STAGGERED SHEAVES ON PARTIAL FLAG VARIETIES

PRAMOD N. ACHAR AND DANIEL S. SAGE

Abstract

Staggered t-structures are a class of t-structures on derived categories of equivariant coherent sheaves. In this note, we show that the derived category of coherent sheaves on a partial flag variety, equivariant for a Borel subgroup, admits an artinian staggered t-structure. As a consequence, we obtain a basis for its equivariant K-theory consisting of simple staggered sheaves.

RÉSUMÉ. Les t-structures échelonnées sont certaines t-structures sur des catégories dérivées des faisceaux cohérents équivariants. Nous montrons ici que la catégorie dérivée des faisceaux cohérents sur une variété de drapeaux partiels, équivariants sous un sous-groupe de Borel, admet une t-structure échelonnée artinienne. Par conséquent, l'ensemble des faisceaux échelonnés simples constitue une base pour sa K-théorie équivariante.

Let X be a variety over an algebraically closed field, and let G be an algebraic group acting on X with finitely many orbits. Let $\mathfrak{C o h}^{G}(X)$ be the category of G-equivariant coherent sheaves on X, and let $\mathcal{D}^{G}(X)$ denote its bounded derived category. Staggered sheaves, introduced in [1], are the objects in the heart of a certain t-structure on $\mathcal{D}^{G}(X)$, generalizing the perverse coherent t-structure [2]. The definition of this t-structure depends on the following data: (1) an s-structure on X (see below); (2) a choice of a Serre-Grothendieck dualizing complex $\omega_{X} \in \mathcal{D}^{G}(X)$ [4]; and (3) a perversity, which is an integer-valued function on the set of G-orbits, subject to certain constraints. When the perversity is "strictly monotone and comonotone," the category of staggered sheaves is particularly nice: every object has finite length, and every simple object arises by applying an intermediate-extension ("IC") functor to an irreducible vector bundle on a G-orbit.

An s-structure on X is a collection of full subcategories $\left(\left\{\mathfrak{C o h}^{G}(X)_{\leq n}\right\},\left\{\mathfrak{C o h}^{G}(X)_{\geq n}\right\}\right)_{n \in \mathbb{Z}}$, satisfying various conditions involving Hom- and Ext-groups, tensor products, and short exact sequences. The staggered codimension of the closure of an orbit $i_{C}: C \rightarrow X$, denoted scod \bar{C}, is defined to be codim $\bar{C}+n$, where n is the unique integer such that $i_{C}^{!} \omega_{X} \in \mathcal{D}^{G}(C)$ is a shift of an object in $\mathfrak{C o h}^{G}(C)_{\leq n} \cap \mathfrak{C o h}{ }^{G}(C)_{\geq n}$. By [1, Theorem 9.9], a sufficient condition for the existence of a strictly monotone and comonotone perversity is that staggered codimensions of neighboring orbits differ by at least 2 . The goal of this note is to establish the existence of a well-behaved staggered category on partial flag varieties, by constructing an s-structure and computing staggered codimensions. As a consequence, we obtain a basis for the equivariant K-theory $K^{B}(G / P)$ consisting of simple staggered sheaves.

1. A gluing theorem for s-Structures

If X happens to be a single G-orbit, s-structures on X can be described via the equivalence between $\mathfrak{C o h}^{G}(X)$ and the category of finite-dimensional representations of the isotropy group of X. In the general case, however, specifying an s-structure on X directly can be quite arduous. The following "gluing theorem" lets us specify an s-structure on X by specifying one on each G-orbit.
Theorem 1.1. For each orbit $C \subset X$, let $\mathcal{I}_{C} \subset \mathcal{O}_{X}$ denote the ideal sheaf corresponding to the closed subscheme $i_{C}: \bar{C} \hookrightarrow X$. Suppose each orbit C is endowed with an s-structure, and that $\left.i_{C}^{*} \mathcal{I}_{C}\right|_{C} \in$ $\mathfrak{C o h}^{G}(C)_{\leq-1}$. There is a unique s-structure on X whose restriction to each orbit is the given s-structure.
Proof. This statement is nearly identical to [1, Theorem 10.2]. In that result, the requirement that $\left.i_{C}^{*} \mathcal{I}_{C}\right|_{C} \in \mathfrak{C o h}^{G}(C)_{\leq-1}$ is replaced by the following two assumptions:
(F1) For each orbit $C,\left.i_{C}^{*} \mathcal{I}_{C}\right|_{C} \in \mathfrak{C o h}^{G}(C)_{\leq 0}$.
(F2) Each $\mathcal{F} \in \mathfrak{C o h}^{G}(C)_{\leq w}$ admits an extension $\mathcal{F}_{1} \in \mathfrak{C o h}^{G}(\bar{C})$ whose restriction to any smaller orbit $C^{\prime} \subset \bar{C}$ is in $\mathfrak{C o h}^{G}\left(C^{\prime}\right)_{\leq w}$.
Condition (F1) is trivially implied by the stronger assumption that $\left.i_{C}^{*} \mathcal{I}_{C}\right|_{C} \in \mathfrak{C o h}^{G}(C)_{\leq-1}$. It suffices, then, to show that (F2) is implied by it as well. Given $\mathcal{F} \in \mathfrak{C o h}^{G}(C)_{\leq w}$, let $\mathcal{G} \in \mathfrak{C o h}^{G}(\bar{C})$ be some

[^0]The research of the second author was partially supported by NSF grant DMS-0606300.
sheaf such that $\left.\mathcal{G}\right|_{C} \simeq \mathcal{F}$. Let $C^{\prime} \subset \bar{C} \backslash C$ be a maximal orbit (with respect to the closure partial order) such that $\left.i_{C^{\prime}}^{*} \mathcal{G}\right|_{C^{\prime}} \notin \mathfrak{C o h}{ }^{G}\left(C^{\prime}\right)_{\leq w}$. (If there is no such C^{\prime}, then \mathcal{G} is the desired extension of \mathcal{F}, and there is nothing to prove.) Let $v \in \mathbb{Z}$ be such that $\left.i_{C^{\prime}}^{*} \mathcal{G}\right|_{C^{\prime}} \in \mathfrak{C o h}^{G}\left(C^{\prime}\right)_{\leq v}$. By assumption, we have $v>w$. Let $\mathcal{G}^{\prime}=\mathcal{G} \otimes \mathcal{I}_{C^{\prime}}^{\otimes v-w}$. Since $\left.\mathcal{I}_{C^{\prime}}\right|_{X \backslash \bar{C}^{\prime}}$ is isomorphic to the structure sheaf of $X \backslash \bar{C}^{\prime}$, we see that $\left.\left.\mathcal{G}^{\prime}\right|_{\bar{C} \backslash \bar{C}^{\prime}} \simeq \mathcal{G}\right|_{\bar{C} \backslash \bar{C}^{\prime}}$. On the other hand, according to [1, Axiom (S6)] (which describes how tensor products behave with respect to s-structures), the fact that $\left.i_{C^{\prime}}^{*} \mathcal{I}_{C^{\prime}}\right|_{C^{\prime}} \in \mathfrak{C o h}^{G}\left(C^{\prime}\right)_{\leq-1}$ implies that $\left.\left.i_{C^{\prime}}^{*} \mathcal{G}^{\prime}\right|_{C^{\prime}} \simeq i_{C^{\prime}}^{*} \mathcal{G}\right|_{C^{\prime}} \otimes\left(\left.i_{C^{\prime}}^{*} \mathcal{I}_{C^{\prime}}\right|_{C^{\prime}}\right)^{\otimes v-w} \in \mathfrak{C o h}^{G}\left(C^{\prime}\right)_{\leq w}$. Thus, \mathcal{G}^{\prime} is a new extension of \mathcal{F} such that the number of orbits in $\bar{C} \backslash C$ where (F2) fails is fewer than for \mathcal{G}. Since the total number of orbits is finite, this construction can be repeated until an extension \mathcal{F}_{1} satisfying (F2) is obtained.

2. Torus actions on affine spaces

In this section, we consider coherent sheaves on an affine space. Let T be an algebraic torus over an algebraically closed field k, and let Λ be its weight lattice. Choose a set of weights $\lambda_{1}, \ldots, \lambda_{n} \in \Lambda$. Let T act linearly on $\mathbb{A}^{n}=\operatorname{Spec} k\left[x_{1}, \ldots, x_{n}\right]$ by having it act with weight λ_{i} on the line defined by the ideal $\left(x_{j}: j \neq i\right)$. Given $\mu \in \Lambda$, let $V(\mu)$ denote the one-dimensional T-representation of weight μ. If X is an affine space with a T-action, we denote by $\mathcal{O}_{X}(\mu)$ the twist of the structure sheaf of X by μ.

Suppose $m \leq n$, and identify \mathbb{A}^{m} with the closed subspace of \mathbb{A}^{n} defined by the ideal $\left(x_{j}: j>m\right)$. Let $\mathcal{I} \subset \mathcal{O}_{\mathbb{A}^{n}}$ denote the corresponding ideal sheaf, and let $i: \mathbb{A}^{m} \hookrightarrow \mathbb{A}^{n}$ be the inclusion map.

Proposition 2.1. With the above notation, we have

$$
i^{*} \mathcal{I} \simeq \mathcal{O}_{\mathbb{A}^{m}}\left(-\lambda_{m+1}\right) \oplus \cdots \oplus \mathcal{O}_{\mathbb{A}^{m}}\left(-\lambda_{n}\right) \quad \text { and } \quad i^{!} \mathcal{O}_{\mathbb{A}^{n}}(\mu) \simeq \mathcal{O}_{\mathbb{A}^{m}}\left(\mu+\lambda_{m+1}+\cdots \lambda_{n}\right)[m-n]
$$

Proof. Throughout, we will pass freely between coherent sheaves and modules, and between ideal sheaves and ideals. In the T-action on the ring $R=k\left[x_{1}, \ldots, x_{n}\right], T$ acts on the one-dimensional space $k x_{i}$ with weight $-\lambda_{i}$. We have $i^{*} \mathcal{I} \simeq \mathcal{I} / \mathcal{I}^{2} \simeq\left(x_{m+1}, \ldots, x_{n}\right) /\left(x_{i} x_{j}: m+1 \leq i<j \leq n\right)$, so if we let $S=k\left[x_{1}, \ldots, x_{m}\right]$, we obtain $i^{*} \mathcal{I} \simeq x_{m+1} S \oplus \cdots \oplus x_{n} S \simeq V\left(-\lambda_{m+1}\right) \otimes S \oplus \cdots \oplus V\left(-\lambda_{n}\right) \otimes S$.

To calculate $i!\mathcal{O}_{\mathbb{A}^{n}}(\mu)$, we may assume that $m=n-1$, as the general case then follows by induction. Recall that $i_{*} l^{!}(\cdot) \simeq R \mathcal{H} o m\left(i_{*} \mathcal{O}_{\mathbb{A}^{n-1}}, \cdot\right)$. To compute the latter functor, we employ the projective resolution $x_{n} R \hookrightarrow R$ for $i_{*} \mathcal{O}_{\mathbb{A}^{n-1}}$. Now, $x_{n} R \simeq V\left(-\lambda_{n}\right) \otimes R$, so when we apply $\operatorname{Hom}(\cdot, V(\mu) \otimes R)$ to this sequence, we obtain an injective map $V(\mu) \otimes R \rightarrow V\left(\mu+\lambda_{n}\right) \otimes R$ whose image is $V\left(\mu+\lambda_{n}\right) \otimes x_{n} R$. The cohomology of this complex vanishes except in degree 1 , where we find $V\left(\mu+\lambda_{n}\right) \otimes R / x_{n} R$. Thus, $i_{*} i^{!} \mathcal{O}_{\mathbb{A}^{n}}(\mu) \simeq R \mathcal{H} \operatorname{om}\left(i_{*} \mathcal{O}_{\mathbb{A}^{n-1}}, \mathcal{O}_{\mathbb{A}^{n}}(\mu)\right) \simeq i_{*} \mathcal{O}_{\mathbb{A}^{n-1}}\left(\mu+\lambda_{n}\right)[-1]$, as desired.

3. s-Structures on Bruhat cells

Let G be a reductive algebraic group over an algebraically closed field, and let $T \subset B \subset P$ be a maximal torus, a Borel subgroup, and a parabolic subgroup, respectively, and let L be the Levi subgroup of P.

Let W be the Weyl group of G (with respect to T), and let Φ be its root system. Let Φ^{+}be the set of positive roots corresponding to B. Let $W_{L} \subset W$ and $\Phi_{L} \subset \Phi$ be the Weyl group and root system of L, and let $\Phi_{P}=\Phi_{L} \cup \Phi^{+}$. For each $w \in W$, we fix once and for all a representative in G, also denoted w. Let X_{w}° denote the Bruhat cell $B w P / P$, let X_{w} denote its closure (a Schubert variety), and let $i_{w}: X_{w} \rightarrow G / P$ be the inclusion. Note that $X_{w}^{\circ}=X_{v}^{\circ}$ if and only if $w W_{L}=v W_{L}$.

Let Λ denote the weight lattice of T, and let $\rho=\frac{1}{2} \sum \Phi^{+}$. (For a set $\Psi \subset \Phi$, we write " $\sum \Psi$ " for $\sum_{\alpha \in \Psi} \alpha$.) For any $w \in W$, we define various subsets of Φ^{+}and elements of Λ as follows:

$$
\begin{array}{llll}
\Pi(w)=\Phi^{+} \cap w\left(\Phi^{+}\right) & \pi(w)=\sum \Pi(w) & \Pi_{L}(w)=\Phi^{+} \cap w\left(\Phi^{+} \backslash \Phi_{L}\right) & \pi_{L}(w)=\sum \Pi_{L}(w) \\
\Theta(w)=\Phi^{+} \cap w\left(\Phi^{-}\right) & \theta(w)=\sum \Theta(w) & \Theta_{L}(w)=\Phi^{+} \cap w\left(\Phi^{-} \backslash \Phi_{L}\right) & \theta_{L}(w)=\sum \Theta_{L}(w)
\end{array}
$$

For any subset $\Psi \subset \Phi$, we define $\mathfrak{g}(\Psi)=\bigoplus_{\alpha \in \Psi} \mathfrak{g}_{\alpha}$. Next, let $B_{w}=w B w^{-1}$, and let U_{w} denote the unipotent radical of B_{w}. Its Lie algebra \mathfrak{u}_{w} is described by $\mathfrak{u}_{w}=\mathfrak{g}\left(w\left(\Phi^{+}\right)\right)$. Let $\langle\cdot, \cdot\rangle$ denote the Killing form. By rescaling if necessary, assume that $\langle 2 \rho, \lambda\rangle \in \mathbb{Z}$ for all $\lambda \in \Lambda$.

Now, the category $\mathfrak{C o h}^{B}\left(X_{w}^{\circ}\right)$ is equivalent to the category $\mathfrak{R e p}\left(B_{w} \cap B\right)$ of representations of the isotropy group $B_{w} \cap B$. We define an s-structure on X_{w}° via this equivalence as follows:

$$
\begin{align*}
& \mathfrak{C o h}^{B}\left(X_{w}^{\circ}\right)_{n n} \simeq\left\{V \in \mathfrak{R e p}\left(B_{w} \cap B\right) \mid\langle\lambda,-2 \rho\rangle \leq n \text { for all weights } \lambda \text { occurring in } V\right\} \\
& \mathfrak{C o h}^{B}\left(X_{w}^{\circ}\right)_{\geq n} \simeq\left\{V \in \mathfrak{R e p}\left(B_{w} \cap B\right) \mid\langle\lambda,-2 \rho\rangle \geq n \text { for all weights } \lambda \text { occurring in } V\right\} \tag{1}
\end{align*}
$$

Lemma 3.1. For any $v, w \in W$, there is a B_{v}-equivariant isomorphism $B_{v} w P / P \simeq \mathfrak{g}\left(v\left(\Theta_{L}\left(v^{-1} w\right)\right)\right)$.

Proof. We have $B_{v} w P / P=w \cdot B_{w^{-1} v} P / P \simeq w \cdot B_{w^{-1} v} /\left(B_{w^{-1} v} \cap P\right)$. Since $B_{w^{-1} v} \cap P$ contains the maximal torus T, the quotient $B_{w^{-1} v} /\left(B_{w^{-1} v} \cap P\right)$ can be identified with a quotient of $U_{w^{-1} v}$, and hence of $\mathfrak{u}_{w^{-1} v}$. Specifically, it is isomorphic to $\mathfrak{g}\left(w^{-1} v\left(\Phi^{+}\right) \backslash \Phi_{P}\right) \simeq \mathfrak{g}\left(w^{-1} v\left(\Phi^{+}\right) \cap\left(\Phi^{-} \backslash \Phi_{L}\right)\right)$, so

$$
B_{v} w P / P \simeq w \cdot \mathfrak{g}\left(w^{-1} v\left(\Phi^{+}\right) \cap\left(\Phi^{-} \backslash \Phi_{L}\right)\right) \simeq \mathfrak{g}\left(v\left(\Theta_{L}\left(v^{-1} w\right)\right)\right)
$$

In the special case $v=w w_{0}$, where w_{0} is the longest element of W, the set $v\left(\Theta_{L}\left(v^{-1} w\right)\right)$ is given by

$$
w w_{0}\left(\Theta_{L}\left(w_{0}\right)\right)=w\left(\Phi^{-}\right) \cap w\left(\Phi^{-} \backslash \Phi_{L}\right)=w\left(\Phi^{-} \backslash \Phi_{L}\right)=-\Pi_{L}(w) \sqcup \Theta_{L}(w)
$$

Let $Y_{w}=B_{w w_{0}} w P / P$. Applying Lemma 3.1 with $v=1$ and with $v=w w_{0}$, we obtain

$$
\begin{equation*}
X_{w}^{\circ} \simeq \mathfrak{g}\left(\Theta_{L}(w)\right) \quad \text { and } \quad Y_{w} \simeq X_{w}^{\circ} \oplus \mathfrak{g}\left(-\Pi_{L}(w)\right) \tag{2}
\end{equation*}
$$

Finally, let \mathcal{I}_{w} denote the ideal sheaf on G / P corresponding to X_{w}. Since Y_{w} is open, Proposition 2.1 tells us that $\left.i_{w}^{*} \mathcal{I}_{w}\right|_{X_{w}^{\circ}} \simeq \bigoplus_{\alpha \in \Pi_{L}(w)} \mathcal{O}_{X_{w}^{\circ}}(\alpha)$. Since $\langle\alpha,-2 \rho\rangle<0$ for all $\alpha \in \Phi^{+}$, we see that $\left.i_{w}^{*} \mathcal{I}_{w}\right|_{X_{w}^{\circ}} \in$ $\mathfrak{C o h}^{B}\left(X_{w}^{\circ}\right)_{\leq-1}$, and then Theorem 1.1 gives us an s-structure on G / P. Separately, Proposition 2.1 also tells us that $i_{w}^{!} \mathcal{O}_{G / P}\left[\operatorname{codim} X_{w}\right]$ is in $\mathfrak{C o h}^{B}(G / P)_{\leq\left\langle\pi_{L}(w), 2 \rho\right\rangle} \cap \mathfrak{C o h}^{B}(G / P)_{\geq\left\langle\pi_{L}(w), 2 \rho\right\rangle}$. If w is the unique element of maximal length in its coset $w W_{L}$, then we have $\operatorname{codim} X_{w}=\left|\Phi^{+}\right|-\ell(w)$ and $\pi_{L}(w)=\pi(w)$. (See [3, Chap. 2].) Combining these observations gives us the following theorem.
Theorem 3.2. There is a unique s-structure on G / P compatible with those on the various X_{w}°. If w is the unique element of maximal length in $w W_{L}$, then the staggered codimension of X_{w}, with respect to the dualizing complex $\mathcal{O}_{G / P}$, is given by $\operatorname{scod} X_{w}=\left|\Phi^{+}\right|-\ell(w)+\langle\pi(w), 2 \rho\rangle$.

4. Main result

Theorem 4.1. With respect to the s-structure and dualizing complex of Theorem 3.2, $\mathcal{D}^{B}(G / P)$ admits an artinian staggered t-structure. In particular, the set of simple staggered sheaves $\left\{\mathcal{I C}\left(X_{w}, \mathcal{O}_{X_{w}^{\circ}}(\lambda)\right)\right\}$, where $\lambda \in \Lambda$, and w ranges over a set of coset representatives of W_{L}, forms a basis for $K^{B}(G / P)$.

By the remarks in the introduction, this theorem follows from Proposition 4.6 below. Throughout this section, the notation " $u \cdot v$ " for the product of $u, v \in W$ will be used to indicate that $\ell(u v)=\ell(u)+\ell(v)$. Note that if s is a simple reflection corresponding to a simple root $\alpha, \ell(s w)>\ell(w)$ if and only if $\alpha \in \Pi(w)$.

Lemma 4.2. Let s be a simple reflection, and let α be the corresponding simple root. If $\ell(s w)>\ell(w)$, then $\pi(s w)=s \pi(w)+\alpha$ and $\theta(s w)=s \theta(w)+\alpha$.
Proof. Since $\Pi(s)=\Phi^{+} \backslash\{\alpha\}$, it is easy to see that if $\alpha \in \Pi(w)$, then $\Pi(s w)=s(\Pi(w) \backslash\{\alpha\})$, and hence that $\pi(s w)=s(\pi(w)-\alpha)=s \pi(w)+\alpha$. The proof of the second formula is similar.

Lemma 4.3. For any $w \in W$, we have $\langle\pi(w), \theta(w)\rangle=0$.
Proof. We proceed by induction on $\ell(w)$. If $w=1, \theta(w)=0$, and the statement is trivial. If $\ell(w) \geq 1$, write $w=s \cdot v$ with s a simple reflection. Let α be the corresponding simple root. We have $\langle\pi(w), \theta(w)\rangle=$ $\langle\pi(s v), \theta(s v)\rangle=\langle s \pi(v)+\alpha, s \theta(v)+\alpha\rangle$, and so

$$
\langle\pi(w), \theta(w)\rangle=\langle s \pi(v), s \theta(v)\rangle+\langle s \pi(v), \alpha\rangle+\langle s \theta(v), \alpha\rangle+\langle\alpha, \alpha\rangle=\langle\pi(v), \theta(v)\rangle+\langle s(2 \rho)+\alpha, \alpha\rangle
$$

Now, $\langle\pi(v), \theta(v)\rangle$ vanishes by assumption. Since s permutes $\Phi^{+} \backslash\{\alpha\}$, and $2 \rho-\alpha$ is the sum of all roots in $\Phi^{+} \backslash\{\alpha\}$, we see that $s(2 \rho-\alpha)=2 \rho-\alpha$. But $s(2 \rho-\alpha)=s(2 \rho)+\alpha$ as well, so we find that

$$
\langle\pi(w), \theta(w)\rangle=\langle 2 \rho-\alpha, \alpha\rangle=\langle s(2 \rho-\alpha), \alpha\rangle=\langle 2 \rho-\alpha, s \alpha\rangle=-\langle 2 \rho-\alpha, \alpha\rangle .
$$

Comparing the second and last terms above, we see that all these quantities vanish, as desired.
Proposition 4.4. If $\alpha \in \Pi(w)$ is a simple root, then $\langle\alpha, \theta(w)\rangle \leq 0$.
Proof. It is clear that it suffices to consider the case where W is irreducible. We proceed by induction on $\ell(w)$. When $w=1, \theta(w)=0$, so the statement holds trivially. Now, suppose $\ell(w)>0$, and let t be a simple reflection such that $\ell(t w)<\ell(w)$. Let β be the simple root corresponding to t. We must consider four cases, depending on the form of $t w$.

Case 1. $w=t \cdot v$ with $\alpha \in \Pi(v)$. Then $\langle\alpha, \theta(t v)\rangle=\langle\alpha, t \theta(v)+\beta\rangle=\langle t \alpha, \theta(v)\rangle+\langle\alpha, \beta\rangle$, so $\langle\alpha, \theta(t v)\rangle=$ $\left\langle\alpha-\left\langle\beta^{\vee}, \alpha\right\rangle \beta, \theta(v)\right\rangle+\langle\alpha, \beta\rangle=\langle\alpha, \theta(v)\rangle-\left\langle\beta^{\vee}, \alpha\right\rangle\langle\beta, \theta(v)\rangle+\langle\alpha, \beta\rangle$. We know that $\left\langle\beta^{\vee}, \alpha\right\rangle \leq 0$ and $\langle\alpha, \beta\rangle \leq 0$. The fact that $\ell(t v)>\ell(v)$ implies that $\beta \in \Pi(v)$, and $\alpha \in \Pi(v)$ by assumption, so $\langle\alpha, \theta(v)\rangle \leq 0$ and $\langle\beta, \theta(v)\rangle \leq 0$ by induction. The result follows.

In the remaining cases, we will have $\alpha \notin \Pi(t w)$. This implies that s and t do not commute. Let $N=\left\langle\alpha^{\vee}, \beta\right\rangle\left\langle\beta^{\vee}, \alpha\right\rangle$. We then have $N \in\{1,2,3\}$, with $N=3$ occurring only in type G_{2}.

Case 2. $w=t s \cdot v$ with $\beta \in \Pi(v)$. We have $\langle\alpha, \theta(t s v)\rangle=\langle\alpha, t \theta(s v)+\beta\rangle=\langle\alpha, t s \theta(v)+t \alpha+\beta\rangle=$ $\langle s t \alpha, \theta(v)\rangle+\langle\alpha, t \alpha+\beta\rangle$. It is easy to check that st $\alpha=(N-1) \alpha-\left\langle\beta^{\vee}, \alpha\right\rangle \beta$, and hence that $\langle s t \alpha, \theta(v)\rangle=$ $(N-1)\langle\alpha, \theta(v)\rangle-\left\langle\beta^{\vee}, \alpha\right\rangle\langle\beta, \theta(v)\rangle$. Now, $\beta \in \Pi(v)$ by assumption, and $\alpha \in \Pi(v)$ since $\ell(s v)>\ell(v)$, so $\langle\alpha, \theta(v)\rangle \leq 0$ and $\langle\beta, \theta(v)\rangle \leq 0$ by induction. Clearly, $N-1 \geq 0$ and $\left\langle\beta^{\vee}, \alpha\right\rangle<0$, so \langle st $\alpha, \theta(v)\rangle \leq 0$. Next, we have $t \alpha+\beta=\alpha-\left\langle\beta^{\vee}, \alpha\right\rangle \beta+\beta$, so $\langle\alpha, t \alpha+\beta\rangle=\langle\alpha, \alpha\rangle-\left\langle\beta^{\vee}, \alpha\right\rangle\langle\alpha, \beta\rangle+\langle\alpha, \beta\rangle=\frac{\langle\alpha, \alpha\rangle}{2}\left(2-N+\left\langle\alpha^{\vee}, \beta\right\rangle\right)$. Recall that $\left\langle\alpha^{\vee}, \beta\right\rangle \in\{-1,-N\}$, so $\left(2-N+\left\langle\alpha^{\vee}, \beta\right\rangle\right)$ is either $1-N$ or $2-2 N$. In either case, we see that $\langle\alpha, t \alpha+\beta\rangle \leq 0$. It follows that $\langle\alpha, \theta(w)\rangle \leq 0$.

In the last two cases, we assume that $\beta \notin \Pi(s t w)$. This implies that $w=t s t \cdot v$ for some v. We also have $s w=s t s t \cdot v$, so it must be that $N \geq 2$.

Case 3. $w=t s t \cdot v$ and $N=2$. In this case, sw $=s t s t \cdot v=t s t s \cdot v$, so $\ell(s v)>\ell(v)$, and hence $\alpha \in \Pi(v)$. Calculations similar to those above yield that $\theta(t s t v)=t s t \theta(v)+t s \beta+t \alpha+\beta$, and that $\langle\alpha, t s \beta+t \alpha+\beta\rangle=\langle\alpha, \beta\rangle-\frac{\langle\alpha, \alpha\rangle}{2}\left\langle\alpha^{\vee}, \beta\right\rangle=0$. Thus, $\langle\alpha, \theta(t s t v)\rangle=\langle\alpha, t s t \theta(v)\rangle+\langle\alpha, t s \beta+t \alpha+\beta\rangle=$ $\langle t s t \alpha, \theta(v)\rangle$. Direct calculation shows that tst $\alpha=\alpha$ (regardless of whether α is a short root or a long root). Since $\alpha \in \Pi(v),\langle\alpha, \theta(v)\rangle \leq 0$ by induction, so $\langle\alpha, \theta(w)\rangle \leq 0$ as well.

Case 4. $w=t s t \cdot v$ and $N=3$. Since we have assumed that W is irreducible, W must be of type G_{2}. Since $s w=s t s t \cdot v$, we must have $v \in\{1, s, s t\}$, since ststst is the longest word in W. First suppose $v=s t$. Since $s w$ is the longest word, we have $\Pi(w)=\{\alpha\}$, and hence $\theta(w)=2 \rho-\alpha$, so Lemma 4.2 implies that $\langle\alpha, \theta(w)\rangle=0$. If $v=s$, direct calculation gives $\theta(w)=2 \rho-\alpha-s \beta$, and then that $\langle\alpha, \theta(w)\rangle=\langle\alpha, \beta\rangle<0$. Finally, if $v=1$, we find that $\theta(w)=2 \rho-\alpha-s \beta-s t \alpha$, and again $\langle\alpha, \theta(w)\rangle<0$.

Proposition 4.5. Let s be a simple reflection, corresponding to the simple root α. Let v, w be such that $\ell(v s w)=\ell(v)+1+\ell(w)$. Then $\langle\pi(v w), 2 \rho\rangle-\langle\pi(v s w), 2 \rho\rangle=\left(1-\left\langle\alpha^{\vee}, \theta\left(v^{-1}\right)\right\rangle\right)\left\langle w^{-1} \alpha, 2 \rho\right\rangle>0$.
Proof. We proceed by induction on $\ell(v)$. First, suppose that $v=1$. Note that $\theta\left(v^{-1}\right)=0$. Since $2 \rho=\pi(w)+\theta(w)$, Lemma 4.3 implies that $\langle\pi(w), 2 \rho\rangle=\langle\pi(w), \pi(w)\rangle$. Similarly,

$$
\begin{aligned}
& \langle\pi(s w), 2 \rho\rangle=\langle\pi(s w), \pi(s w)\rangle=\langle s \pi(w)+\alpha, s \pi(w)+\alpha\rangle \\
& =\langle s \pi(w), s \pi(w)\rangle+2\langle s \pi(w), \alpha\rangle+\langle\alpha, \alpha\rangle=\langle\pi(w), \pi(w)\rangle+2\langle\pi(w), s \alpha\rangle+\langle 2 \rho, \alpha\rangle \\
& \quad=\langle\pi(w), 2 \rho\rangle-2\langle\pi(w), \alpha\rangle+\langle\pi(w)+\theta(w), \alpha\rangle=\langle\pi(w), 2 \rho\rangle-\langle\pi(w)-\theta(w), \alpha\rangle .
\end{aligned}
$$

It is easy to see that $\pi(w)-\theta(w)=w(2 \rho)$, whence it follows that $\langle\pi(w), 2 \rho\rangle-\langle\pi(s w), 2 \rho\rangle=\left\langle w^{-1} \alpha, 2 \rho\right\rangle$. Finally, the fact that $\ell(s w)>\ell(w)$ implies that $w^{-1} \alpha \in \Phi^{+}$, so $\left\langle w^{-1} \alpha, 2 \rho\right\rangle>0$.

Now, suppose $\ell(v) \geq 1$, and write $v=t \cdot x$, where t is a simple reflection with simple root β. Using the special case of the proposition that is already established, we find
$\langle\pi(x s w), 2 \rho\rangle-\langle\pi(t x s w), 2 \rho\rangle=\left\langle w^{-1} s x^{-1} \beta, 2 \rho\right\rangle \quad$ and $\quad\langle\pi(x w), 2 \rho\rangle-\langle\pi(t x w), 2 \rho\rangle=\left\langle w^{-1} x^{-1} \beta, 2 \rho\right\rangle$. Combining these with the fact that $s x^{-1} \beta=x^{-1} \beta-\left\langle\alpha^{\vee}, x^{-1} \beta\right\rangle \alpha$, we find

$$
\begin{aligned}
& \langle\pi(t x w), 2 \rho\rangle-\langle\pi(t x s w), 2 \rho\rangle=(\langle\pi(x w), 2 \rho\rangle-\langle\pi(x s w), 2 \rho\rangle)+\left(\left\langle w^{-1} s x^{-1} \beta, 2 \rho\right\rangle-\left\langle w^{-1} x^{-1} \beta, 2 \rho\right\rangle\right) \\
& \quad=\left(1-\left\langle\alpha^{\vee}, \theta\left(x^{-1}\right)\right\rangle\right)\left\langle w^{-1} \alpha, 2 \rho\right\rangle-\left\langle\alpha^{\vee}, x^{-1} \beta\right\rangle\left\langle w^{-1} \alpha, 2 \rho\right\rangle=\left(1-\left\langle\alpha^{\vee}, \theta\left(x^{-1}\right)+x^{-1} \beta\right\rangle\right)\left\langle w^{-1} \alpha, 2 \rho\right\rangle .
\end{aligned}
$$

An argument similar to that of Lemma 4.2 shows that $\theta\left(x^{-1}\right)+x^{-1} \beta=\theta\left(x^{-1} t\right)=\theta\left(v^{-1}\right)$, so the desired formula is established. Since $\ell(v s)>\ell(v)$, we also have $\ell\left(s v^{-1}\right)>\ell\left(v^{-1}\right)$, and then Proposition 4.4 tells us that $\left\langle\alpha^{\vee}, \theta\left(v^{-1}\right)\right\rangle \leq 0$. Thus, $\langle\pi(v w), 2 \rho\rangle-\langle\pi(v s w), 2 \rho\rangle>0$.

The preceding proposition is a statement about a pair of adjacent elements with respect to the Bruhat order. It immediately implies that for any $v, w \in W$ with $v<w$ in the Bruhat order, $\langle\theta(v), 2 \rho\rangle-$ $\langle\theta(w), 2 \rho\rangle>0$. By Theorem 3.2, we deduce the following result, and thus establish Theorem 4.1.

Proposition 4.6. If $X_{v} \subset \overline{X_{w}}$, then $\operatorname{scod} X_{v}-\operatorname{scod} X_{w} \geq 2$.

References

[1] P. Achar, Staggered t-structures on derived categories of equivariant coherent sheaves, arXiv:0709.1300.
[2] R. Bezrukvnikov, Perverse coherent sheaves (after Deligne), arXiv:math.AG/0005152.
[3] R. Carter, Finite groups of Lie type: Conjugacy classes and complex characters, John Wiley \& Sons, New York, 1985.
[4] R. Hartshorne, Residues and duality, Lecture Notes in Mathematics, no. 20, Springer-Verlag, Berlin, 1966.
Department of Mathematics, Louisiana State University, Baton Rouge, LA 70803
E-mail address: pramod@math.lsu.edu
E-mail address: sage@math.1su.edu

[^0]: The research of the first author was partially supported by NSF grant DMS-0500873.

