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ABSTRACT. The representation theory of the unitary groups is of fundamental
significance in many areas of physics and chemistry. In order to label states in
a physical system with unitary symmetry, it is necessary to have explicit bases
for the irreducible representations. One systematic way of obtaining bases is
to generalize the ladder operator approach to the representations of SU(2) by
using the formalism of lowering operators. Here, one identifies a basis for the
algebra of all lowering operators and, for each irreducible representation, gives
a prescription for choosing a subcollection of lowering operators that yields a
basis upon application to the highest weight vector. Bases obtained through
lowering operators are particularly convenient for computing matrix coeffi-
cients of observables as the calculations reduce to the commutation relations
for the standard matrix units. The best known examples of this approach are
the extremal projector construction of the Gelfand-Zetlin basis and the crys-
tal (or canonical) bases of Kashiwara and Lusztig. In this paper, we describe
another simple method of obtaining bases for the irreducible representations
via lowering operators. These bases do not have the algebraic canonicity of
the Gelfand-Zetlin and crystal bases, but the combinatorics involved are much
more straightforward, making the bases particularly suited for physical appli-
cations.

1. INTRODUCTION

The representation theory of the unitary groups plays a fundamental role in
many areas of physics and chemistry. The first and best-known application is the
appearance of the special unitary group SU(2) in the quantum theory of angular
momentum [5]. Elliott’s SU(3) model of the nucleus provides a bridge between
the standard and collective models [7, 8, 2], and various low-dimensional unitary
groups have been used in particle physics [10]. More general unitary groups arise
in the many-body problem [30, 32], quantum chemistry [24, 11], and in quantum
computation [4, 42].

To provide some physical insight, we describe the role of the unitary groups in
the many-body problem. Consider a system with n single-particle boson or fermion
states. The unitary group U(n) then acts on the corresponding Fock space as well as
on the N-particle component for each N. The unitary symmetry appears naturally
from the creation and annihilation operator formalism. If a] and a; are the creation
and annihilation operators for state ¢, let E;; = aja;, the transition operator from
state j to state i. These operators satisfy the same commutation relations as
the standard basis for the Lie algebra of the n x n general linear group [29], and
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accordingly the Lie algebra (i.e., the infinitesimal generators) of U(n) is spanned
by the operators E;; + E;; for ¢ < j and i(E;; — Ej;) for ¢ < j. (One obtains the
usual physics convention for the Lie algebra by multiplying these operators by 4.)

A variation of this procedure appears in the spin-free approach to quantum
chemistry pioneered by F. A. Matsen [24]. In this theory, one studies the electronic
structure of molecules by only considering the spatial component of the wavefunc-
tions. Instead of single occupancy fermion orbitals, one considers “freeon” orbitals,
which can contain up to two electrons. As Matsen has written, the motivation
for this theory is “to separate the spin kinematics (only an indicator) from the
freeon dynamics which contains the basic physics, i.e., the spin-free Coulomb re-
pulsion.” [23]. In the spin-free unitary group formulation (one of four equivalent
formulations of spin-free quantum chemistry [24]), if » is the number of freeon or-
bitals, the Hamiltonian is a quadratic polynomial in the generators of U(n), and
U(n) acts on the space of freeon wavefunctions.

It is straightforward to give a classification of the irreducible representations for
U(n). All finite-dimensional representations have bases consisting of weight vectors:
simultaneous eigenvectors for the E;;’s. The simultaneous eigenvalue will be an n-
tuple of integers called a weight. In the context of the many-body problem, the E;;’s
are called number operators, and the eigenvalue of E;; is just the number of particles
in state . The collection of weights appearing in an irreducible representation
contains a unique maximum (with respect to a certain partial order described in
Section 2), which will be a nonincreasing sequence (A1, ..., A, ), and the irreducible
representations are parameterized by highest weights of this form. For example, in
spin-free quantum chemistry, the highest weights corresponding to freeon states will
be of the form (2,2,...,1,1,...,0,0,...). However, for physical applications, it is
not enough to be able to distinguish one irreducible representation from another or
even to decompose any given representation into irreducible components; rather,
one needs explicit bases for the irreducible representations in order to label states
of the physical system and to compute matrix coefficients of observables.

There are several constructions of bases for the irreducible representations. The
most classical construction is the Weyl module approach introduced by Schur [36]
and popularized by Weyl [44]; here, the irreducible representations are realized as
tensors with appropriate symmetry properties. Bases can be given by associating
explicit tensors to combinatorial objects called semistandard Young tableaux, which
will be defined in Section 2.3.

The basis most commonly used in physical applications is the Gelfand-Zetlin
basis. If U(n — 1) is viewed as a subgroup of U(n) via the obvious embedding into
the upper left n — 1 x n — 1 block, then the irreducible representation Wy with
highest weight A, viewed as a representation of U(n — 1), is simply reducible, i.e.,
each irreducible component has multiplicity one. More precisely, we have the Weyl
Branching Rule [43]:

(1) W)\|U(n—1) = @Wuv

"
where the sum runs over all u = (p1,..., pn—1) satisfying A\ > 3 > Ay > po >
©+o > fp—1 > Ap. Tterating this procedure using the chain of subgroups U(n) D
U(n—1) D --- D U(1) gives a decomposition of W) into one-dimensional subspaces,
since the irreducible representations of the abelian group U(1) are one-dimensional.
We thereby obtain an orthonormal basis indexed by a highest weight for each U(k),
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1 < k < n; explicitly, a state is given by the triangular array of integers

where \;,, = A;.

It is useful to construct bases of irreducible representations by generalizing the
ladder operator approach to the representations of SU(2) via the formalism of low-
ering operators. An operator is called a lowering operator if it is a polynomial in
the strictly lower triangular matrices E;; for ¢ > j. (Sometimes, one allows the
diagonal operators E;; as well.) It is well-known that every element in W), is ob-
tained by applying a lowering operator to a fixed highest weight vector vy. A basis
for the irreducible representations can thus be obtained by choosing a collection of
lowering operators for each A which upon application to the highest weight vector
vy give a basis for Wy. Since one can assign weights to lowering operators so that
the p weight space of W is obtained from vy using operators of weight p — A,
this method can be refined to give bases of each weight space. Such collections of
lowering operators give bases independently of any concrete realization of the rep-
resentations. One can use this approach to compare weight spaces for irreducible
representations with different highest weights and even for different U(n)’s (see
Section 3.3). Furthermore, such bases are particularly suited for physical applica-
tions because they allow for the mechanical computation of matrix coefficients of
observables. Indeed, since most important observables are also polynomials in the
E;;’s (for any 1, j), matrix coefficients in terms of such a basis may be computed
directly from the commutation relations of the Ej;’s.

A desirable way to implement the lowering operator method is to start by identi-
fying a basis for the algebra of all lowering operators. One then gives a prescription
for choosing for each irreducible representation a subcollection that yields a basis
upon application to the highest weight vector.

One scheme for choosing lowering operators gives rise to the Gelfand-Zetlin basis
for the irreducible representations. A well-known classical procedure is due to
Moshinsky and Nagel [31]. They showed how to find explicit lowering operators
taking a highest weight vector to the Gelfand-Zetlin states. Effectively, they realized
the Gelfand-Zetlin basis through a collection of lowering operators. This could then
be used to compute matrix coefficients, as for example in Moshinsky’s work on the
many-body problem [30].

A more systematic approach to finding these lowering operators uses the the-
ory of extremal projectors discovered by Asherova, Smirnov, and Tolstoy [3] and
extensively developed by Zhelobenko [47]. The extremal projector projects a cer-
tain extension of the universal enveloping algebra onto its highest weight space
along its lower weight spaces. Using the theory of Mickelsson-Zhelobenko alge-
bras [25, 46, 47, 15], these operators can be used to obtain the Gelfand-Zetlin bases
described above. A more detailed history and development of this approach is
given in the survey article [28]. Moreover, extremal projectors lead to Gelfand-
Zetlin type bases in a much wider setting. For example, they have been obtained
for other classical groups [27], for Lie superalgebras and for quantum groups by
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Tolstoy [38, 39], and for Yangians by Molev [26]. (There are several other construc-
tions of Gelfand-Zetlin bases. For example, the original construction for quantized
enveloping algebras did not use extremal projectors [41, 16].) We also remark that
extremal projectors have many other applications in representation theory; see, for
example, the review article [40].

Another scheme is delineated in the main theorem of this paper. It gives ex-
plicit lowering operators that take highest weight vectors to one of the familiar
bases for Weyl modules. The scheme is analogous to Moshinsky and Nagel’s work
on the Gelfand-Zetlin basis. While these Weyl bases are well-known [9, 45, 37,
the corresponding lowering operator method is not. One starts with a standard
basis of monomial operators for the algebra of lowering operators. There is then
a simple combinatorial prescription involving semistandard Young tableaux for se-
lecting those monomial operators that give rise to a basis for a specific irreducible
representation.

An additional approach of great current interest are the crystal (or canonical)
bases of Kashiwara and Lusztig [14, 20]. Here, the theory of quantum groups is
used to construct a basis for the algebra of lowering operators which gives rise
to bases for all irreducible representations simultaneously. More specifically, if the
distinguished lowering operators are denoted by P;, then the set of nonzero elements
of the form P; - vy is a basis of W). Unfortunately, this algebraic prescription for
finding the crystal bases is deceptively simple as it is difficult to write down these
operators explicitly [17, 18, 12].

Both the Moshinsky-Nagel bases and the crystal bases of lowering operators
have certain drawbacks. One disadvantage is that the physical significance of the
states is somewhat obscure. For instance, in the context of quantum chemistry,
Paldus and Sarma have remarked on “the unphysical nature” of the Gelfand-Zetlin
basis and have observed that this is a crucial flaw in the valence bond scheme [33].
(See Figure 1 of [33] for an illustration of this in the case of benzene.) Another is
that the lowering operators involved are complicated. Indeed, the Moshinsky-Nagel
operators, though explicit, are already unwieldy for SU(4), and no non-algorithmic
formula for the crystal basis operators is known. For physical applications, it would
be desirable to have bases of lowering operators which are easier to use. We remark
that there is no closed formula for matrix elements in the Weyl basis (as there is for
the Gelfand-Zetlin basis). However, for the cases of interest to quantum chemistry,
namely representations corresponding to two column Young tableaux, these matrix
elements can be computed using algorithmic methods. For example, the Clifford
algebra unitary group approach (CAUGA) to quantum chemistry developed by
Paldus and Sarma applies to the Weyl basis [33, p. 5137].

The goal of this paper is to find a basis of lowering operators that is as simple
as possible. In particular, consider the monomials in the Fj;;’s for ¢ > j. The irre-
ducible representation W), is spanned by the monomial lowering operators applied
to vy. ! These states are comparatively easy to interpret physically. For example,
in the many-body problem, they are obtained from the highest weight vector by a
specific sequence of transitions between single-particle orbitals. It is also easy to
compute matrix coefficients in terms of these states. However, in order to deter-
mine vectors in an irreducible representation unambiguously, it is still necessary to
extract a linearly independent subset, and in physical applications, this has only

I quantum chemistry, this method is called the generator state approach [22].
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been done in an ad hoc manner for relatively small cases. We will explain how to
overcome this problem.

For example, consider the case of quantum chemistry. The physical intuition
provided by the generator state approach leads to it playing a significant role in
spin-free quantum chemistry, and Matsen and Pauncz devote considerable space
in their monograph [24] to the subject. They provide two abstract methods of
using the generator states to obtain bases (Gram-Schmidt orthogonalization and a
method of Rowe [34] that goes back to Per-Olov Léwdin [19]), but the procedures
are not carried out for a general irreducible representations and the resultant basis
vectors are not themselves generator states. In fact, Matsen and Pauncz carry out
explicit examples only for representations that are small enough to allow one to find
bases of generator states by brute force. Our methods produce bases of generator
states in general.

In this paper, we will show how to choose explicit monomial lowering operators
which give rise to bases for the irreducible representations W) of U(n), or, more
specifically, for its p weight space W{'. Features of this basis include:

(1) The bases are obtained by associating monomial lowering operators to cer-
tain combinatorial objects called semistandard Young tableaux. Accord-
ingly, they are easily calculated by computer.

(2) The lowering operators are left unchanged if the same multiple of (1,...,1)
is added to both A and p.

(3) The lowering operators are independent of n in a sense made precise in
Corollary 3.18.

(4) The lowering operators for the weight space W' depend only on the differ-
ence A — u for X generic (in a sense given in Corollary 3.19).

Subsequent to proving Theorem 3.3, the authors became aware of the precedent
of Carter and Lusztig [6]. This paper is a deep and technical paper in which the
classical theory of polynomial representations of GL,,(C) is extended to the modular
(i.e. positive characteristic) theory using tools such as the Kostant Z-form of the
universal enveloping algebra and the affine Weyl group, and it includes a version of
Theorem 3.3 [6, Section 3.5]. Nevertheless, the present paper contains a new proof
requiring only textbook Lie theory, and the result does not seem to be well known
in the physics and general mathematics communities. We have also demonstrated
some properties of these bases that were not given in [6].

We conclude the introduction with a brief description of the rest of the paper.
In section 2, we recall some basic facts about the representation theory of the uni-
tary groups. In the following section, we show how to associate monomial lowering
operators to semistandard Young tableaux and state our main theorem. We also
provide some examples. In particular, we discuss the eightfold way (or equivalently,
the three freeon orbital, three electron problem) and the 56-dimensional represen-
tation of SU(6) that describes low-lying baryons. Next, we give some properties of
the bases. Finally, we prove the main result in section 4.

We would like to thank Martin Sage and Kameshwar Wali for helpful discussions
and suggestions. We would also like to thank the referee for his useful comments.

2. PRELIMINARIES

We will restrict attention for the present to SU(n) and discuss the necessary
modifications to extend our results to U(n) later. It will be convenient to work



6 DANIEL S. SAGE AND LAWRENCE SMOLINSKY

with the Lie algebra sl,,(C), which has the same finite-dimensional representations
as SU(n).

2.1. Irreducible representations of s, (C). We begin by recalling the basics of
the representation theory of sl,,(C) (see for example [9]). Let b be the subalge-
bra of sl,,(C) consisting of the diagonal trace-free matrices; it is called a Cartan
subalgebra. A weight vector v for a representation V of sl,,(C) is a simultaneous
eigenvector for the action of h. The simultaneous eigenvalue will be a linear func-
tional A on b called a weight; we let V* denote the corresponding weight space.
An element of h*, the dual space of b, is determined by the n — 1-tuple consisting
of its values on any basis of b, typically by its values on the diagonal matrices
H; = E;; — FEi11,+1 for 1 <i <n—1. (These H;’s are called simple coroots.)
However, it will be more convenient to describe h* in terms of the dual space of the
algebra 0 of diagonal matrices (with no restriction on the trace). Let {L;} be the
dual basis to the basis { E;; } for 9, so L;(E;;) = J;;. An element of 0* can be written
uniquely as >, a;L;, which we will often view as the n-tuple (a1,...,a,). Each
L; restricts to give a functional on b, but of course they are no longer independent.
Viewed as elements in h*, they are subject to the condition tr = > | L; = 0.
Thus, A € h* can be viewed an n-tuple, well-defined up to the addition of a real
number a to each coordinate. This means that formally we can express h* as a
quotient space:

b* ={> a;Li|a; € C}/{a> Li|acC}.
i=1 i=1

We get a unique representative for a functional by normalizing so that a,, = 0.

Every finite-dimensional representation of sl,(C) is a sum of weight spaces, and
those weights appearing in this way can be expressed as n-tuples of integers. Ac-
cordingly, the possible weights form the weight lattice:

n n
Aw ={> NLi| X\ €Z}/{a> Li|acZ}
i=1 i=1
Again, we can normalize the coordinates for a weight so that A\, = 0. However, we
will also have occasion to use another normalization. Note that Y . | A; is well-
defined modulo n, so if d € Z is congruent to this sum, we can find a representative
for the weight whose coordinates sum to d.

The nonzero weights of the adjoint representation (i.e., sl,,(C) acting on itself
via -y = xy — yx) are called roots. The roots of sl,,(C) are L, — L; for i # j with
corresponding root vector E;;. Recall that the standard choice of simple positive
roots for sl,, (C) is oy = L; — L; 11 for 1 <4 < n—1. With this choice, the root vector
E;; is positive (resp. negative) if ¢ < j (resp. ¢ > j). The span of the positive root
vectors forms the subalgebra n of strictly upper triangular matrices; similarly, the
negative root vectors span the subalgebra n of strictly lower triangular matrices.
The weight lattice admits a partial order defined by p < X if and only if A — p is a
nonnegative integral linear combination of the «;’s. It is immediate that the action
of positive (resp. negative) roots takes a weight space to a weight space with a
higher (resp. lower) weight.

A weight A is called dominant if A(H;) > 0 for 1 < i <n — 1. Concretely, A =
MLy + ... p_1L,_1 is dominant if and only if Ay > Ay > --- > A,,_1 > 0. There
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is a one-to-one correspondence between irreducible representations and dominant
weights. If V) is the irreducible representation corresponding to the dominant
weight A, then A is the highest weight in V) with respect to the partial order given
above, and the highest weight vector is unique up to scalar.

2.2. Raising and lowering operators. We now describe the algebras of raising
and lowering operators. The universal enveloping algebra U(sl,(C)) is the asso-
ciative algebra generated by the elements of sl,(C) with commutation relations
determined by the Lie bracket of sl,,(C). The universal enveloping algebra has the
property that any representation of sl,(C) is also a representation of U(sl,(C))
and vice versa. Given an ordered basis Xi,..., X,z for s[,,(C), the elements of
U(sl,(C)) are polynomials in the X;’s, and by the Poincaré-Birkhoff-Witt theo-

-1

rem, the monomials X! ...X:;f_l are a basis for U(sl,(C)). We will always use
the basis for sl,,(C) consisting of the simple root vectors E;; and simple coroots H;.
We will not specify the order now, but it will respect the order in the direct sum
decomposition sl,(C) = &b @®n,? so that the lower triangular matrices come first,
the diagonal matrices second, and the upper triangular matrices last. The algebra
of raising operators for sl,(C) is the subalgebra consisting of polynomials in the
positive root vectors; it is isomorphic to U(n), the universal enveloping algebra for
n. Similarly, the algebra of lowering operators is just U(n), which may be viewed
as the subalgebra of polynomials in the negative root vectors.

It is well-known that if V' is irreducible with highest weight vector v, then V =
U(R) - v, so that a spanning set for V is obtained by applying all monomial lowering
operators to v. We will abuse terminology slightly and say that V' is spanned by
lowering operators. (In fact, it is possible to realize V' as a quotient of U(sl,(C)) by
a certain left ideal in such a way that the coset of 1 is a highest weight vector[13].
This means that V is spanned by the images of lowering operators in this quotient
space.) Note that the lowering operator [ ], ; EZ] (with the product taken in some
fixed order) sends the weight space V* to V*, where

(2) j2% :)\i-i-Zkij _iji'

j<i j>i
This implies that > p; = > A;. These sums are actually only well-defined modulo
n, so we obtain the fact:

If the weight space V{' # 0, then }_ p; = >- A; mod n.
We now normalize the weights appearing in V) as follows:

(1) The dominant weight A is chosen with A, = 0.
(2) All other weights are chosen so that their coordinates sum to ) A;.

Monomial lowering operators are also weight vectors; the corresponding weights
may be normalized so that their coordinates sum to zero. With these normaliza-
tions, the monomial lowering operator given above taking V* to V# has weight
0w— A

It is clear that the lowering operators for sl,(C) are also lowering operators for
50, (C) if m > n. Accordingly, it will be convenient to have a universal algebra Low
containing all lowering operators independent of n. This algebra is generated by all
E;; with ¢ > j > 1 subject to the obvious commutation relations. More formally,

2We denote these algebras by Tin, hrn, and n,, if the ambient sl,, (C) is not clear from context.
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let sl(C) = U,;>; 5w (C); it is the Lie algebra of infinite square matrices (with
entries indexed by ordered pairs of positive integers) with only finitely many nonzero
entries and whose diagonal entries sum to 0. The lower triangular subalgebra n., is
also an increasing union of this form, and Low = U(Ns) = U,,»; UW,) C U(sls)-

2.3. Semistandard Young tableaux. In order to describe an explicit basis of
monomial lowering operators, we will need to introduce some combinatorial ma-
chinery. If d is a positive integer, a partition \ of d is a nonincreasing sequence
(A1, ..., A\k) of positive integers which sum to d. The Young diagram associated to
A is a left-justified collection of boxes, with A; boxes in row 7; A is called the shape
of the diagram.®> A Young tableau is obtained by filling in the boxes of a Young
diagram with positive integers. The shape of a tableau T is denoted by sh(T). We
say that a Young tableau with d boxes is semistandard if the numbers assigned
to the boxes are integers from 1 to d with the entries in each row nondecreasing
and the entries in each column increasing. If p is another partition of d (or any
sequence of nonnegative integers summing to d), then a tableau is called semistan-
dard on \ of content p if it is semistandard with shape A\ and contains py 1’s, us
2’s, etc. We denote the content of T' by co(T). A sequence p which appears as
the content of a semistandard tableau with shape A is called an admissible content
for A. The number of tableaux with shape A and content x is the Kostka number
K. We will denote the set of such semistandard tableaux by 8\ and the set of all
semistandard tableaux on A by 8§, = |J u 8&. The analogous set of tableaux where
entries are restricted to {1,...n} (equivalently, p has length at most n) will be
denoted by S8x(n). Finally, 8(n) will denote the set of all semistandard tableaux
with A (resp. u) of length less than (resp. at most) n, and 8 will denote the set of
all semistandard tableaux.

It is clear that the dominant weights for sl,,(C) correspond to Young diagrams
with at most n — 1 rows. We use A to denote both the dominant weight A1 L; +
<o+ Ap—1L,—1 and the partition (A1,...,An—1). It is less obvious that a weight p
appearing in V) can be interpreted as the content of a semistandard tableau on .
To see this, one must show that each f; is nonnegative and moreover that > 7, p; <
Zle A; for all s (because in a semistandard tableau, an integer < s can only appear
in the first s rows). The second statement follows immediately from equation (2),
since this equation gives Y 77_ ) pi = Y7 Xi—Y ;1 > ;< kji- To prove that y1; > 0,
it suffices to show that pu; > 0, since the set of weights in V) is closed under
permutations [9]. The lowest weight appearing in V) is v = (0, \,—1,..., A1), and
V{" is generated by applying appropriate monomial raising operators ], i EZJ to
a lowest weight vector. In particular, one obtains pu; = Zj>1 k1; > 0. Thus, p
makes sense as the content of a tableau. In fact, it is known that dim V{* = K, [9].

3. BASES OF MONOMIAL LOWERING OPERATORS

3.1. Semistandard tableaux and lowering operators. We are now ready to
define the lowering operators that will provide bases for the irreducible representa-
tions of the unitary groups. In particular, we show how to associate a monomial
lowering operator to any semistandard tableau.

3Tt will sometimes be convenient to allow partition sequences to end with a string of zeros. Of
course, sequences determine the same partition and Young diagram when their nonzero entries
coincide.
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Consider Hebrew lexicographic order on the set {(s,4) | s > i > 1}, i.e., (s,1) <
(t,j)ifi < jori=jand s < t. The corresponding order on the Fg;’s induces a
Poincaré-Birkhoff-Witt basis of Low and each U().

We now assign an element of this basis to any semistandard tableau. Let T be a
semistandard tableau. Note that T;; > i. For each s > i, let ay; = #{j | T3; = s},
the number of times s appears in row ¢. We define a map v : 8§ — Low by setting
v(T') to be the monomial lowering operator consisting of the Ej:*’s written in the
order described above:

(3) WT) = B3 .. EM ES3 .. Bt

" nn—1
In other words, «(7T) is obtained by sweeping through T from left to right and top
to bottom and writing down the negative root vector Fy; each time one reaches a
box in the i*" row containing the entry s > 1.

Remark 3.1. Equation (3) defining v makes sense for general tableaux T with
T;; > i. Furthermore v(S) = ~v(T') if the content of each row is the same for S and
T.

FEzample 3.2.

3[3]5]

T= YT) = Eo1 B3, E51 E3y Es3 Fsy.

‘o«ww»-

Of course, y(T') will only be a lowering operator for sl,,(C) if T has at most n—1
rows and no entry is greater than n. Thus, if the length of A is smaller than n, v
restricts to give a function v,y : 8x(n) — U(R,). Moreover, 7, restricts to define
maps 74 : 8§ — U(W,)"~* for each admissible y of length at most n.

As we will see in section 3.3, the image of v is the entire given PBW basis of
Low while v(8(n)) is the PBW basis for U(n,). In fact, it is possible to choose a
minimal tableau representing any basis element.

3.2. Main theorem and examples. We are now ready to state the main theorem.

Theorem 3.3. Let V), be the irreducible representation of SU(n) with highest weight
A and highest weight vector vy. Then if i is any admissible content of length at most
n, the set {Y\(T) - v\ | T € 8k} is a basis for the weight space V. In particular,
{Yax(T) -va | T € 8x(n)} is a basis for V.

It should be noted that if p is an admissible content for A which is not a weight
appearing in A, then 74 (T) - vy = 0 for every semistandard 7" with this content.
However, it is not true that if 7' ¢ 8y(n), then y(7T') - vy = 0. This is unlike the
situation for crystal bases, where the basis operators giving the basis for V) are
precisely those which do not kill vy.

The proof of the theorem will be given in Section 4.

Remark 3.4. There are orders besides the Hebrew lexicographic order that that
yield an analogue of Theorem 3.3, but with different bases for the irreducible rep-
resentations.

Remark 3.5. It is of course possible to give a version of this theorem (and of all
other results in this paper) in terms of raising operators.
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U @,s) | T (T YW(T) - va baryon meson
(2,1,0) (1,0) I FEis P K+
(2,0,1) | (1,-1) Es9 —Fi9 -3+ —7t
(1,2,0) | (0,0) B Fas n KO
(1,1,1) | (0,-1) F91E3s | By — Ex V230 V270

E3 Es3 — Enn —%ZO + \/gl\ _%ﬂo +
(1,0,2) | (0,-2) Es1 Es 5 —g0 -K’
(0,2,1) | (=1, -1) B2, B3 2By, 25 2~
0,1,2) | (=1,—2) EnEsnBs| Ea = K-

TABLE 1. The baryon and meson octets

Ezample 3.6. For SU(2), the partition A is just a nonnegative integer p, so that
the Young diagram has a single row. The admissible contents with length at most
2 are (i,p — i) for 0 < i < p, giving rise to tableaux of the form [i[ifz[zrz]. The
corresponding basis of lowering operators for V, is {E; | 0 < i < p}. Up to
normalization, these are just the usual lowering operators J* on the irreducible
representation with total angular momentum p/2[5].

The next two examples come from particle physics (and quantum chemistry).

Ezample 3.7. (The eightfold way) The baryon and meson octets are described by the
adjoint representation of SU(3) with Young diagram Bj [10]. The basis elements
obtained by applying the lowering operators from Theorem 3.3 to the highest weight
vector vy, = FEj3 are given in Table 1 as are the corresponding baryon and meson
states. The weights are also given in terms of the charge (Q) and strangeness (S)
quantum numbers.

The basis given in the table can also be interpreted as a basis of generator states
in spin-free quantum chemistry. Indeed, the irreducible representation of U(3) with
highest weight (2,1,0) corresponds to the doublet space for a system with three
freeon orbitals and three electrons (e.g., the allyl radical); concretely, it consists of
states with two electrons in one orbital and a single electron in another. The basis
is obtained by applying the 7§ (T') to the highest weight state with two electrons in
the lowest state and the third in the middle state. Matsen works out this example
in detail in [21].

Ezample 3.8. The low-lying baryons are described by the 56-dimensional repre-
sentation of SU(6) with Young diagram 177 [10]. All weight-spaces are one-
dimensional, and the possible weights are all 6-tuples with nonvanishing entries
{3}, {2,1}, and {1,1,1}. If the first entry of the weight vector is nonzero, then
the corresponding lowering operators are I, Ejq, Eizl, and Fj;; Fj; otherwise, the
operators are Ej}, E}, Ej1, EnE3, and Ej Ej1Eyy. Here, 2 <i < j <k.
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l,L . . .
T Y(T) minimum equivalent tableau
1[1]2]2] 2 9
[313] E5 E39FEy3
(4]
1[1[2]3
23] By E31 E3pFy3
(4]
1]1]2]3]
2[4] Lo B3 Eya
13]
1]1]2]4]
2[3] Lo By B3 ﬂ
13]
1]1]3]3] 1]3[3]
212] E3 By 2]
14] 14]
1]1]3[4]
[2]2] E31Eq 3]4]
13]

TABLE 2. Lowering operators for A = 41, 4+ 2L, + L3 and p =
201+ 2L +2L3+ Ly

Ezample 3.9. Let A\ =4L14+2Lo+ Ls and g = 2L, +2Ls+2L3+ Ly. For any SU(n)
with n > 4, the weight space V" is 6-dimensional. The semistandard tableaux and
corresponding lowering operators are given in Table 2. The third column of the

table is explained in Example 3.14.

3.3. Properties of the bases. It is evident from the construction that different
semistandard tableaux can give rise to the same lowering operator; we call such
tableaux operator equivalent. The tableaux S and T are operator equivalent if
v(S) = ~4(T). More explicitly, S and T are operator equivalent if they have the
same number of entries s in row j for each j and s > j.

Lemma 3.10. Any operator in the PBW basis for U(n,) is realized by a tableau

Proof. Consider a basis operator A = [[;_,, EZJ . We produce a semistandard
tableau S4 of shape A, where A = (A1,..., An—1), with \; defined as follows. Let
An=0and Aj = Ajp1 + 2,5 ai;. The §t" row of S will contain A;i; entries j
and a;; entries ¢ for 7 > j. The resulting tableau is semistandard since all entries in

row j + 1 are at least j + 1, and if an entry in the j** row is above a box, then its
|

entry is j.
Corollary 3.11. There is a one-to-one correspondence between the PBW basis for
U(ny,) (resp. Low) and operator equivalence classes of tableaux in 8(n) (resp. 8).

We remark that once A and p are fixed, there is at most one element of 8§ in
each equivalence class.

The representative of each operator equivalence class constructed in the proof of
the lemma is usually considerably bigger than necessary. In fact, there is a smallest
representative of each class. Given two nonincreasing sequences A and X', we say
that A < A if A’ — X is a nonincreasing, nonnegative sequence.
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Proposition 3.12. (1) Given A an operator in the PBW basis for Low, there
is a unique semistandard tableau Ts such that v(T4) = A and, for any
S €8 with v(S) = A, sh(S) > sh(Ta). If A € U(w,), then Ty € 8(n).

(2) Suppose that A has weight T. Then there exists S € 8§ such that v(S) = A
if and only if T = p— A, sh(S) > sh(T4), and co(S) > co(T4). In this
case, sh(S)—sh(T4) = co(S)—co(Ta), and S is obtained from Ta by adding
by bozes with entry k to row k, where b; = (sh(S) —sh(T4));.

Ezxample 3.13. The tableau in Example 3.2 is the smallest representative of its
operator equivalence class.

Ezample 3.14. None of the tableaux in Table 2 are minimum representatives. The
smallest representative in each operator class is given in the third column of the
table.

Remark 3.15. An operator A may be represented by a tableau that is smaller than
any representation as a semistandard tableau (cf. Remark 3.1); indeed, A may be
represented by a tableau of shape A if and only if ZD]- a;; < Aj for each 5. If A
cannot be represented as a possibly non-semistandard tableau of shape A, i.e., A
does not fit inside A, then A - vy = 0. This is shown in Proposition 4.4.

Proof. Fix a basis operator A € U(n,,). The tableau T4 is constructed recursively
from the tableau S4 given in the proof of lemma 3.10. The shape of T4 has length
n — 1, and its last row agrees with the last row of S4. Assume that the j** row
of T4 has been constructed (2 < j < n —1). Remove the boxes in row j — 1 of
S4 containing j — 1’s and left justify the remaining boxes. Slide these boxes the
minimum number of spaces to the right so that all entries are strictly smaller than
those in the j** row of T4, and add new boxes containing j — 1’s to fill out the row
to the left. This is row j — 1 of Ts. Let A = sh(T4) and p = co(T,). Note that
T =pt =\

Now suppose S € 8§ and v(S) = A. It is trivial that 7 = p — X\. Let b =
sh(S)—A4. We will show by downward induction that b is a nonincreasing sequence
of nonnegative integers and that the last /\3-4 entries of S; (i.e., the j row of 9)
coincide with (T4);. We first note that if j > n, then S; contains b; j’s and no
other entries. This implies that b; > 0; moreover, since S is a tableau, b, > b,11 >
bn42 > .... Next, each box in S,, must be underneath an n—1. Since S,,_; contains
exactly b,—1 n — 1’s, we obtain b,,_1 > by,. Also, (T4)n—1 contains no n — 1’s, so
the last Af—l entries of S,,_1 are just (T4)n—1-

Finally, assume that b; < b;;1 with j < n — 2. Consider the semistandard
tableau with two rows obtained by omitting the first |S; 1| — /\j‘Jrl boxes from S}
and S;41. By inductive hypothesis, the lower row is (T4);41. The entries greater
than j in the upper row are the same as those in (T'4);, but it has strictly fewer
entries equal to j. Since every entry in the upper row is larger than the entry below,
this contradicts the definition of (T4),;. Hence, b; > bj11. Since v(S) = v(Ta),
the last /\3-4 entries of S; are (T4);. We have thus shown that b is a nonnegative,
nonincreasing sequence and that co(S) — co(T4) = b.

For the converse, assume that A > sh(T4) and p > co(T4) with p— X\ = 7.
Let S be the tableau of shape A obtained by adjoining b; = (A — A%); boxes
with entry j to the left of each row of T4. We see immediately that v(S) = A
and p(S) = p* + (A= M) = X+ p — X\ = p, so it only remains to check that
S is semistandard. Let (j,%) be the coordinates of a box that is above another
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box. If k < bj, then Sj+1,k >3+1 >3 = Sjk. Otherwise, k > bj > bj+1,
50 Sjy1,p = (TA)jJ,-l,k—bj_,_l > (TA)j,k—bj_H > (TA)j,k—bj = 91, as desired. This
concludes the proof. O

We can now determine when the bases for V{" and Vﬁf/ given in Theorem 3.3
come from the same set of lowering operators. We denote the (finite) PBW basis
of Low" by {All'}, where g varies over an index set.

Theorem 3.16. Let V) be the irreducible representation of SU(n) with highest
weight A and highest weight vector vy. If u is a weight space of Vy, then {Ag*)‘ “vy |
A > sh(Tu-2), 0 > co(Tyu-»)} is a basis for V{'. In particular, if Vx is an

!

irreducible representation of SU(n') with weight space p' such that A\ —p =N — /',
then the sets of monomial lowering operators giving rise to the bases for V{' and

V/\*f/ coincide if and only if X > sh(T u-x) and p > co(T ,u-x) precisely when
q q
N> sh(Tyu-x) and p' > co(T yu-x).

Proof. This follows from Theorem 3.3 and Proposition 3.12. (I

Ezample 3.17. Consider X' = (3,2,1,0) and p’ = (1,2,2,1). The difference ' —
A is the same as p — A from Example 3.9, but VE s only 4-dimensional. The
corresponding lowering operators are the first four operators from Table 2. The
other two fail because u’ — co(T4) is not nonincreasing; they are (0,1,0,0) and
(1,2,1,0) respectively. Similarly, for \ = (2,2,1,0) and u” = (0,2,2,1), V)ff:/ is
one-dimensional, with basis coming from the first operator in Table 2.

Corollary 3.18. Let n be a positive integer such that \ has length smaller than n
and p has length at most n, and let V\(n) be the corresponding irreducible repre-
sentation of SU(n). Then the set of lowering operators giving the bases for ViI*(n)
is independent of n.

Corollary 3.19. Suppose that X > sh(T ,.-») and p > co(T yu-x) for all q. Then

the set of lowering operators giving the basis for V' is precisely the PBW basis for
LowH ™.

3.4. Representations of U(n). The analysis of the previous sections also applies
to representations of the unitary group U(n). Here, the weight lattice is ZL; &~ - - @
ZL,, with the dominant weights given by {\i L1+ -+ALn | A1 > A2 > -+ > A}
Again, the irreducible representations are in one-to-one correspondence with the
dominant weights, and we let W) denote the irreducible representation with highest
weight .

The unitary group U(n) is a quotient of SU(n) x S! via the multiplication homo-

morphism SU(n) x S1 LA Uy, so a representation of U(n) is the same as a representa-
tion of SU(n) x S* that is trivial on Ker(¢) = {(e2™*/" I, e=275/") |0 < s < n—1}.
It can be shown that the irreducible representations of U(n) correspond to the irre-
ducible representations of SU(n) x St of the form Vi, @ L®", where r = > . +kn for
some k € Z; here, L is the natural one-dimensional representation of S [9, p.232-
233]. Tt is easy to check that the weights of such a representation are given by
w+(k, ..., k), where p is any weight of V). Tt follows that given a dominant weight
A= (A,..., ), Wy corresponds to Var @ L2 with X = (A1 —An, .o s Adp_1—Ap, 0)
and k = \,. It is now obvious that the lowering operators given in Theorem 3.3
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for V) provide a basis of weight vectors for V;; indeed, the basis is the same, but
with the weights shifted up by (An, ..., An).

Theorem 3.16 and Corollaries 3.18 and 3.19 have obvious analogues for U(n).
We will not state them explicitly; they are obtained by combining the results from
Section 3.3 with the following proposition.

Proposition 3.20. Let A and X be dominant weights for U(n). If there exists an
integer k such that A\; — X, = u; — i = k for 1 <1i < n, then the sets of monomial

lowering operators giving the bases for W' and W/{‘/I coincide.

Proof. In bgth cases, the lowering operators come from the semistandard tableau
with shape A = A—(Ap, ..., An) = N =(A), ..., \)) and content i = u—(Ap, ..., Ap) =
W= (AL, A O

4. PROOF OF THE MAIN THEOREM

We prove Theorem 3.3 by showing that the basis of lowering operators corre-
sponds to a known basis for the Weyl module construction of irreducible represen-
tations of sl,(C). This approach was introduced in [36] and expounded in [44].
Denote the classical representation of sl,,(C) with underlying vector space C™ by
V. Let eq,--- , e, be the ordered basis which gives the standard coordinates of C™.
Every irreducible representation of sl,(C) is a subrepresentation of tensor prod-
ucts of the fundamental representation, V' [44, 9]. Suppose A is a dominant weight
normalized so that A, = 0. Let >_ A; = d so that A is both a partition of d and a
Young diagram with d boxes and k < n — 1 rows. Number the boxes of A from 1
to d starting left to right and top to bottom. The permutation group Sy acts on
elements of ®?_,V by permuting the factors and also on the boxes of A\. We will
write the permutation group action on the right.

Let R denote the subgroup of permutations of S, that preserve the rows of A, and
let C denote the subgroup of permutations that preserve the columns of A. Recall
that the Young symmetrizer for \ is the element of the group algebra C[Sy] given
by ¢\ = Z (—=1)°c where (—1)¢ is the sign of the permutation ¢. Young

o=rc,reR,ceC
symmetrizers figure prominently in the representation theory of Sy; indeed, each
irreducible representation of Sy is uniquely determined by a Young symmetrizer.
According to Weyl and Schur,

Vi :Span{ Z (_1)sign cv(l)a®"'®v(d)o |’U13"' ,Ud € {ela"' 76n}}
o=rc,reR,ceC
or equivalently,
(4) V)\ = ®;1:1V . C)\,

as explained in [9].
Given a (not necessarily semistandard) tableau

T‘11 T12 T‘l)\1

Tht| - [Thx,
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with Tj; € {1,--- ,n}, welet vy = ep,, Req, - ‘®er,, ¥ - -Qer,, ¥ - -Qeqy,, -Cx
denote the corresponding vector in V. It is easy to check that if the tableau 7" has
content p, then vy € V{'. Note that as T runs over these tableaux, the vectors

wT:eTll®eT12®...®eTl)\1®...®6Tk1®...®eTk>\k

give the standard basis for ®%_,V, and vr may be written in terms of them via

v = Z (71)C’LUT,U.

o=rc,reR,ceC

Proposition 4.1. In the above notation, V{' has {vp | T € 8K} as a basis, i.e.,
those vr’s corresponding to the semistandard tableaux on \ with content p.

Proof. This is a well-known result. However, the proofs we found in the literature
showed the analogous fact for the vectors vy, = > _ .. cr .cc(—1)°Wr.o, Where the
order of column and row permutations is reversed. (See, for example, [9, Exercises
6.14,6.15] or [1].) Accordingly, we give a sketch of the proof.

Since the dimension of V" is equal to the size of 8§ [9], it suffices to show that
the set {vr | T € 8} is linearly independent. To show independence, we make
use of the notions of column equivalence and column dominance as described, for
example, in [35]. Two tableaux with shape A are column equivalent if the content
of each column of the two tableaux is the same. Hence, T and S are in the same
equivalence class if and only if S = T - ¢. There is a partial order > on column
equivalence classes of tableaux called column dominance. More formally, we will
view > as a preorder on the set of tableaux of a given shape with T' > S and
S > T implying that T" and S are column equivalent. We leave it to the interested
reader to seek the definition in [35], but we use the fact that it is a partial order on
classes of tableaux of shape A and that T'> T - r [35, Corollary 2.10.3]. Therefore
T > T-(rc). Suppose Z arvr is a linear combination, and let 7”7 be a

T semistandard
maximal semistandard tableau with a7 # 0. This means that if 7/ = T - o for any

T semistandard with ar # 0, then T' = T". Moreover, T/ = T’ - rc implies that
T =T -r (or else T" - rc is strictly smaller than 7”) and hence ¢ = 1 (since 7" is
strictly increasing down columns). Thus, if we let k= |{r | T"-r =T"}| > 1, then

Z arvr = Z ar Z(_l)ch-rc

T semistandard T semistandard
= E brwr
T arbitrary
with by» = kap:. Therefore, E arvp # 0, and {vp | T € 84} is linearly
) . T semistandard
independent set. This completes the proof. ([

Given a diagram )\, note that A\ is an admissible content, and there is a unique
semistandard tableau with this content A, namely, the tableau L with all entries in
the i*" row being i

(5) L=
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It is evident that a highest weight vector for V) is given by vy = vy. We will show
that, for any semistandard tableau of shape A,

(6) Yux(T) -vx = Nr - vr,

where N7 is a positive integer. Combining this equation with Proposition 4.1 will
complete the proof of Theorem 3.3.

Remark 4.2. It follows from the argument below that for a semistandard tableau,

Nr is easily read from ~,,,(7T") as the product of the factorials of the powers, e.g., for

T =2P[221515), 4\ (T) = E3 E% E3,, and Ny = 4!2!3!. Notice that this multiplicity

appears in the X~ row in Table 1. These multiplicities also appear in Carter and

Lusztig, and the basis vectors that they give for V{" are in fact (N7) ™1y, (T) v [6].
To demonstrate Equation (6), we need the following lemma.

Lemma 4.3. Suppose that S is a tableau, i € {1,--- ,k}, and the following hy-
potheses are satisfied:

(a) The only boxes with entry i occur in the i*" row.
(b) Sij =1 for1<j<g, where g >0, and S;; > i otherwise.
If j1 > i, then
(1) Ejivs = gvg where Sg = Sy for all (s,t) except (s,t) = (i,9) and S’ig =Ji.
(2) If g > 1, then S also satisfies hypotheses (a) and (b).
Proof. The proof is a straight calculation using the action of an operator on a tensor
product. Note that
vs=¢€s5, ® -Qes, @ Ve, @ - Veg,, Ves,,,, ®"'®65Mi @ ®es,, ®...®esk)\k N
:6311 ®...®esl)\1 ®...®ei®...®ei®esiy+l ®...®esi)\i ®...®esk1 ®...®esk/\k 'C)\;

with the e;’s occurring exactly as eg ;es,,- Then,

PR
Ejli'US 26511®"'®65u1®"’®Ej1iei®"'®ei®esig+1®"'®GS¢,\1.®"'®€Sk1®"'®esmk - Cx
6511®"'®6S1>\1®"'®ei®"'®Ej1i6i®€Si9+1®"'®651xi®"'®€Sk1®"'®€5kxk'Cx\

:g'esn®"'®651>\1®"'®ei®"'®ei®eh®65ig+1®"'®esi>\i®"'®65k1®"'®65k>\k'C)\

= gvug,
since entries in the S;i,---,9;, positions may be interchanged via a permutation
that leaves the rows invariant. O

Proof of Equation (6). We apply Lemma 4.3 repeatedly. Suppose T is a semistan-
dard tableau with shape A\. We set the following notation: T; 1 = --- =T} 5, = 1,
so the first entry bigger than 7 in the i*"* row is in column s; + 1; of course, s; may
be zero. The tableaux that play the role of S in applications of Lemma 4.3 are the
tableau L from (5) above and the tableaux T'(i) defined below, not T itself. We
examine the effect of

’YTL)\(T) = (ET151+11 T ETul 1) T (ETisi+1i T ETi/\ii) T (ETksk+1k T ETk/\kk?)

on vy = vy,. The operators corresponding to a single row are blocked in parentheses.
We first observe that

(ETksk+1k7 T ETk)\kk) CUN = MEVT (k)
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for some positive integer my, where the tableau T'(k) matches L in the first &k — 1
rows but matches T in the k' row. To see this fact, apply the Ay — s; operators
one at a time using Lemma 4.3 each time.

The initial tableau L satisfies the hypotheses of the lemma. Applying the oper-
ators replaces the entries in the k" row one at a time, from right to left, by the k"
row of T'. Each step reduces the number of k’s in this row, since there are Ay k’s in
L and only A\ — si operators, the hypotheses of Lemma 4.3 hold to allow the next
application. One ends up with a positive integer multiple of vy y).

For j =0,--- ,k—1, let T(j + 1) be the tableau of shape A that matches L in
the first j rows and matches T in the rows below j. The entries in rows j 4+ 1 to k
are all strictly greater than j and T'(j + 1) satisfies the hypotheses of Lemma 4.3.
Now repeat the argument moving up the rows. Observe that

(ETisi+1i T ETiA,ii) CUT 1 = MGUT(4),

as follows. There are \; entries in the i*" row of L that are i, and there are \; — s;
operators. We can apply Lemma 4.3 repeatedly; the hypotheses hold at each step
due to Conclusion (2). The entries in the i** row are replaced one at a time, from
right to left, by the i*" row of T

Since T'(1) = T, Equation (6) is established. O

By Proposition 4.1 and Equation (6), {74'(T) - vx | T € 8} is a basis for V},
thus demonstrating Theorem 3.3.

Unlike the situation for crystal bases, those lowering operators in the PBW basis
for U(m) not coming from 8y (n) do not necessarily kill vy. However, if A is a basis
operator which does not fit inside A in the sense of Remark 3.15, then A - vy = 0.

Proposition 4.4. Let A = [[;_;<, EZ’ be a monomial lowering operator (with
the product in our usual order). If A cannot be represented as v(T') for T a (not

necessarily semistandard) tableau of shape A, then A -vy = 0.

Proof. The hypothesis is equivalent to the statement that >, j i > A; for some j;
let s be the largest such index. Let S be the tableau of shape A with nondecreasing
rows which agrees with the highest weight tableau L for the first s rows while, for
j > s, the j** row contains a;; ©’s and \j; — Zi>j ai; j's. The same argument as in
the proof above shows that Hs<j<i§n E:;’ v, = qug for some constant q. Applying
the rightmost A; operators of the form F;s to vg gives a sum of tensor products of
the standard basis elements of V', none of which contain e,. This sum will be killed
by the next Fj;,. O
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