(x) =

{

2e−1/x2

/x3 , x 6= 0
0 , x = 0

.

Hence, by the above argument

f ′(h) − f ′(0)

h
=

2e−1/h2

h4
→ 0 h → 0 .

Hence the derivative at zero exists and f ′(0) = 0.

(c) Use induction to show that there exists an n ∈ N and constants cj, j = 0, . . . , n such that

f (k)(x) =

{

∑n
j=0 cj

e−1/x2

xj , x 6= 0

0 , x = 0

Hence, the above argument shows, that f (k+1)(x) exists for all x ∈ R and f (k+1)(0) = 0.

5.7-8: We have

sin(x) =

∞
∑

k=0

(−1)k

(2k + 1)!
x2k+1 .

Hence sin(x)
x

is analytic and

sin(x) =

∞
∑

k=0

(−1)k

(2k + 1)!
x2k .

(Fill in the details.)

5.8-1: The function f(x) = 1/x is unbounded around 0, whereas every polynomial is bounded.
Hence, assume that p(x) is a polynomial. Then

∑

x∈(0,1)

|f(x) − p(x)| = ∞ .



5.8-2: The function f(x) = ex is unbounded on R. Even more holds. Let p(x) =
∑n

j=0 ajx
j be a

polynomial with an 6= 0. Then for x big, we have

|ex − p(x)| = |x|n
∣

∣

∣

∣

ex

xn
− an − an−1/x − . . . − a0/x

n

∣

∣

∣

∣

→ ∞

as x → ∞.

5.8-3: (a) Assume that f ∈ C([0, 1]) and that
∫ 1

0
f(x)xk dx = 0 for all k = 0, 1, . . .. Assume that

f 6= 0, Then
∫ 1

0

f(x)2 dx = A > 0 .

Let p(x) be a polynomial. Then
∫ 1

0

f(x)p(x) dx = 0

and

‖f − p‖2
∞

≥
∫ 1

0

(f(x) − p(x))2 dx

=

∫ 1

0

f(x)2 dx − 2

∫ 1

0

f(x)p(x) dx +

∫ 1

0

p(x)2 dx

≥ A > 0 .

Let 0 < ε < A. Then, by Weierstrass Approximation Theorem, there exists a polynomial p such
that

‖f − p‖∞ < ε < A

a contradiction.

(b) Define Tk(f) =
∫ 1

0
f(x)xk dx, k = 0, 1, . . .. Then Tk(af + g) = aTk(f) + Tk(g) because the

Riemann integral is linear. Furthermore

|Tk(f)| =

∣

∣

∣

∣

∫ 1

0

f(x)xk dx

∣

∣

∣

∣

≤
∫ 1

0

|f(x)|xk dx

≤ ‖f‖∞
∫ 1

0

xk dx

=
‖f‖∞
k + 1

.



Hence Tk is bounded.

(c) Assume that f, g ∈ C([0, 1]) and that Tk(g) = Tk(f). Then Tk(g− f) = 0 for all k and hence by
(a) g − f = 0 or g = f .

5.8-4: Let k(x) = 1
2
χ[−1,1](x) where χ[−1,1] denotes the indicator function of the interval [−1, 1].

Then
kn(x) = nk(nx) =

n

2
χ[−1/n,1/n]

(fill in the detail) and
∫ 1

0

kn(x) dx =
n

2

∫ 1/n

−1/n

dx = 1 .

If δ > 0, then there exists an n ∈ N such that 1
n

< δ and hence kn(x) = 0 for δ ≤ |x| ≤ 1.


