$\mathbf{1}[\mathbf{1 5 P}]$) True (T) or false (F):
a) If f is differentiable at x, then f is continuous at x. (T$)$
b) The series $\sum_{k=1}^{\infty} \frac{1}{k^{p}}$ converges for all $p>1$. (T)
c) The series $\sum_{k=1}^{\infty} \frac{(-1)^{k+1} k^{2}}{2 k^{3}-1}$ converges absolutely. (F)

Answer 3 of the following 6 questions. Circle the number of the problems you want counted. $\mathbf{2}[\mathbf{2 0 P}]$) Use the Cauchy-Schwarz inequality to show that $\int_{0}^{\pi} \sqrt{x \sin (x)} d x \leq \pi$

Solution: Let $f(x)=\sqrt{x}$ and $g(x)=\sqrt{\sin (x)}$. Then the left hand side is exactly $|<f, g>|$. According to the Cauchy-Schwarz inequality we know that $|<f, g>| \leq\|f\|_{2}\|g\|_{2}$. We have

$$
\|f\|_{2}^{2}=\int_{0}^{\pi} x d x=\left.\frac{x^{2}}{2}\right|_{0} ^{\pi}=\frac{\pi^{2}}{2}
$$

and

$$
\|g\|^{2}=\int_{0}^{\pi} \sin (x) d x=-\left.\cos (x)\right|_{0} ^{\pi}=2
$$

Hence

$$
\int_{0}^{\pi} \sqrt{x \sin (x)} d x \leq \frac{\pi}{\sqrt{2}} \cdot \sqrt{2}=\pi .
$$

3[20P] $)$ Let $f, g \in \mathcal{R}[a, b]$ and $\|g\|_{2}>0$. Find a constant $c \in \mathbb{R}$ such that $(f-c g) \perp g$.
Solution: By definition $f-c g \perp g$ if and only if $<f-c g, g>=<f, g>-c\|g\|^{2}=0$. Hence we take $c=<f, g>/\|g\|^{2}$ which is possible because $\|g\|>0$.
$4[20 \mathrm{P}])$ Test the following series for absolute convergence, conditional convergence, or divergence:
а) $\sum_{k=1}^{\infty} \frac{1}{k(k+1)}$.
b) $\sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{\sqrt{k}}$.
c) $\sum_{k=1}^{\infty} \frac{2 k+1}{3 k^{4}+2 k^{2}-k+1}$.

Solution: (a) We have $\frac{1}{k(k+1)} \leq \frac{1}{k^{2}}$. Hence the series converges absolutely by the p-test.
(b) The series converges conditionally. The sequence $1 / \sqrt{k}$ is monotonically decreasing to 0 , and hence the alternating series converges. On the other hand

$$
\frac{(-1)^{k+1}}{\sqrt{k}}=k^{-1 / 2}
$$

and that series diverges by the p-test.
(c) First we note that there exists a constant $C>0$ such that

$$
\frac{2 k+1}{3 k^{4}+2 k^{2}-k+1} \leq \frac{C}{k^{3}} .
$$

To see that note that

$$
\lim _{k \rightarrow \infty} \frac{2 k^{4}+k^{3}}{3 k^{4}+2 k^{2}-k+1}=2 / 3
$$

Hence, there exists a N such that

$$
\lim _{k \rightarrow \infty} \frac{2 k^{4}+k^{3}}{3 k^{4}+2 k^{2}-k+1} \leq 2
$$

for all $k \geq N$. Then let

$$
C:=\max _{k=1, \ldots, N}\left\{\frac{2 k^{4}+k^{3}}{3 k^{4}+2 k^{2}-k+1}, 2\right\} .
$$

The series $\sum_{k=1}^{\infty} \frac{C}{k^{3}}$ converges and it follows that the series in (c) converges absolutely.
$\mathbf{5}[\mathbf{2 0 P}])$ Give an example of a sequence f_{n} such that $f_{n}^{\prime} \neq 0$ and $f_{n}^{\prime} \rightarrow 0$ uniformly on \mathbb{R}, yet $f_{n}(x)$ diverges for all $x \in \mathbb{R}$.
Solution: Let $f_{n}(x)=n \cos \left(x / n^{2}\right)$. If $n \rightarrow \infty$, then $x / n^{2} \rightarrow 0$. Hence there exists a N such that for all $n \geq N$ we have $\cos \left(x / n^{2}\right) \geq 1 / 2$. Hence $f_{n}(x) \geq n / 2 \rightarrow \infty$. Thus $\lim _{n} f_{n}(x)$ does not exists for any x. On the other hand, we have $f_{n}^{\prime}(x)=-\sin \left(x / n^{2}\right) / n$. Hence $\left|f_{n}^{\prime}(x)\right| \leq 1 / n \rightarrow 0$ uniformly.

6[20P] $)$ Let $f(x)=\left\{\begin{array}{ll}x \sin (1 / x) & , \quad x \neq 0 \\ 0 & , \quad x=0\end{array}\right.$.
a) Show that f is continuous on \mathbb{R}.
b) Show that $f^{\prime}(x)$ exists for all $x \neq 0$ and that $f^{\prime}(0)$ does not exists.

Solution: (a) The function f is continuous at $x \neq 0$ because is a composition of continuous function in the domain $\mathbb{R} \backslash\{0\}$. For $x=0$ we have

$$
0 \leq|f(x)| \leq|x| \rightarrow 0, \quad x \rightarrow 0
$$

as $|\sin (u)| \leq 1$. Hence f is continuous at $x=0$.
(b) If $x \neq 0$ then f is differentiable at x because it is a composition of differentiable functions. For $x=0$ we have to use the definition:

$$
\frac{f(h)-f(0)}{h}=\sin (1 / h)
$$

and the limit $\lim _{h \rightarrow 0} \sin (1 / h)$ does not exists. Hence f is not differentiable at $x=0$.
$7[20 \mathrm{P}])$ Show that $\sin (x)<x$ for all $x>0$.
Solution: This is clearly correct for $x>1$ as $\sin x \leq 1$. Set $F(x)=x-\sin x$. Then $F^{\prime}(x)=$ $1-\cos x>0$ for $0<x<2 \pi$ and note that $1<2 \pi$. Hence F is strictly increasing on the interval $(0,2 \pi)$. As $F(0)=0$ it follows that $F(x)>0$ for $x \in(0,2 \pi)$ and hence $\sin x<x$ for all $x>0$.
Prove one of the following theorems. Circle the one that you want graded: For the solution look at the corresponding proofs in the book.
$8[25 \mathrm{P}])$ Suppose that f_{n} is defined on a finite interval I and that f_{n}^{\prime} is continuous on I. Suppose f_{n}^{\prime} converges uniformly on I to a function g. Suppose moreover that $f_{n}(a)$ converges for at least one point $a \in I$. Then, there exists a differentiable function f such that $f_{n} \rightarrow f$ uniformly on I and $f^{\prime}(x)=\lim _{n \rightarrow \infty} f_{n}^{\prime}(x)$ for all $x \in I$.
$\mathbf{9}[\mathbf{2 5 P}])$ Suppose that $x_{n} \geq 0$ is a decreasing sequence with limit zero. Then the alternating sum $\sum_{k=1}^{\infty}(-1)^{k+1} x_{k}$ converges.

