$\mathbf{1}[\mathbf{3 P}])$ Find the gradient vector field corresponding to the potential function $\varphi(\mathbf{x})=\frac{1}{\sqrt{x^{2}+y^{2}+z^{2}}}$.
Solution: The gradient is

$$
\nabla \varphi(\mathbf{x})=<\frac{\partial \varphi}{\partial x}(\mathbf{x}), \frac{\partial \varphi}{\partial y}(\mathbf{x}), \frac{\partial \varphi}{\partial z}(\mathbf{x})>
$$

We have

$$
\begin{aligned}
\frac{\partial}{\partial x}\left(\frac{1}{\sqrt{x^{2}+y^{2}+z^{2}}}\right) & =\frac{\partial}{\partial x}\left(x^{2}+y^{2}+z^{2}\right)^{-1 / 2} \\
& =\frac{-1}{2} \cdot 2 x \cdot\left(x^{2}+y^{2}+z^{2}\right)^{-3 / 2} \\
& =-\frac{x}{\left(\sqrt{x^{2}+y^{2}+z^{2}}\right)^{3}}
\end{aligned}
$$

Then doing the same calculation for the other variables shows that

$$
\nabla \varphi(\mathbf{x})=\left\langle-\frac{x}{\left(x^{2}+y^{2}+z^{2}\right)^{3 / 2}},-\frac{y}{\left(x^{2}+y^{2}+z^{2}\right)^{3 / 2}},-\frac{z}{\left(x^{2}+y^{2}+z^{2}\right)^{3 / 2}}\right\rangle=-\frac{\mathbf{x}}{|\mathbf{x}|^{3}}
$$

2[3.5P]) Evaluate the line integral $\int_{C} x y d s$ where C is the arc of the parabola $y=x^{2}$ from $(-1,1)$ to $(1,1)$.

Solution: We use x as parameter, so the curve is described by C : $x=x, y=x^{2},-1 \leq x \leq 1$, and $d s=\sqrt{1+4 x^{2}} d x$. The integral is therefore

$$
\int_{C} x y d s=\int_{-1}^{1} x^{3} \sqrt{1+4 x^{2}} d x
$$

The function $x \mapsto x^{3} \sqrt{1+4 x^{2}}$ is odd and we integrate from -1 to 1 . Hence the integral is zero. The final answer is therefor

$$
\underline{\int_{C} x y d s=0}
$$

3[3.5P]) Evaluate the line integral $\int_{C} x y d x+(x-y) d y$ where C consists of the line segment from $(0,0)$ to $(1,2)$.
Solution: The line segment can be parametrized as

$$
x=t, y=2 t, 0 \leq t \leq 1 .
$$

Then $d x=d t$ and $d y=2 d t$. The integral is therefore

$$
\begin{aligned}
\int_{C} x y d x+(x-y) d y & =\int_{0}^{1}(t \cdot 2 t+2(t-2 t)) d t \\
& =\int_{0}^{1} 2 t^{2}-2 t d t \\
& =\left[\frac{2 t^{3}}{3}-t^{2}\right]_{0}^{1} \\
& =\frac{2}{3}-1 \\
& =-1 / 3 .
\end{aligned}
$$

The final answer is therefore

$$
\underline{\int_{C} x y d x+(x-y) d y=-1 / 3}
$$

