
Math 4032, Test # 1. Spring 2006 Name:

1[15P]) True (T) or false (F):

a) If f is differentiable at x, then f is continuous at x. (T)

b) The series
∑

∞

k=1
1
kp converges for all p > 1. (T)

c) The series
∞

∑

k=1

(−1)k+1 k2

2k3 − 1
converges absolutely. (F)

Answer 3 of the following 6 questions. Circle the number of the problems you want counted.

2[20P]) Use the Cauchy-Schwarz inequality to show that

∫ π

0

√

x sin(x) dx ≤ π

Solution: Let f(x) =
√

x and g(x) =
√

sin(x). Then the left hand side is exactly | < f, g > |.
According to the Cauchy-Schwarz inequality we know that | < f, g > | ≤ ‖f‖2‖g‖2. We have

‖f‖2
2 =

∫ π

0

x dx =
x2

2
|π0 =

π2

2

and

‖g‖2 =

∫ π

0

sin(x) dx = − cos(x)|π0 = 2 .

Hence
∫ π

0

√

x sin(x) dx ≤ π√
2
·
√

2 = π .

3[20P]) Let f, g ∈ R[a, b] and ‖g‖2 > 0. Find a constant c ∈ R such that (f − cg) ⊥ g.

Solution: By definition f − cg ⊥ g if and only if < f − cg, g >=< f, g > −c‖g‖2 = 0. Hence we
take c =< f, g > /‖g‖2 which is possible because ‖g‖ > 0.

4[20P]) Test the following series for absolute convergence, conditional convergence, or divergence:

a)
∞

∑

k=1

1

k(k + 1)
.

b)
∞

∑

k=1

(−1)k+1

√
k

.

c)

∞
∑

k=1

2k + 1

3k4 + 2k2 − k + 1
.



Solution: (a) We have 1
k(k+1)

≤ 1
k2 . Hence the series converges absolutely by the p-test.

(b) The series converges conditionally. The sequence 1/
√

k is monotonically decreasing to 0, and
hence the alternating series converges. On the other hand

(−1)k+1

√
k

= k−1/2

and that series diverges by the p-test.

(c) First we note that there exists a constant C > 0 such that

2k + 1

3k4 + 2k2 − k + 1
≤ C

k3
.

To see that note that

lim
k→∞

2k4 + k3

3k4 + 2k2 − k + 1
= 2/3 .

Hence, there exists a N such that

lim
k→∞

2k4 + k3

3k4 + 2k2 − k + 1
≤ 2

for all k ≥ N . Then let

C := max
k=1,...,N

{ 2k4 + k3

3k4 + 2k2 − k + 1
, 2} .

The series
∑

∞

k=1
C
k3 converges and it follows that the series in (c) converges absolutely.

5[20P]) Give an example of a sequence fn such that f ′

n 6= 0 and f ′

n → 0 uniformly on R, yet fn(x)
diverges for all x ∈ R.

Solution: Let fn(x) = n cos(x/n2). If n → ∞, then x/n2 → 0. Hence there exists a N such that
for all n ≥ N we have cos(x/n2) ≥ 1/2. Hence fn(x) ≥ n/2 → ∞. Thus limn fn(x) does not exists
for any x. On the other hand, we have f ′

n(x) = − sin(x/n2)/n. Hence |f ′

n(x)| ≤ 1/n → 0 uniformly.

6[20P]) Let f(x) =

{

x sin(1/x) , x 6= 0
0 , x = 0

.

a) Show that f is continuous on R.
b) Show that f ′(x) exists for all x 6= 0 and that f ′(0) does not exists.

Solution: (a) The function f is continuous at x 6= 0 because is a composition of continuous function
in the domain R \ {0}. For x = 0 we have

0 ≤ |f(x)| ≤ |x| → 0, x → 0

as | sin(u)| ≤ 1. Hence f is continuous at x = 0.



(b) If x 6= 0 then f is differentiable at x because it is a composition of differentiable functions. For
x = 0 we have to use the definition:

f(h) − f(0)

h
= sin(1/h)

and the limit limh→0 sin(1/h) does not exists. Hence f is not differentiable at x = 0.

7[20P]) Show that sin(x) < x for all x > 0.

Solution: This is clearly correct for x > 1 as sin x ≤ 1. Set F (x) = x − sin x. Then F ′(x) =
1 − cos x > 0 for 0 < x < 2π and note that 1 < 2π. Hence F is strictly increasing on the interval
(0, 2π). As F (0) = 0 it follows that F (x) > 0 for x ∈ (0, 2π) and hence sin x < x for all x > 0.

Prove one of the following theorems. Circle the one that you want graded: For the solution
look at the corresponding proofs in the book.

8[25P]) Suppose that fn is defined on a finite interval I and that f ′

n is continuous on I. Suppose
f ′

n converges uniformly on I to a function g. Suppose moreover that fn(a) converges for at least
one point a ∈ I. Then, there exists a differentiable function f such that fn → f uniformly on I
and f ′(x) = limn→∞ f ′

n(x) for all x ∈ I.

9[25P]) Suppose that xn ≥ 0 is a decreasing sequence with limit zero. Then the alternating sum
∑

∞

k=1(−1)k+1xk converges.


