$$
D=f_{x x}(x, y) f_{y y}(x, y)-\left(f_{x y}(x, y)\right)^{2} .
$$

1) Let $f(x, y)=\ln \left(x^{2}+y^{2}\right)$.
$\mathbf{a}[\mathbf{1 0 P}]$) Find the directional derivative of f at the point $P(2,1)$ in the direction of the vector $\mathbf{v}=<3,4>. \quad$ Solution: $4 / 5$
The directional derivative of f in the direction of an unit vector \mathbf{u} is given by

$$
D_{\mathbf{u}} f(x)=\nabla f(\mathbf{x}) \cdot \mathbf{u} .
$$

It is inportant to note that we must have $|\mathbf{u}|=1$.
We have $|<3,4>|=\sqrt{9+16}=5$. Hence $\mathbf{u}=\frac{1}{5}<3,4>$. The gradient of f at the point $P(2,1)$ is given by:

$$
\begin{aligned}
& \frac{\partial f}{\partial x}(2,1)=\left.\frac{2 x}{x^{2}+y^{2}}\right|_{(x, y)=(2,1)}=\frac{4}{5} \\
& \frac{\partial f}{\partial y}(2,1)=\left.\frac{2 y}{x^{2}+y^{2}}\right|_{(x, y)=(2,1)}=\frac{2}{5} .
\end{aligned}
$$

Hence

$$
\nabla f(2,1)=\frac{2}{5}<2,1>
$$

We therefore get that the directional derivative is:

$$
<\frac{4}{5}, \frac{2}{5}>\cdot<\frac{3}{5}, \frac{4}{5}>=\frac{2}{25}(6+4)=4 / 5 .
$$

$\mathbf{b}[\mathbf{7}])$ Find the directional derivative of f at the point $P(2,1)$ in the direction of $Q(1,3)$. Solution: 0 .

The direction is $<1,3>-<2,1>=<-1,2>$ which is perpenticular to the gradient. Hence the directional derivative in this direction is zero.
$\mathbf{c}[6 \mathbf{P}])$ What is the maximal rate of change of f at the point $P(2,1)$? Solution: $2 / \sqrt{5}$
This maximal rate of change is always in the direction of the gradient, and the change in that direction is $\mid \nabla f(\mathbf{x})$. We have $\mathbf{x}=(2,1)$

$$
|\nabla f(2,1)|=|<4 / 5,2 / 5>|=2 / \sqrt{5} .
$$

$\mathbf{2}[\mathbf{1 1 P}])$ Find the equation of the tangent plane to the surface $x^{2}+2 y^{2}+3 z^{3}=21$ at the point $(4,-1,1)$. Solution: The equation is: $8 x-4 y+9 z=45$.

The equation of the tangent plane of the surface $F(x, y, z)=c$ at the point $P(a, b, c)$ is given by

$$
F_{x}(a, b, c)(x-a)+F_{y}(a, b, c)(y-b)+F_{z}(a, b, c)(z-c)=\nabla F(a, b, c) \cdot<x-a, y-b, z-c>=0 .
$$

We have in this case $F(x, y, z)=x^{2}+2 y^{2}+3 z^{3}=21$ and hence

$$
\begin{aligned}
F_{x}(4,-1,1) & =2 \cdot 4=8 \\
F_{y}(4,-1,1) & =4 \cdot(-1)=-4 \\
F_{z}(4,-1,1) & =9 \cdot 1=9,
\end{aligned}
$$

The equation is therefore

$$
8(x-4)-4(y+1)+9(z-1)=8 x-4 y+9 z-45=0
$$

which can be written as $8 x-4 y+9 z=45$.
$\mathbf{3}[\mathbf{1 7 P}]$) Find - if any - the local maximum value and local minimum values and saddle point(s) of the function $f(x, y)=1+x y^{2}-2 x^{2}-4 y^{2}$. Solution:There is no local minimum. The local maximum is 0 at the point $(0,0)$. There are two saddle points, one at $(4,4)$ and the other at $(4,-4)$.
We have to start by solving the equation $\nabla f(x, y)=<0,0>$. We get the two equations:

$$
\begin{aligned}
& f_{x}(x, y)=y^{2}-4 x=0 \\
& f_{y}(x, y)=2 x y-8 y=2 y(x-4)=0 .
\end{aligned}
$$

The first equation shows that $y= \pm 2 \sqrt{x}$ and the second equation shows that either $y=0$ or $x=4$. If $y=0$ then $x=0$. If $x=4$ then $y= \pm 4$. Hence there are three possilbe points $(0,0),(4,4)$ and $(4,-4)$. To decide if those are local max $/ \mathrm{min} /$ saddle points we use the second derivative test with

$$
D=f_{x x} f_{y y}-\left(f_{x y}\right)^{2}=-8(x-4)-4 y^{2}=-4(2 x-8+y) .
$$

We get

$$
\begin{aligned}
D(0,0) & =32 f_{x x}(0,0)=-4<0 \quad \text { local max } \\
D(4, \pm 4) & =-64 \quad \text { saddle point }
\end{aligned}
$$

There is no local minimum. The question is about the local max/min. For that we have to evaluate the function at $(0,0)$ and get $f(0,0)=0$ which is the local maximum.
4[12P]) Find the point on the plain $2 x-y-2 z=9$ closest to the point $(1,2,0)$. Solution: The point is: $P(3,1,-2)$.
There are more than one ways to solve this problem. We use Lagrange multipliers. The function that we want to minimize is $f(x, y, z)=(x-1)^{2}+(y-2)^{2}+z^{2}$ given the constrain $g(x, y, z)=$ $2 x-y-2 z-9=0$. We get the three equations:

$$
\begin{aligned}
x & =\lambda+1 \\
y & =-\frac{\lambda}{2}+2 \\
z & =-\lambda .
\end{aligned}
$$

Thus

$$
2 x=2 \lambda+2, \quad y=-\frac{\lambda}{2}+2 \quad 2 z=-2 \lambda .
$$

Inserting this into the equation $2 x-y-2 z-9=0$ gives

$$
2 \lambda+2+\frac{\lambda}{2}-2+2 \lambda-9==\frac{9}{2} \lambda-9=0 .
$$

Thus $\lambda=2$. Inserting that into the above equations for x, y and z gives $x=3, y=1$ and $z=-2$.
$\mathbf{5}[\mathbf{1 7 P}]$) Use Lagrange multipliers to find the maximum and minimum values of the function $f(x, y, z)=10 x+6 y+2 z$ subject to the constrain $x^{2}+y^{2}+z^{2}=35$.
Solution: The maximum value is: $\underline{70}$ and the minimum value is: $\underline{-70}$
We get the following equations:

$$
\begin{aligned}
& 5=\lambda x \quad \text { or } \quad x=5 / \lambda \\
& 3=\lambda y \text { or } y=3 / \lambda \\
& 1=\lambda z \text { or } z=1 / \lambda
\end{aligned}
$$

Inserting this into the equation $x^{2}+y^{2}+z^{2}=35$ gives

$$
\frac{25}{\lambda^{2}}+\frac{9}{\lambda^{2}}+\frac{1}{\lambda^{2}}=\frac{35}{\lambda^{2}}=35
$$

Thus

$$
\lambda= \pm 1
$$

The corresponding points are $\pm(5,3,1)$. Inserting this into the function gives the answer. $\mathbf{6}[\mathbf{2 1 P}]$) Evaluate the following integrals:
a) $\int_{0}^{2} \int_{0}^{1} \frac{x y}{\sqrt{1+x^{2}+y^{2}}} d y d x=\frac{1}{6}\left(6^{3 / 2}=2^{3 / 2}-5^{3 / 2}+1\right)$
b) $R=\{(x, y) \mid 0 \leq x \leq 2,0 \leq y \leq 1\}, \iint_{R} 3 x^{2} y^{3}-5 y^{4} d A=0$.

If we integrate first with respect to y then the first integral is:

$$
\begin{aligned}
\int_{0}^{1} 3 x^{2} y^{3}-5 y^{4} d y & \left.=\frac{3}{4} x^{2} y^{4}-y^{5}\right]_{0}^{1} \\
& =\frac{3}{4} x^{2}-1
\end{aligned}
$$

The second integral is then

$$
\left.\int_{0}^{2} \frac{3}{4} x^{2}-1 d x=\frac{x^{3}}{4}-x\right]_{0}^{2}=0
$$

c) $R=\{(x, y) \mid 0 \leq x \leq 1,0 \leq y \leq 1\}, \iint_{R} x e^{x y} d A=e-2$

It is best to integrate first with respect to y. The first integral is then

$$
\int_{0}^{1} x e^{x y} d y=\left.e^{x y}\right|_{0} ^{1}=e^{x}-1
$$

The next integral is

$$
\left.\int_{0}^{1} e^{x}-1 d x=e^{x}-x\right]_{0}^{2}=e-1-1=e-2
$$

