1[10P]) True or false:
a) Let $f:(a, b) \rightarrow \mathbb{R}$ be continuous, then f is differentiable. (F) [Take $f(x)=|x|$)
b) The function $f(x)=\left\{\begin{array}{ll}x \sin (1 / x) & , \quad x \neq 0 \\ 0 & , x=0\end{array}\right.$ is continuous but not differentiable. (T)

Answer 3 of the following 6 questions. Circle the number of the three problems you want graded. Show your work, a correct argument is what counts.
$\mathbf{2}$ [10P]) Give an example of a function $f \in C(\mathbb{R})$ such that $f^{\prime}(0)$ does not exists.
Solution: $f(x)=|x|$.
$\mathbf{3}[\mathbf{1 0 P}]$) Give an example of a sequence of functions $\left\{f_{n}\right\}_{n}$ such that $\lim _{n \rightarrow \infty} f_{n}(t)=0$ for all t, but $\lim _{n \rightarrow \infty} f^{\prime}(t)$ does not exists for any t.
Solution: $f_{n}(x)=\frac{1}{n}\left(\cos \left(n^{2} x\right)+\sin \left(n^{2} x\right)\right)$.
$4[10 \mathrm{P}])$ Expand the polynomial $p(t)=t^{3}+3 t^{2}-2 t+1$ in powers of $x-1$.
Solution: We have

$$
p(t)=\sum_{n=0}^{3} \frac{p^{(n)}(1)}{n!}(x-1)^{n}
$$

Furthermore:

- $p(1)=1+3-2+1=3$;
- $p^{\prime}(t)=3 t^{2}+6 t-2$ and hence $p^{\prime}(1)=3+6-2=7$;
- $p^{\prime \prime}(t)=6 t+6$ and hence $p^{\prime \prime}(1)=12$;
- and finally $p^{\prime \prime \prime}(t)=6$.

Hence

$$
p(t)=3+7(x-1)+\frac{12}{2}(x-1)^{2}+\frac{6}{3}(x-1)^{3}=3+7(x-1)+6(x-1)^{2}+(x-1)^{3} .
$$

$5[10 \mathrm{P}]$) Test the following series for absolute convergence, conditional convergence, or divergence:
a) $\sum_{k=1}^{\infty} \frac{1}{k(k+1)}$. Solution: Absolute convergent, compare it to the series $\sum_{k=1}^{\infty} \frac{1}{k^{2}}$ which converges.
b) $\sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{\sqrt{k}}$. Conditional convergent, because $k^{-1 / 2}$ is monotonically decreasing with limit zero, but $\sum_{k} k^{-1 / 2}$ does not converge.
$6[10 \mathrm{P}])$ Find a formula for a_{k} such that $s_{n}=\sum_{k=1}^{n} a_{k}=\log (n)$.
Solution: Let $n \geq 2$, then

$$
a_{n}=s_{n}-s_{n-1}=\log (n)-\log (n-1)=\log \left(\frac{n}{n-1}\right) .
$$

$\mathbf{7}[10 \mathrm{P}]$) Use the Cauchy-Schwarz inequality to show that $\int_{0}^{\pi} \sqrt{x \sin (x)} d x \leq \pi$.
Solution: Use the Cauchy-Schwarz inequality (p. 87) with $f(x)=\sqrt{x}$ and $g(x)=\sqrt{\sin x}$. Then

$$
\int_{0}^{\pi} f(x)^{2} d x=\int_{0}^{\pi} x d x=\frac{\pi^{2}}{2}
$$

and

$$
\int_{0}^{\pi} g(x)^{2} d x=\int_{0}^{\pi} \sin (x) d x=2
$$

Hence

$$
\int_{0}^{\pi} \sqrt{x \sin (x)} d x \leq\left(\int_{0}^{\pi} f(x)^{2} d x\right)^{1 / 2}\left(\int_{0}^{\pi} g(x)^{2} d x\right)^{1 / 2}=\pi
$$

Prove 3 of the following statements. Circle the problems that you want graded.
$\mathbf{8}[\mathbf{2 0 P}])$ Suppose that $\|f\|_{2}\|g\|_{2}>0$, where $f, g \in \mathcal{R}[a, b]$. Show that $|(f, g)| \leq\|f\|_{2}\|g\|_{2}$ and that $|(f, g)|=\|f\|_{2}\|g\|_{2}$ if and only if there exists a $r \in \mathbb{R}$ such that $\int_{a}^{b}(f(x)+r g(x))^{2} d x=0$.
Solution: For the first part see the proof of the Cauchy-Schwarz Theorem p. 87. Define

$$
F(r)=\int_{a}^{b}(f(x)+r g(x))^{2} d x=\|f\|^{2}+2 r(f, g)+r^{2}\|g\|^{2} \geq 0
$$

For the minimal value we have

$$
0=F^{\prime}(r)=2(f, g)+2 r\|g\|^{2}
$$

or $r=-(f, g) /\|g\|^{2}$. Insert this value of r into the first equation to get

$$
0 \leq\|f\|^{2}-2(f, g)^{2} /\|g\|^{2}+(f, g)^{2} /\|g\|^{2}=\|f\|^{2}-(f, g)^{2} /\|g\|^{2} .
$$

Thus

$$
|(f, g)| \leq\|f\|\|g\|
$$

Finally $F(r)=0$ if and only if $\|f\|^{2}-(f, g)^{2} /\|g\|^{2}=0$ or $\|f\|\|g\|=\mid(f, g)$.
$\mathbf{9}[20])$ Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a contraction. Show that there exists exactly one point $p \in \mathbb{R}$ such that $f(p)=p$.
Solution: Let $x \in \mathbb{R}$ and define $x_{1}=f(x)$ and then inductively $x_{n+1}=f\left(x_{n}\right)$. Then induction shows that

$$
\left|x_{n+k}-x_{n}\right| \leq\left|x_{n+1}-x_{n}\right| \sum_{j=1}^{k} r^{j}=r^{n} \sum_{j=1}^{k} r^{j} \leq \frac{r^{n}}{1-r} .
$$

It follows that $\left\{x_{n}\right\}$ is a Cauchy sequence and hence $\lim _{n \rightarrow \infty} x_{n}=p$ exists. We have (because f is continuous)

$$
f(p)=f\left(\lim _{n \rightarrow \infty} x_{n}\right)=\lim _{n \rightarrow \infty} f\left(x_{n}\right) \lim _{n \rightarrow \infty} x_{n+1}=p
$$

If $f(p)=p$ and $f(q)=q$, then

$$
|p-q|=|f(p)-f(q)| \leq r|p-q|
$$

which is impossible (because $r<1$) unless $p=q$.
10[20P]) Find the $n^{\text {th }}$ Taylor polynomial for the function $f(x)=\sin (x)$ and then show that the reminder $R_{n}(x)$ goes to zero.
The Taylor series is

$$
P_{2 n+1}(x)=\sum_{k=0}^{n} \frac{(-1)^{k+1}}{(2 k+1)!} x^{2 k+1}
$$

Compare to the solution to problem 6, p. 114.
$\mathbf{1 1}[\mathbf{2 0 P}])$ Show that $\lim _{n \rightarrow \infty}\left(1+\frac{1}{n}\right)^{n}=e$.

Solution: Define a function $f(x)=\log (1+x)$ and $g(x)=x$. Then

$$
\lim _{t \rightarrow 0} \frac{f(x)}{g(x)}=\lim _{t \rightarrow 0} \frac{f^{\prime}(x)}{g^{\prime}(x)}=\lim _{t \rightarrow 0}=1
$$

It follows that

$$
\lim _{n \rightarrow \infty} n \log \left(1+\frac{1}{n}\right) \lim _{n \rightarrow \infty} \frac{\log \left(1+\frac{1}{n}\right)}{1 / n}=1
$$

and hence

$$
\lim _{n \rightarrow \infty}\left(1+\frac{1}{n}\right)^{n}=e^{1}=e
$$

because the exponential function is continuous.

