An idea how to solve some of the problems

5.2-2. (a) Does not converge: By multiplying across we get

$$
\frac{2 k}{2 k^{2}-1} \geq \frac{1 / 2}{k} \Leftrightarrow 2 k^{2} \geq k^{2}-1 / 2 \Leftrightarrow k^{2} \geq-1 / 2
$$

Hence

$$
\frac{2 k}{2 k^{2}-1} \geq \frac{1 / 2}{k} .
$$

As the series $\sum_{k=1}^{\infty} \frac{1}{k}$ diverges the same must hold for the original series.
(b) Converges: We have $(k-1) /\left(k 2^{k}\right) \leq 2^{-k}$ and the series $\sum_{k=1}^{\infty} 2^{-k}$ converges.
(c) Divergent: In this case $1 /(2 k-1)>1 /(2 k)$ (multiply in cross) and the series $\sum_{k=1}^{\infty} 1 / k$ diverges.
(d) Divergent:
5.2-4. Assume first that $p>1$ and take $f(x)=x^{-p}$. Then f is monotonically decreasing to zero. Furthermore

$$
\int_{1}^{\infty} f(t) d t=\lim _{T \rightarrow \infty} \int_{1}^{T} t^{-p} d t=\lim _{T \rightarrow \infty} \frac{1}{1-p} T^{1-p}+\frac{1}{p-1}=\frac{1}{p-1}<\infty
$$

The claim follows then from Theorem 5.2.2.
Let now $p=1$. We have $\int_{1}^{T} x^{-1} d x=\log T \rightarrow \infty$ as $T \rightarrow \infty$. It follows that $\int_{1}^{\infty} 1 / x d x$ does not exists and hence $\sum_{k=1}^{\infty} k^{-1}$ does not converge according to Theorem 5.2.2. If $0 \leq p \leq 1$ then $1 / k^{p} \geq 1 / k$ and hence $\sum_{k=1}^{\infty} k^{-p}$ diverges.
5.2-8. Suppose $x_{k} \geq 0$ for all $k \in \mathbb{N}$, and suppose that $\lim _{k \rightarrow \infty} \sqrt[k]{x_{k}}=L$ exists.
(a) If $L>1$ then $\sum_{k=1}^{\infty} x_{k}$ diverges: Let $1<r<L$. Then there exists $N \in \mathbb{N}$ such that for all $n \geq N$ we have $r \leq \sqrt[k]{x_{k}}$. Hence $x_{k} \geq r^{k}$. The claim follows now because $\sum_{k=N}^{\infty} r^{k}$ does not exists.
(b) If $L<1$ then $\sum_{k=1}^{\infty} x_{k}$ converges: Let $L<r<1$. Then there exists $N \in \mathbb{N}$ such that $\sqrt[k]{x_{k}} \leq r$ for all $n \geq N$. This implies that $x_{k} \leq r^{k}$ and hence

$$
\begin{aligned}
\sum_{k=1}^{\infty} x_{k} & =x_{1}+\ldots+x_{N-1}+\sum_{k=N}^{\infty} x_{k} \\
& \leq x_{1}+\ldots+x_{N-1}+\sum_{k=N}^{\infty} r^{k}<\infty
\end{aligned}
$$

Hence the series converges.
(c) If $L=1$ there is no information: Let $x_{k}=1$ for all k. Then $\sqrt[k]{x_{k}}=1$ and the series $\sum_{k=1}^{\infty} x_{k}$ diverges. On the other hand, if $x_{k}=k^{-2}$ then $\lim _{k \rightarrow \infty} \sqrt[k]{x_{k}}=1$ as we will see in a moment and this time the series $\sum_{k=1}^{\infty} x_{k}$ converges.
Let $n \in \mathbb{N}$ and consider the sequence $x_{k}=\sqrt[k]{k^{n}}$. Taking the log we see that (using L'Hospital)

$$
\lim _{k \rightarrow \infty} \log x_{k}=\lim _{k \rightarrow \infty} \frac{n \log k}{k}=\lim _{k \rightarrow \infty} \frac{n}{k}=0
$$

Hence

$$
\lim _{k \rightarrow \infty} x_{k}=e^{0}=1
$$

5.2-11: Test for convergence:
(a) $\sum_{k=0}^{\infty} k!/ k^{k}$: Convergent because with $x_{k}=k!/ k^{k}$ we have

$$
\frac{x_{k+1}}{x_{k}}=\frac{(k+1)!k^{k}}{k!(k+1)^{k+1}}=\frac{1}{(1+1 / k)^{k}} \rightarrow 1 / e<1 .
$$

(b) $\sum_{k=0}^{\infty} k / e^{-k^{2}}$: Convergent because

$$
\frac{(k+1) e^{k^{2}}}{k e^{(k+1)^{2}}}=(1+1 / k) e^{-2 k-1} \rightarrow 0
$$

as $k \rightarrow \infty$.
(c) $\sum_{k=2}^{\infty} 1 /(\log k)^{k}$: Convergent. Use the root test (fill in the details).
5.3-1. We have

$$
\sum_{k=1}^{\infty} \frac{1}{3^{k}}-\frac{1}{4^{k}}=\sum_{k=1}^{\infty} \frac{1}{3^{k}}-\sum_{k=1}^{\infty} \frac{1}{4^{k}}=\frac{1}{2}-\frac{1}{3}=\frac{1}{6}
$$

5.3-2. If the sequence $\left\{c_{k}\right\}$ is summable then it follows that c_{k} is bounded, i.e., there exists a $C>0$ such that $\left|c_{k}\right| \leq C$ for all k (use that $\lim c_{k}=0$). Hence

$$
\sum_{k=1}^{\infty}\left|c_{k} x^{k}\right| \leq C \sum_{k=1}^{\infty}|x|^{k}<\infty
$$

for $0 \leq x<1$. If $x=1$ then $c_{k} x^{k}=c_{k}$ is summable by our assumption on c_{k}.
5.3-6. We do (a) Let $\epsilon>0$ be given. Let $N>2 / \epsilon$. Then, if $n>m \geq N$ there exists $\mu \in(1 / n, 1 / m)$ such that

$$
f(1 / n)-f(1 / m)=f^{\prime}(\mu)\left(\frac{1}{n}-\frac{1}{m}\right)
$$

As $\left|f^{\prime}(\mu)\right|<1$ it follows that

$$
|f(1 / n)-f(1 / m)|<\left|\frac{1}{n}-\frac{1}{m}\right|<\frac{2}{N}<\epsilon
$$

It follows that $\{f(1 / n)\}$ is a Cauchy sequence and hence

$$
\lim _{n \rightarrow \infty} f(1 / n)=L
$$

exists.
(b) Let now $\left\{x_{k}\right\}$ be an arbitrary sequence $x_{k} \rightarrow 0$. Then, by the same argument as above it follows that $\left\{f\left(x_{k}\right)\right\}$ is a Cauchy sequence and hence $\lim f\left(x_{k}\right)=L_{1}$ exists. Define a new sequence $y_{2 k}=1 / k$ and $y_{2 k+1}=x_{k}$. Then $y_{k} \rightarrow 0$ and the above argument show that $\lim _{k} f\left(y_{k}\right)$ exists. Add the details to show that this implies that $L=L_{1}$ (use subsequence).
5.4-4. It was shown that all the limits exists, so we will not do it here (on an exam you would have to do the details). Let $v, w \in V$ and $c \in \mathbb{R}$. Then

$$
T_{n}(c v+w)=c T_{n}(v)+T_{n}(w)
$$

because T_{n} is linear. As all the limits exists we have:

$$
\begin{aligned}
T(c v+w) & =\lim _{n \rightarrow \infty}\left(T_{n}(c v+w)\right) \\
& =\lim _{n \rightarrow \infty}\left(c T_{n}(v)+T_{n}(w)\right) \\
& =c \lim _{n \rightarrow \infty} T_{n}(v)+\lim _{n \rightarrow \infty} T_{n}(w) \\
& =c T(v)+T(w)
\end{aligned}
$$

which shows that T is linear.
5.4-6. First we have to show that $\|\cdot\|_{\infty}$ is a norm on ℓ_{∞}. Let $x=\left\{x_{k}\right\}, y=\left\{y_{k}\right\} \in \ell_{\infty}$ and $c \in \mathbb{R}$. Note first that

$$
\left|c x_{k}+y_{k}\right| \leq\left|c x_{k}\right|+\left|y_{k}\right|=|c|\left|x_{k}\right|+\left|y_{k}\right| .
$$

Hence

$$
\begin{aligned}
\|c x+y\|_{\infty} & =\sup _{k}\left|c x_{k}+y_{k}\right| \\
& \leq \sup _{k}\left(\left|c x_{k}\right|+\left|y_{k}\right|\right) \\
& \leq|c| \sup _{k}\left|x_{k}\right|+\sup _{k}\left|y_{k}\right| \\
& =|c|\|x\|_{\infty}+\|y\|_{\infty}
\end{aligned}
$$

Furthermore $\|x\|=0$ if and only if all $x_{k}=0$ which happen if and only if $x=0$.
Next we have to show that ℓ_{∞} is complete. Let $\left\{x^{n}\right\}$ be a Cauchy sequence in ℓ_{∞}. Let $\epsilon>0$ be given. Then there exists $N \in \mathbb{N}$ such that for all $n, m \geq N$ we have

$$
\left\|x^{n}-x^{m}\right\|_{\infty}=\sup _{k}\left|x_{k}^{n}-x_{k}^{m}\right|<\epsilon / 2 .
$$

It follows that the sequence $\left\{x_{k}^{n}\right\}_{n}$ is a Cauchy sequence in \mathbb{R} and hence there exists a $x_{k} \in \mathbb{R}$ such that $x_{k}^{n} \rightarrow x_{k}$. Let $x=\left\{x_{k}\right\}$ we have to show that $x^{n} \rightarrow x$ and that $x \in \ell_{\infty}$. Let N be as above. Then

$$
\left|x_{k}^{n}-x_{k}^{m}\right|<\epsilon / 2 .
$$

Letting $m \rightarrow \infty$ this implies that

$$
\left|x_{k}^{n}-x_{k}\right| \leq \epsilon / 2<\epsilon .
$$

Thus

$$
(\forall n \geq N) \quad\left\|x^{n}-x\right\|_{\infty}<\epsilon
$$

and

$$
\|x\|_{\infty}=\left\|x-x^{N}+x^{N}\right\|_{\infty} \leq\left\|x-x^{N}\right\|_{\infty}+\left\|x^{N}\right\|_{\infty}<\epsilon+\left\|x^{N}\right\|_{\infty}<\infty .
$$

This proves both statements.
5.4-7: Recall that the sequence $x^{n} \in \ell_{1}$ is defined by $x_{k}^{n}=(n+1) /\left(n 2^{k}\right)$.
a) Show that $x^{n} \in \ell_{1}$: We have

$$
\left\|x^{n}\right\|_{1}=\sum_{k=1}^{\infty} \frac{n+1}{n} 2^{-k} \leq 2 \sum_{k=1}^{\infty} 2^{-k}<\infty
$$

because

$$
\frac{n+1}{n} \leq 1+1 / n \leq 2
$$

b) By the above we have that

$$
\lim _{n \rightarrow i n f t y} x_{k}^{n}=2^{-k}=x_{k}
$$

exists and the sequence $x=\left\{x_{k}\right\}$ is in ℓ_{1} because $\sum_{k=1}^{\infty} 2^{-k}<\infty$.
c) We have $\left|x_{k}^{n}-x_{k}\right|=\frac{1}{n 2^{k}}$. Furthermore $\sum_{k=1}^{\infty} 2^{-k}=1$. Hence

$$
\left\|x^{n}-x\right\|_{1}=\sum_{k=1}^{\infty}\left|x_{k}^{n}-x_{k}\right|=\frac{1}{n}
$$

Let $\epsilon>0$. Let $N \in \mathbb{N}$ be such that $N>1 / \epsilon$. Then, if $n \geq N$ we have

$$
\left\|x^{n}-x\right\|_{1}=\frac{1}{n} \leq \frac{1}{N}<\epsilon .
$$

5.4-8 In this problem we define x^{n} by $x_{k}^{n}=1$ if $k \leq n$ and $x_{k}^{n}=k^{-2}$ if $k>n$.
(a) We have

$$
\begin{equation*}
\left\|x^{n}\right\|_{1}=\sum_{k=1}^{\infty} x_{k}^{n}=n+\sum_{k=n+1}^{\infty} k^{-2}<\infty . \tag{1}
\end{equation*}
$$

Hence $x^{n} \in \ell_{1}$.
(b) Let $k \in \mathbb{N}$, then for all $n \geq k$ we have $x_{k}^{n}=1$. Hence $x_{k}=\lim _{n \rightarrow \infty} x_{k}^{n}=1$ for all k. In particular $x=\left\{x_{k}\right\} \notin \ell_{1}$.
(c) The sequence $\left\{x^{n}\right\}$ can not be a Cauchy sequence because otherwise $\lim x^{n}=x \in \ell_{1}$ would exists.
5.5-2. If $0 \leq \alpha<1$ show that $\sum_{k=1}^{\infty} x^{k}$ conveges uniformly on $[0, \alpha]$.

Solution: We have $M_{k}=\sup _{x \in[0, \alpha]}\left|x^{k}\right|=\alpha^{k}$ and hence the series $\sum_{k=1}^{\infty} M_{k}$ converges. The claim follows by the Weierstrass M-test.
5.5-4: If $\sum_{k=1}^{\infty} f_{k}$ converges uniformly on D, prove that $\left\|f_{n}\right\| \rightarrow 0$ as $n \rightarrow \infty$. Is the converse true?

Solution: As $\sum_{k=1}^{\infty} f_{k}$ converges uniformly it follows that the sequence of partial sums $s_{n}=\sum_{k=1}^{n} f_{k}$ is a Cauchy sequence in the supremum norm. Let $\epsilon>0$. Then there exists a $N \in \mathbb{N}$ such that

$$
\forall n, m \geq N \quad\left\|s_{n}-s_{m}\right\|_{\infty}<\epsilon
$$

In particular for $n>N$:

$$
\left\|f_{n}\right\|_{\infty}=\left\|s_{n}-s_{n-1}\right\|_{\infty}<\epsilon
$$

The converse is not true. For that let $f_{k}(x)=\frac{1}{k}$ on $[0,1]$. Then $\left\|f_{k}\right\|=1 / k \rightarrow 0$, but $\sum_{k=1}^{\infty} f_{k}(x)$ does not even converge at $x=1$.
5.5-5: (a) The sequence $\sum_{k=1}^{\infty} e^{-k x}$ converges uniformly on $[1, \infty)$. For that note that on this interval we have

$$
e^{-k x} \leq e^{-k}=(1 / e)^{k}
$$

and the series $\sum_{k=1}^{\infty}(1 / e)^{k}$ converges. The claim follows then by the Weierstrass M-test.
(b) $\sum_{k=1}^{\infty} \frac{\sin (k x)}{k^{3}}$ converges uniformly on \mathbb{R} because

$$
\left|\frac{\sin (k x)}{k^{3}}\right| \leq \frac{1}{k^{3}}
$$

and the series $\sum_{k=1}^{\infty} 1 / k^{3}$ converges. The claim follows then by the Weierstrass M-test.
(c) The series $\sum_{k=1}^{\infty} \sin ^{k}(x)$ converges uniformly on $[0, \pi / 4]$ because on this interval $\left|\sin ^{k}(x)\right| \leq$ $(1 / \sqrt{2})^{k}$ and the series $\sum_{k=1}^{\infty}(1 / \sqrt{2})^{k}$ converges.
(d) No, the series $\sum_{k=1}^{\infty} \tan ^{k} x$ does not even converge at $x=\pi / 4$.
5.6-2: (a) We have to show that

$$
\sum_{k=0}^{\infty} \frac{(-1)^{k}}{2 k+1} x^{2 k+1}=x \sum_{k=0}^{\infty} \frac{(-1)^{k}}{2 k+1} x^{2 k}
$$

converges uniformly on $[-1,1]$. We note that for all $x \in[-1,1]$ the series $\sum_{k=0}^{\infty} \frac{(-1)^{k}}{2 k+1} x^{2 k}$ is alternating and $x_{k}=\frac{x^{2 k}}{2 k+1} \rightarrow 0$ monotonically. Hence $\sum_{k} x_{k}$ exists and by Theorem 5.1.2 we we have with $s_{n}(x)=\sum_{k=0}^{n} \frac{(-1)^{k}}{2 k+1} x^{2 k}$ and $s(x)=\sum_{k=0}^{\infty} \frac{(-1)^{k}}{2 k+1} x^{2 k}$:

$$
\left|x s_{n}(x)-x s(x)\right|=|x|\left|s_{n}(x)-s(x)\right| \leq x_{n+1}=x \cdot \frac{x^{2 n}}{2 n+2} \leq \frac{1}{2(n+1)}
$$

Hence

$$
\left\|\sum_{k=0}^{n} \frac{(-1)^{k}}{2 k+1} x^{2 k+1}-s(x)\right\|_{\infty} \leq \frac{1}{2(n+1)}
$$

which proves the claim.
(b) Define $g(x)=\sum_{k=0}^{\infty} \frac{(-1)^{k}}{2 k+1} x^{2 k}$ then it follows by (a) and Theorem 5.5.1, part a, it follows that $g(x)$ is continuous on $[-1,1]$. As $g(x)=\tan ^{-1}(x)$ for $x \in(-1,1)$ and $\tan ^{-1} x$ is continuous, it follows that $g(\pm 1)=\tan ^{-1}(\pm 1)$.
(c) We know that $\tan ^{-1}(1)=\frac{\pi}{4}$. Hence

$$
\pi=4 \tan ^{-1}(1)=4 \sum_{k=0}^{\infty} \frac{(-1)^{k}}{2 k+1}
$$

5.6-4: We have $\sum_{k=0}^{\infty} t^{k}=\frac{1}{1-t}$ if $|t|<1$. Hence, by Theorem 5.6.1 and Theorem 5.5.1:

$$
\sum_{k=0}^{\infty} \frac{t^{k+1}}{k+1}=\sum_{k=1}^{\infty} \frac{t^{k}}{k}=\int_{0}^{t} \frac{d u}{1-u}=-\log (1-u)
$$

Taking $t=1 / 2$ we get

$$
\sum_{k=1}^{\infty} \frac{1}{k 2^{k}}=-\log (1 / 2)=\log 2
$$

5.6-5: Find the interval of convergence of the series $\sum c_{k} x^{k}$. We use the ratio test: In case

$$
\lim _{k \rightarrow \infty}\left|\frac{c_{k+1}}{c_{k}}\right|=L
$$

exists, then

$$
R=\frac{1}{L} .
$$

(In case $L=0$ this reads $R=\infty$ and $L=\infty$ reads $R=0$.)
(a) $c_{k}=1 /(k!)$. Then

$$
\frac{c_{k+1}}{c_{k}}=\frac{1}{k+1} \rightarrow 0
$$

Hence the power series converges for all $x \in \mathbb{R}$.
(b) $a=-1$ and $c_{k}=(-1)^{k+1} /(k+1)$. Then

$$
\lim _{k \rightarrow \infty}\left|\frac{c_{k+1}}{c_{k}}\right|=1
$$

and hence $R=1$. If $x=0$, then we have a alternating series so the power series converges at $x=0$. If $x=-2$ then we are looking at the series

$$
\sum_{k=0}^{\infty} \frac{(-1)^{2 k+1}}{k+1}
$$

which does not converge. So the power series converges on $(-2,1]$.
(c) $c_{k}=k!/ k^{k}$ so

$$
c_{k+1} / c_{k}=\frac{(k+1)!k^{k}}{k!(k+1)^{k+1}}=\left(\frac{1}{1+1 / k}\right)^{k} \rightarrow 1 / e
$$

What about the endpoint?
(d) $c_{k}=1 / k^{k}$. Then

$$
c_{k+1} / c_{k}=\frac{k^{k}}{(k+1)^{k+1}}=\frac{1}{k+1}\left(\frac{k}{(k+1)}\right)^{k} \leq \frac{1}{k+1} \rightarrow 0
$$

Hence the power series converges for all $x \in \mathbb{R}$, i.e, $R=\infty$.
5.7-2: The function e^{x} is analytic at 0 and so is $\tan ^{-1}(x)$. It follows by Theorem 5.7.3 that $e^{x} \tan ^{-1} x$ is analytic at 0 . There are two ways to find the coefficient of x^{4}. First, just differentiate the function four times and use that $c_{k}=f^{(k)}(0) / k$!. The other way is to use that if $f(x)=\sum_{k=0}^{\infty} a_{k} x^{k}$ and $g(x)=\sum_{k=0}^{\infty} b_{k} x^{k}$ for $|x| \leq R$, then

$$
f g(x)=\sum_{k=0}^{\infty} \sum_{j=0}^{\infty} a_{k} b_{j} x^{j+k}=\sum_{k=0}^{\infty}\left(\sum_{j=0}^{k} a_{j} b_{k-j}\right) x^{k} .
$$

Hence the coefficient of x^{k} is

$$
\sum_{j=0}^{k} a_{j} b_{k-j}
$$

It follows then from formula (5.2) p. 140 that the coefficient of x^{4} is

$$
\sum_{j=0}^{4} \frac{1}{j!} \frac{(-1)^{4-j}}{2(4-j)+1}=\frac{1}{9}-\frac{1}{7}+\frac{1}{10}-\frac{1}{18}+\frac{1}{24}=\text { simplify }
$$

5.7-3: We have

$$
\tan ^{-1}(x)=\sum_{k=0}^{\infty} \frac{(-1)^{k}}{2 k+1} x^{2 k+1}=\sum_{k=0}^{\infty} \frac{f^{(k)}(0)}{k!} x^{k}
$$

Note, that the coefficients for the even powers of x are all zero. Hence $f^{(e v e n)}(0)=0$. In particular $f^{(100)}(0)=0$. We have $101=2 \cdot 50+1$, so $k=50$, and hence

$$
f^{(101)}(0)=101!\cdot \frac{1}{101}=100!
$$

5.7-4: (a) The function $f(x)=|x|$ can not be analytic at zero, because it is not differentiable at zero (recall: analytic functions are smooth!).
(b) The function can not be analytic at zero because we have

$$
f^{(k-1)}(x)= \begin{cases}k!x & , \quad x>0 \\ 0 & , \quad x \leq\end{cases}
$$

and this function is not differentiable at zero.
5.7-5: (a) True, the function is given by $f(x)=x^{4}$ on the interval $(0,1)$.
(b) True, we have $f(x)=0$ on the interval $(-1,0)$.
(c) No (see problem 5.7-3 with $k=4$.
5.7-6. Let

$$
f(x)=\left\{\begin{array}{lll}
e^{-1 / x^{2}} & , \quad x \neq 0 \\
0 & , \quad x=0
\end{array}\right.
$$

Note that f is ∞-times differentiable at all points $x \neq 0$ as that holds for the exponential function and the function $x \mapsto-1 / x^{2}$.
(a) To see if $f^{\prime}(0)$ we need to see if the limit

$$
\lim _{h \rightarrow 0} \frac{f(h)-f(0)}{h}=\lim _{h \rightarrow 0} \frac{e^{-1 / h^{2}}}{h}
$$

exists. Note that this limit is of the form $\frac{0}{0}$ so we can use L'Hospital. We set $u=1 / h$ and consider the limit $u \rightarrow \infty$:

$$
\begin{aligned}
\lim _{h \rightarrow 0} \frac{e^{-1 / h^{2}}}{h} & =\lim _{u \rightarrow \infty} \frac{u}{e^{u^{2}}} \\
& =\lim _{u \rightarrow \infty} \frac{1}{2 u e^{u^{2}}} \\
& =0
\end{aligned}
$$

Hence, $f^{\prime}(0)$ exists and is equal to zero, $f^{\prime}(0)=0$.
Before we do the next parts let us note the following: Let $k \in \mathbb{N}$, then

$$
\lim _{h \rightarrow 0} \frac{e^{-1 / h^{2}}}{h^{k}}=\lim _{u \rightarrow \infty} \frac{u^{k}}{e^{u^{2}}}
$$

$$
\begin{aligned}
& =\lim _{u \rightarrow \infty} \frac{k u^{k-1}}{2 u e^{u^{2}}} \\
& =\lim _{u \rightarrow \infty} \frac{k(k-1) u^{k-2}}{2 e^{u^{2}}+4 u^{2} e^{u^{2}}} \\
& =\lim _{u \rightarrow \infty} \frac{k!}{q(u) e^{u^{2}}} \\
& =0
\end{aligned}
$$

where $q(u)=2^{k} u^{k}+\ldots$ is a polynomial of degree k.
(b) We have

$$
f^{\prime}(x)=\left\{\begin{array}{ll}
2 e^{-1 / x^{2}} / x^{3} & , \quad x \neq 0 \\
0 & , \quad x=0
\end{array} .\right.
$$

Hence, by the above argument

$$
\frac{f^{\prime}(h)-f^{\prime}(0)}{h}=\frac{2 e^{-1 / h^{2}}}{h^{4}} \rightarrow 0 \quad h \rightarrow 0 .
$$

Hence the derivative at zero exists and $f^{\prime}(0)=0$.
(c) Use induction to show that there exists an $n \in \mathbb{N}$ and constants $c_{j}, j=0, \ldots, n$ such that

$$
f^{(k)}(x)= \begin{cases}\sum_{j=0}^{n} c_{j} \frac{e^{-1 / x^{2}}}{x^{j}} & , \quad x \neq 0 \\ 0 & , x=0\end{cases}
$$

Hence, the above argument shows, that $f^{(k+1)}(x)$ exists for all $x \in \mathbb{R}$ and $f^{(k+1)}(0)=0$.
5.7-8: We have

$$
\sin (x)=\sum_{k=0}^{\infty} \frac{(-1)^{k}}{(2 k+1)!} x^{2 k+1}
$$

Hence $\frac{\sin (x)}{x}$ is analytic and

$$
\sin (x)=\sum_{k=0}^{\infty} \frac{(-1)^{k}}{(2 k+1)!} x^{2 k}
$$

(Fill in the details.)
5.8-1: The function $f(x)=1 / x$ is unbounded around 0 , whereas every polynomial is bounded. Hence, assume that $p(x)$ is a polynomial. Then

$$
\sum_{x \in(0,1)}|f(x)-p(x)|=\infty
$$

5.8-2: The function $f(x)=e^{x}$ is unbounded on \mathbb{R}. Even more holds. Let $p(x)=\sum_{j=0}^{n} a_{j} x^{j}$ be a polynomial with $a_{n} \neq 0$. Then for x big, we have

$$
\left|e^{x}-p(x)\right|=|x|^{n}\left|\frac{e^{x}}{x^{n}}-a_{n}-a_{n-1} / x-\ldots-a_{0} / x^{n}\right| \rightarrow \infty
$$

as $x \rightarrow \infty$.
5.8-3: (a) Assume that $f \in C([0,1])$ and that $\int_{0}^{1} f(x) x^{k} d x=0$ for all $k=0,1, \ldots$. Assume that $f \neq 0$, Then

$$
\int_{0}^{1} f(x)^{2} d x=A>0
$$

Let $p(x)$ be a polynomial. Then

$$
\int_{0}^{1} f(x) p(x) d x=0
$$

and

$$
\begin{aligned}
\|f-p\|_{\infty}^{2} & \geq \int_{0}^{1}(f(x)-p(x))^{2} d x \\
& =\int_{0}^{1} f(x)^{2} d x-2 \int_{0}^{1} f(x) p(x) d x+\int_{0}^{1} p(x)^{2} d x \\
& \geq A>0
\end{aligned}
$$

Let $0<\epsilon<A$. Then, by Weierstrass Approximation Theorem, there exists a polynomial p such that

$$
\|f-p\|_{\infty}<\epsilon<A
$$

a contradiction.
(b) Define $T_{k}(f)=\int_{0}^{1} f(x) x^{k} d x, k=0,1, \ldots$. Then $T_{k}(a f+g)=a T_{k}(f)+T_{k}(g)$ because the Riemann integral is linear. Furthermore

$$
\begin{aligned}
\left|T_{k}(f)\right| & =\left|\int_{0}^{1} f(x) x^{k} d x\right| \\
& \leq \int_{0}^{1}|f(x)| x^{k} d x \\
& \leq\|f\|_{\infty} \int_{0}^{1} x^{k} d x \\
& =\frac{\|f\|_{\infty}}{k+1}
\end{aligned}
$$

Hence T_{k} is bounded.
(c) Assume that $f, g \in C([0,1])$ and that $T_{k}(g)=T_{k}(f)$. Then $T_{k}(g-f)=0$ for all k and hence by (a) $g-f=0$ or $g=f$.
5.8-4: Let $k(x)=\frac{1}{2} \chi_{[-1,1]}(x)$ where $\chi_{[-1,1]}$ denotes the indicator function of the interval $[-1,1]$. Then

$$
k_{n}(x)=n k(n x)=\frac{n}{2} \chi_{[-1 / n, 1 / n]}
$$

(fill in the detail) and

$$
\int_{0}^{1} k_{n}(x) d x=\frac{n}{2} \int_{-1 / n}^{1 / n} d x=1
$$

If $\delta>0$, then there exists an $n \in \mathbb{N}$ such that $\frac{1}{n}<\delta$ and hence $k_{n}(x)=0$ for $\delta \leq|x| \leq 1$.

