In problems (2)-(14) circle the number of the problem you want counted and show your work. Recall that the function $x \mapsto[x]$ is defined by $[x]=\sup \{n \in \mathbb{Z} \mid n \leq x\}$.

1[15P]) True (T) or false (F). Explain your answer:
a) If $f \in \mathcal{B} \mathcal{V}[a, b]$ then f is continuous on $[a, b]$.

Solution: F. Let $p \in(a, b)$ and take the function $f(x)=0$ for $a \leq x<p$ and $f(x)=2$ for $p \leq x \leq b$.
b) If $f \in \mathcal{R} \mathcal{S}([a, b], g)$ then $g \in \mathcal{R} \mathcal{S}([a, b], f)$.

Solution: T. See Theorem 6.3.1 in the text, integration by parts.
c) Let $f, g:[a, b] \rightarrow \mathbb{R}$ and assume that f and g are both discontinuous at the point $p \in(a, b)$. Then $f \notin \mathcal{R} \mathcal{S}([a, b], g)$.
Solution: N. Theorem 6.2.4 in the text.
d) Let $f, g, h:[a, b] \rightarrow \mathbb{R}$ and assume that $f \in \mathcal{R S}([a, b], g)$. Let $p \in(a, b)$ and assume that $h(x)=g(x)$ for all $p \in[a, b] \backslash\{p\}$. Then $f \in \mathcal{R} \mathcal{S}([a, b], h)$ and $\int_{a}^{b} f d h=\int_{a}^{b} f d g$.
Solution: Not correct as stated, one has to assume that f is continuous. See the solution to problem 6.2-7.
$\mathbf{2}[48 \mathrm{P}])$ Evaluate the following integrals:
a) $\int_{-1}^{1} x d[x]=1$

Solution: Recall that the function $[x]$ is given by:

$$
[x]=\left\{\begin{array}{lll}
-1 & , & -1 \leq x<0 \\
0 & , & 0 \leq x<1 \\
1 & , & x=1
\end{array}\right.
$$

We can solve this in two ways.
a) There are jumps by 1 at the points 0 and 1 and hence

$$
\int_{-1}^{1} x d[x]=0+1=1
$$

b) We have

$$
\begin{aligned}
\int_{-1}^{1} x d[x] & =\left.x[x]\right|_{-1} ^{1}-\int_{-1}^{1}[x] d x \\
& =(-1) \cdot(-1)-1 \cdot 1-(-1) \\
& =1
\end{aligned}
$$

b) $\int_{0}^{1} x d\left(e^{x}\right)=1$

Solution: We use the rule $\int_{a}^{b} f d g=\int_{a}^{b} f g^{\prime} d x$ if g^{\prime} exists and $f g^{\prime} \in \mathbb{R}[a, b]$. Hence

$$
\begin{aligned}
\int_{0}^{4} x d\left(e^{x}\right) & =\int_{0}^{1} x e^{x} d x \\
& =\left.x e^{x}\right|_{0} ^{1}-\int_{0}^{1} e^{x} d x \\
& =e-\left.e^{x}\right|_{0} ^{1} \\
& =e-e+1 \\
& =1
\end{aligned}
$$

Note, that this is just the rule of integration by parts!
c) $\int_{1}^{2 \pi} x d \cos (x)=2 \pi$.

Solution: We use again integration by parts:

$$
\begin{aligned}
\int_{0}^{2 \pi} x d \cos (x) & =\left.x \cos (x)\right|_{0} ^{2 \pi}-\int_{0}^{2 \pi} \cos (x) d x \\
& =2 \pi+\left.\sin (x)\right|_{0} ^{2 \pi} \\
& =2 \pi-0=2 \pi
\end{aligned}
$$

d) $\int_{-1}^{1} x d|x|=1$

Solution: We use again integration by parts:

$$
\begin{aligned}
\int_{-1}^{1} x d|x| & =\left.x|x|\right|_{-1} ^{1}-\int_{-1}^{1}|x| d x \\
& =1-(-1)-1 \\
& =1
\end{aligned}
$$

e) $\int_{0}^{2} \cos (\pi x) d g=-1$ where $g(x)=\left\{\begin{array}{ll}0 & , \quad 0 \leq x<1 \\ 2 & , \quad x=1 \\ 1, & 1<x \leq 2\end{array}\right.$.

Solution: Use the solution to problem 6.2-1 to get:

$$
\int_{0}^{2} \cos (\pi x) d g=\cos (\pi) \cdot 1=-1
$$

f) $\int_{1}^{2} x d \log x$

Solution: We have

$$
\int_{1}^{2} x d \log x=\int_{1}^{2} x \cdot \frac{1}{x} d x=2-1=1
$$

Prove one of the following three statements:
$\mathbf{3}[\mathbf{1 7 P}])$ Let $f_{1}, f_{2} \in \mathcal{R} \mathcal{S}([a, b], g)$ and $c \in \mathbb{R}$. Then $\int_{a}^{b} c f_{1}+f_{2} d g=c \int_{a}^{b} f_{1} d g+\int_{a}^{b} f_{2} d g$.
This is a Theorem in the book. Find which!
4[17P $]$) Let $p \in[a, b]$ and define $T: C[a, b] \rightarrow \mathbb{R}$ by $T(f)=f(p)$. Then T is a bounded linear functional on $C[a, b]$ (with the $\|\cdot\|_{\infty}$ norm) and $\|T\|=1$.

Solution: This is problem 6.3-3. The solution is on page 7 on the solution to problems from Section 6.
$\mathbf{5}[\mathbf{1 7 P}])$ Suppose $f^{\prime}(x)$ exists on $[a, b]$ and that $f^{\prime} \in \mathcal{R}[a, b]$. Show that $f \in \mathcal{B} \mathcal{V}[a, b]$ and that $V_{a}^{b}(f) \leq \int_{a}^{b}\left|f^{\prime}(x)\right| d x$.

Solution: This is problem 6.1-14. The solution is on page 4 on the solution to problems from Section 6.

Prove one of the following two statements:
$5[20 \mathrm{P}])$ If $f, g \in \mathcal{B} \mathcal{V}[a, b]$ then $f g \in \mathcal{B} \mathcal{V}[a, b]$.
Solution: This is problem 6.1-9. The solution is on page 3 on the solution to problems from Section 6.

6[20P]) Let $f, g:[a, b] \rightarrow \mathbb{R}$ and $c \in \mathbb{R}$. Then $V_{a}^{b}(c f+g) \leq|c| V_{a}^{b}(f)+V_{a}^{b}(g)$.
Solution: This is problem 6.1-6. The solution is on page 3 on the solution to problems from Section 6.

