1) Let $f(x, y)=x \ln (3 x+2 y), 3 x+2 y>0$. Find the partial derivative $f_{x y}$.

Solution: $f_{x y}(x, y)=\frac{4 y}{(3 x+2 y)^{2}}$.
First we have to find the partial derivative f_{x}, and then we have to differentiate f_{x} with respect to the variable y.

We have

$$
f_{x}(x, y)=\ln (3 x+2 y)+x \frac{3}{3 x+2 y}=\ln (3 x+2 y)+\frac{3 x}{3 x+2 y} .
$$

Next we find the partial derivative of f_{x} with respect to y :

$$
\begin{aligned}
\left(f_{x}\right)_{y}(x, y) & =\frac{2}{3 x+2 y}-\frac{3 x \cdot 2}{(3 x+2 y)^{2}} \\
& =\frac{2 \cdot(3 x+2 y)-6 x}{(3 x+2 y)^{2}} \\
& =\frac{4 y}{(3 x+2 y)^{2}} .
\end{aligned}
$$

2) Use implicit differentiation to find $\frac{\partial z}{\partial x}$ if z is defined by the equation $x^{2} y+x y^{2}+z+z^{3} x y=1$.

Solution: $\frac{\partial z}{\partial x}=-\frac{2 x y+y^{2}+z^{3} y}{1+3 z^{2} x y}$.
We differentiate the equation $x^{2} y+x y^{2}+z+z^{3} x y=1$ with respect to x and get

$$
2 x y+y^{2}+\frac{\partial z}{\partial x}+z^{3} y+3 z^{2} x y \frac{\partial z}{\partial x}=0 .
$$

Next we collect the terms involving $\frac{\partial z}{\partial x}$ on the one side

$$
\left(1+3 z^{2} x y\right) \frac{\partial z}{\partial x}+3 z^{2} x y \frac{\partial z}{\partial x}=-\left(2 x y+y^{2}+z^{3} y\right)
$$

Then we solve for $\frac{\partial z}{\partial x}$ and get

$$
\frac{\partial z}{\partial x}=-\frac{2 x y+y^{2}+z^{3} y}{1+3 z^{2} x y}
$$

3) Find the equation of the tangent plane to the surface $z=x^{2} y+2 x y-y^{2}$ at the point $P(1,1,2)$.

Solution: The equation is $z=4 x+y-3$,
The equation of the tangent plane of a surface $z=f(x, y)$ at the point $P(a, b, c)$ is given by

$$
z-c=f_{x}(a, b)(x-a)+f_{y}(a, b)(y-b) .
$$

If possible, one should then try to simplify the solution, as we will see in a moment.
So what we have to do, is to find $f_{x}(1,1)$ and $f_{y}(1,1)$ for $f(x, y)=x^{2} y+2 x y-y^{2}$. $f_{x}(x, y)=2 x y+2 y$. Incerting $x=1$ and $y=1$ we get $f_{x}(1,1)=4$. Next we find that $f_{y}(x, y)=x^{2}+2 x-2 y$. Incerting $x=y=1$ we get $f_{y}(1,1)=1$. Hence, the equation is:

$$
z-2=4(x-1)+(y-1)=4 x+y-5 .
$$

Simplifying gives then:

$$
z=4 x+y-3 .
$$

