1[15P]) True (T) or false (F): a) If f is differentiable at x, then f is continuous at x. (T) b) The series $\sum_{k=1}^{\infty} \frac{1}{k^p}$ converges for all p > 1. (T) c) The series $\sum_{k=1}^{\infty} \frac{(-1)^{k+1} k^2}{2k^3 - 1}$ converges absolutely. (F)

Answer 3 of the following 6 questions. Circle the number of the problems you want counted. 2[20P]) Use the Cauchy-Schwarz inequality to show that $\int_0^{\pi} \sqrt{x \sin(x)} \, dx \le \pi$

Solution: Let $f(x) = \sqrt{x}$ and $g(x) = \sqrt{\sin(x)}$. Then the left hand side is exactly $|\langle f, g \rangle|$. According to the Cauchy-Schwarz inequality we know that $|\langle f, g \rangle| \le ||f||_2 ||g||_2$. We have

$$||f||_2^2 = \int_0^{\pi} x \, dx = \frac{x^2}{2} |_0^{\pi} = \frac{\pi^2}{2}$$

and

$$||g||^{2} = \int_{0}^{\pi} \sin(x) \, dx = -\cos(x)|_{0}^{\pi} = 2 \, .$$

Hence

$$\int_0^{\pi} \sqrt{x \sin(x)} \, dx \le \frac{\pi}{\sqrt{2}} \cdot \sqrt{2} = \pi$$

3[20P]) Let $f, g \in \mathcal{R}[a, b]$ and $||g||_2 > 0$. Find a constant $c \in \mathbb{R}$ such that $(f - cg) \perp g$. **Solution:** By definition $f - cg \perp g$ if and only if $\langle f - cg, g \rangle = \langle f, g \rangle - c||g||^2 = 0$. Hence we take $c = \langle f, g \rangle / ||g||^2$ which is possible because ||g|| > 0.

4[20P]) Test the following series for absolute convergence, conditional convergence, or divergence:

a)
$$\sum_{k=1}^{\infty} \frac{1}{k(k+1)}$$
.
b) $\sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{\sqrt{k}}$.
c) $\sum_{k=1}^{\infty} \frac{2k+1}{3k^4+2k^2-k+1}$.

Solution: (a) We have $\frac{1}{k(k+1)} \leq \frac{1}{k^2}$. Hence the series converges absolutely by the *p*-test.

(b) The series converges conditionally. The sequence $1/\sqrt{k}$ is monotonically decreasing to 0, and hence the alternating series converges. On the other hand

$$\frac{(-1)^{k+1}}{\sqrt{k}} = k^{-1/2}$$

and that series diverges by the p-test.

(c) First we note that there exists a constant C > 0 such that

$$\frac{2k+1}{3k^4+2k^2-k+1} \le \frac{C}{k^3}.$$

To see that note that

$$\lim_{k \to \infty} \frac{2k^4 + k^3}{3k^4 + 2k^2 - k + 1} = 2/3.$$

Hence, there exists a N such that

$$\lim_{k \to \infty} \frac{2k^4 + k^3}{3k^4 + 2k^2 - k + 1} \le 2$$

for all $k \geq N$. Then let

$$C := \max_{k=1,\dots,N} \left\{ \frac{2k^4 + k^3}{3k^4 + 2k^2 - k + 1}, 2 \right\}.$$

The series $\sum_{k=1}^{\infty} \frac{C}{k^3}$ converges and it follows that the series in (c) converges absolutely.

5[20P]) Give an example of a sequence f_n such that $f'_n \neq 0$ and $f'_n \to 0$ uniformly on \mathbb{R} , yet $f_n(x)$ diverges for all $x \in \mathbb{R}$.

Solution: Let $f_n(x) = n \cos(x/n^2)$. If $n \to \infty$, then $x/n^2 \to 0$. Hence there exists a N such that for all $n \ge N$ we have $\cos(x/n^2) \ge 1/2$. Hence $f_n(x) \ge n/2 \to \infty$. Thus $\lim_n f_n(x)$ does not exists for any x. On the other hand, we have $f'_n(x) = -\sin(x/n^2)/n$. Hence $|f'_n(x)| \le 1/n \to 0$ uniformly.

6[20P]) Let $f(x) = \begin{cases} x \sin(1/x) & , x \neq 0 \\ 0 & , x = 0 \end{cases}$.

a) Show that f is continuous on \mathbb{R} .

b) Show that f'(x) exists for all $x \neq 0$ and that f'(0) does not exists.

Solution: (a) The function f is continuous at $x \neq 0$ because is a composition of continuous function in the domain $\mathbb{R} \setminus \{0\}$. For x = 0 we have

$$0 \le |f(x)| \le |x| \to 0, \quad x \to 0$$

as $|\sin(u)| \le 1$. Hence f is continuous at x = 0.

(b) If $x \neq 0$ then f is differentiable at x because it is a composition of differentiable functions. For x = 0 we have to use the definition:

$$\frac{f(h) - f(0)}{h} = \sin(1/h)$$

and the limit $\lim_{h\to 0} \sin(1/h)$ does not exist. Hence f is not differentiable at x = 0.

7[20P]) Show that sin(x) < x for all x > 0.

Solution: This is clearly correct for x > 1 as $\sin x \le 1$. Set $F(x) = x - \sin x$. Then $F'(x) = 1 - \cos x > 0$ for $0 < x < 2\pi$ and note that $1 < 2\pi$. Hence F is strictly increasing on the interval $(0, 2\pi)$. As F(0) = 0 it follows that F(x) > 0 for $x \in (0, 2\pi)$ and hence $\sin x < x$ for all x > 0.

Prove one of the following theorems. Circle the one that you want graded: For the solution look at the corresponding proofs in the book.

8[25P]) Suppose that f_n is defined on a finite interval I and that f'_n is continuous on I. Suppose f'_n converges uniformly on I to a function g. Suppose moreover that $f_n(a)$ converges for at least one point $a \in I$. Then, there exists a differentiable function f such that $f_n \to f$ uniformly on I and $f'(x) = \lim_{n\to\infty} f'_n(x)$ for all $x \in I$.

9[25P]) Suppose that $x_n \ge 0$ is a decreasing sequence with limit zero. Then the alternating sum $\sum_{k=1}^{\infty} (-1)^{k+1} x_k$ converges.