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Abstract. The theory of minimal K-types for p-adic reductive groups was

developed in part to classify irreducible admissible representations with wild

ramification. An important observation was that minimal K-types associated
to such representations correspond to fundamental strata. These latter objects

are triples (x, r, β), where x is a point in the Bruhat-Tits building of the

reductive group G, r is a nonnegative real number, and β is a semistable
functional on the degree r associated graded piece of the Moy-Prasad filtration

corresponding to x.

Recent work on the wild ramification case of the geometric Langlands con-
jectures suggests that fundamental strata also play a role in the geometric

setting. In this paper, we develop a theory of minimal K-types for formal flat
G-bundles. We show that any formal flat G-bundle contains a fundamental

stratum; moreover, all such strata have the same rational depth. We thus

obtain a new invariant of a flat G-bundle called the slope, generalizing the
classical definition for flat vector bundles. The slope can also be realized as

the minimum depth of a stratum contained in the flat G-bundle, and in the

case of positive slope, all such minimal depth strata are fundamental. Finally,
we show that a flat G-bundle is irregular singular if and only if it has positive

slope.

1. Introduction

The theory of unrefined minimal K-types for representations of p-adic reductive
groups arose as a response to two a priori distinct problems concerning admissible
representations of GLn. First, Bushnell and Frölich [10] introduced the notion of a
fundamental stratum contained in a representation and showed that for representa-
tions containing a fundamental stratum, the stratum could be used to calculate the
constants in the functional equation of a zeta integral. Bushnell [9] later proved that
any irreducible admissible representation of GLn contains a fundamental stratum.
In another direction, Howe and Moy [27, 20], motivated by work of Vogan [35] on
representations of real groups, developed a theory of (unrefined) minimal K-types
for GLn in order to better understand the parameterization of irreducible represen-
tations. In particular, they were interested in establishing a well-defined notion of
the depth of a representation V by studying the congruence level of compact sub-
groups that fix a vector in V . In retrospect, one sees that fundamental strata and
unrefined minimal K-types contain equivalent information about admissible repre-
sentations of GLn with positive depth. Thus, fundamental strata can be viewed as
a theory of minimal K-types in this case.

The second author was partially supported by NSF grant DMS-1503555 and Simons Foundation
Collaboration Grant 281502).
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This theory plays a vital role in the classification of supercuspidal representations
with wild ramification [11, 24] as well as in the proof of the local Langlands conjec-
ture for GLn [18, 19]. Recent work suggests that minimal K-types also play a role
in the geometric setting. Somewhat unexpectedly, the applications so far have been
on the “Galois” side of the correspondence. Let G be a complex reductive group
with Langlands dual LG, and let F be the field of complex Laurent series C((z)).
In the geometric Langlands program, the role of Galois representations is played
by monodromy data associated to flat LG-bundles: over a smooth complex curve
X or the formal punctured disk ∆× = Spec(F ) depending on whether one is in the
global or local context. Consider, for example, the case G = LG = GLn, so that a
flat LG-bundle on X is just a rank n vector bundle endowed with a meromorphic
connection. For regular singular connections, i.e., those whose connection matrix at
each singular point can be chosen to have simple poles, the monodromy data is just
a representation of the fundamental group. Most previous analyses of geometric
Langlands have concentrated on such connections; indeed, a detailed correspon-
dence has been formulated by Frenkel and Gaitsgory in the “tame” case, where the
connections considered are regular singular with unipotent monodromy [14].

Much less is known about the wild case, where irregular singularities are allowed.
Here, one must also include “wild” monodromy data. This consists of a collection
of Stokes matrices at each singular point, describing the “jumps” in the asymp-
totic behavior of a horizontal section as it is analytically continued around each
irregular singularity. Thus, the Stokes data is simply an enhancement of the usual
monodromy data, which allows one to establish a Riemann-Hilbert correspondence
for irregular singular flat vector bundles [26, Chapitre IV]. The deviation of an
irregular singular connection from the regular singular case, or equivalently the
complexity of the Stokes data, is measured by the slope of the connection. By anal-
ogy with the p-adic case, a geometric theory of minimal K-types ought to detect
both whether a flat G-bundle is irregular and the degree of its irregularity, thereby
giving a definition for general G of the discrete invariant slope (akin to the depth
of a representation). It should yield information about the moduli stack of flat
G-bundles. Moreover, it should illuminate certain transcendental invariants such
as the irregular monodromy map, just as the classical theory was used to calculate
constants in the functional equation of zeta integrals. Finally, the theory should
be effectively computable, i.e., it should provide an algorithm for finding a minimal
K-type associated to a flat G-bundle.

The classical approach to studying the local behavior of meromorphic differential
equations in one variable, or equivalently, of meromorphic connections on P1, makes
use of the naive “leading term” of the connection. More generally, let X be a
smooth curve. Let V be a rank n vector bundle on X endowed with a meromorphic
connection ∇, and assume that y ∈ X is an irregular singular point. After choosing
a trivialization for V on a formal neighborhood of y and a local parameter z, ∇ has
the local description

(1) ∇ = d+ [∇] = d+ (M−rz
−r +M−r+1z

−r+1 + . . . )
dz

z
,

where [∇] (the matrix of the connection) is a gln(C((z)))-valued one-form, Mj ∈
gln(C), and r ≥ 0. When the leading termM−r is well-behaved, asymptotic analysis
using this expansion produces detailed information about the connection and the
form of fundamental solutions at y. (See, for instance, [36].) For example, if M−r
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is nonnilpotent, then the slope of the connection is r. The case when M−r is
regular semisimple has been studied extensively in the literature [3, 21], and the
contribution of the leading term to the Stokes data is well understood.

This perspective is much less useful when the formal connection has nonintegral
slope because in this situation, the leading term M−r is nilpotent for every formal
trivialization at y. This is the case for many irregular singular connections that arise
naturally in the geometric Langlands program, such as connections corresponding
to cuspidal representations. For example, Frenkel and Gross have constructed a
rigid flat G-bundle on P1 (for any simple G) which is the de Rham analogue of the
automorphic representation with the Steinberg representation at 0 and a certain
“small” supercuspidal representation at ∞ [15]. Here, the leading term at the
irregular singular point at∞ is always nilpotent. More concretely, Witten considers
Airy-type connections of the form

(2) ∇ = d+

(
0 z−s

z−s+1 0

)
dz

z
,

which always have nilpotent leading terms at 0 [37]. When s = 2, this is the
classical Airy connection; when s = 1, it is the GL2 analogue of the Frenkel-Gross
flat G-bundle with the roles of 0 and ∞ reversed.

One obtains the naive notion of the leading term of a connection by studying
the connection in terms of the obvious degree filtration on gln(C((z))). In [4], the
authors introduced a more powerful notion of the “leading term” of a connection
by considering more general filtrations on the loop algebra defined in terms of
lattice chains [4, 31]. Let V be a finite-dimensional vector space over k. A lattice
chain L = {Lj}j∈Z in V ((z)) is a collection of lattices (i.e., maximal rank C[[z]]-
submodules) such that Lj ⊃ Lj+1 and zLj = Lj+e with fixed period e. The
stabilizer P ⊂ GL(V ((z))) of L is called a parahoric subgroup. The lattice chain is
uniquely determined by P up to translation of the indexing of L; in particular, the
period e = eP is determined by P . One further obtains congruent subalgebras pm,
consisting of the endomorphisms that map Lj to Lj+m for each j ∈ Z; in particular,
p = p0 is the Lie algebra of P . Using this data, we can associate a triple (P, r, β)
called a stratum to the connection ∇, where r is a nonnegative integer and β is a
C-linear functional on pr/pr+1. This means that the matrix [∇] lies in p−r dzz and
that the functional on gl(V ((z))) given by Y 7→ Res(Tr(Y [∇])) induces β on the
quotient algebra. To give a simple example, the usual leading term comes from the
lattice chain Lj = zjV [[z]]. The stabilizer here is the maximal parahoric subgroup
GL(V [[z]]) and pr = zr gl(V [[z]]). The connection in (1) satisfies [∇](Lj) ⊂ Lj−r dzz
while the functional on zr gl(V [[z]])/zr+1 gl(V [[z]]) induced by [∇] is the same as
that induced by the leading term M−r

dz
z . In the terminology of [4], we say that

the stratum

(3) (GL(V [[z]]), r,M−rz
−r dz

z
)

is contained in the induced formal connection at y.
As has been noted above, the fact that the stratum (3) is contained in a con-

nection is primarily useful when M−r is nonnilpotent. More generally, we say that
the stratum (P, r, β) is fundamental if it satisfies an analogous nondegeneracy con-
dition. To be precise, the functional β comes from some Y dz

z ∈ p−r dzz as described
above, and the stratum (P, r, β) is fundamental if the action of Y on the associated
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graded space
⊕
Li/Li+1 is not nilpotent. It is fundamental strata that provide a

better notion of the leading term of a connection. In [4], we showed that every for-
mal connection contains a fundamental stratum. Moreover, if (P, r, β) is contained
in (V ((z)),∇), then r/eP ≥ slope(V ((z)),∇) with equality (in the irregular singular
case) precisely when the stratum is fundamental. We remark that this geometric
theory of strata was motivated by the analogous p-adic theory, which plays a crucial
role in the representation theory of GLn over p-adic fields [10, 9, 11].

A fundamental stratum contained in a connection at a given point should provide
a coarse approximation to the local behavior of the connection and its solutions.
This can be seen most strikingly when the fundamental stratum is regular, a con-
dition introduced by the authors generalizing the classical assumption of regular
semisimplicity of the naive leading term [4]. The data of a regular stratum includes
a (not necessarily split) maximal torus S in GLn(V ((z))). Consider, for exam-
ple, the collection of meromorphic connections (V,∇) on P1 with singularities at
y = (y1, . . . , ym) such that the induced formal connection at each yi contains an
Si-regular stratum of depth ri. Let r and S denote the collection of ri’s and Si’s
respectively. One can construct the moduli space of such connections as a Poisson

manifold M̃(y, r). Moreover, the construction of this moduli space is “automor-
phic”, i.e., it is realized as the Poisson reduction of products of smooth varieties
describing local data at the singularities.1 Finally, the monodromy map induces

an integrable system on M̃(y,S, r), and the authors have analyzed the relationship
between the monodromy foliation and the corresponding regular strata in [5].

The goal of this paper is to develop a geometric theory of minimal K-types.2

We will do so by generalizing the theory of strata and its application to formal flat
G-bundles for an arbitrary reductive group G over an algebraically closed field of
characteristic 0. Again, one wants to study the behavior of a connection in terms
of suitable filtrations on the loop algebra g((z)). In the general setting, we will use
the filtrations introduced by Moy and Prasad in their theory of minimal K-types
for admissible representations of p-adic groups [28, 29]. Given any algebraic group
H defined over a discrete valuation field, there is an associated complex called its
Bruhat-Tits building. For any point x in this building, Moy and Prasad defined
a decreasing R≥0-filtration {Hx,r} on the parahoric subgroup Hx = Hx,0 with a
discrete number of jumps [30, 28]. There is also a compatible R-filtration on the
Lie algebra h. An unrefined K-type (at least for r > 0) is then a triple (x, r, β)
with β a character of Hx,r/Hx,r+ (with Hx,r+ the next step up in the filtration);
it is called minimal if it satisfies a certain nondegeneracy condition. For p-adic
groups, Moy and Prasad showed that every irreducible admissible representation
V of H contains a minimal unrefined K-type. Moreover, if one defines the depth
of V to be the smallest r appearing in a K-type in V , then (x′, r′, β′) contained in
V is minimal if and only if r′ = r. Finally, they showed that two minimal K-types
contained in V are closely related; in their terminology, the minimal K-types are
associates of each other [28, 29].

Returning to the geometric setting, we define a G((z))-stratum to be a triple
(x, r, β) where x is a point in the Bruhat-Tits building for G((z)), r ∈ R≥0, and β is
a functional on the rth step g((z))x,r/g((z))x,r+ in the filtration on g((z)) determined
by x. Again, we call a stratum fundamental if the functional β satisfies a certain

1See [32] for some explicit examples.
2Further extensions and applications appear in [6, 22].
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nondegeneracy condition. We remark that if r > 0, the exponential map induces
an isomorphism between g((z))x,r/g((z))x,r+ and G((z))x,r/G((z))x,r+, so there is a
bijection between strata and unrefined K-types. In the case of flat vector bundles
(i.e., G = GLn), we can recover our previous version of strata by choosing appro-
priate points in the building. Indeed, any parahoric subgroup P corresponds to a
unique facet in the building, and this facet decomposes as the product of a simplex
and R. If x is any point lying over the barycenter of this simplex, then the jumps
in the associated filtration occur at 1

eP
Z and P j = Gx,j/eP , where eP is the period

of a lattice chain with stabilizer P .
Our main results, given in Theorems 2.14, 2.15, and 2.17, are the geometric

analogue of Moy and Prasad’s theorem on minimal K-types for admissible repre-
sentations of p-adic groups. We show that any formal flat G-bundle (G,∇) contains
a fundamental stratum (x, r, β) with r a nonnegative rational number and that all
such strata have the same depth. In fact, we exhibit an explicit algorithm for find-
ing such a fundamental stratum. Moreover, any two fundamental strata contained
in ∇ are associates of each other. We thus obtain a new invariant of a flat G-bundle
called the slope, generalizing the classical definition for flat connections. We fur-
ther show that (G,∇) is irregular singular if and only if slope(∇) > 0. Finally,
we prove that a stratum (x′, r′, β′) contained in the formal G-bundle ∇ satisfies
r′ ≥ slope(∇), and in the irregular singular case, it is fundamental if and only if
r′ = r.

We remark that there are other approaches to defining the slope. In [15], Frenkel
and Gross suggest a procedure which involves pulling the flat G-bundle back to a
ramified cover where the connection matrix (for a suitable trivialization) is well-
behaved with respect to the usual degree filtration. Corollary 2.20 shows that their
approach is well-defined and gives the same invariant as our definition. There is
also a recent preprint of Chen and Kamgarpour which shows how to define slope
in terms of opers [12]. These alternate definitions are discussed in more detail in
Remark 2.21.

We would like to thank D. Gaitsgory and M. Kamgarpour for helpful conversa-
tions. We would also like to thank one of the referees for suggestions regarding a
trivialization-free approach to stratum containment.

2. Preliminaries and main results

In this section, we state the main results of the paper. In order to make the
paper accessible to readers with a background in p-adic groups, who may not be
familiar with the geometric setting, we begin by illustrating the theory for flat
vector bundles. We also provide some background on flat G-bundles.

Throughout the paper, k will be an algebraically closed field of characteristic 0,
and F = k((z)) will be the field of formal Laurent series over k with ring of integers
o = k[[z]]. We write ∆× = Spec(F ) for the formal punctured disk and Ω1 = Ω1

F/k

for the space of differential one-forms on ∆×. We will denote the Euler vector field
z d
dz by τ . Finally, ιτ will be the inner derivation by τ , so that a 1-form ω can be

written ω = ιτ (ω)dzz .

2.1. Flat vector bundles. A flat vector bundle over ∆× is an F -vector space U
equipped with a connection ∇, which is a k-derivation ∇ : U → Ω1(U). Through-
out, we shall assume that U is finite dimensional. The simplest example is the
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trivial connection on Fn. In the standard basis {ei}ni=1, ∇ is the usual exterior
derivative d defined by d(ei) = 0 and extended to Fn by k-linearity and the Leibniz

rule: for f ∈ F , d(fu) = df
dzu + fd(u). More generally, for any n × n matrix M

with coefficients in Ω1, it is easily checked that the following is a k-derivation from
Fn to Ω1(Fn):

∇(u) = d(u) +Mu.

We will use the shorthand ∇ = d+M for this operator. Moreover, any connection
on Fn is of this form. Accordingly, if (U,∇) is a rank n connection and φ : U → Fn

is a trivialization, then there exists a matrix [∇]φ of 1-forms such that the induced
connection ∇φ on Fn can be written as ∇φ = d + [∇]φ. One can also write ∇ in

terms of an ordinary matrix as ∇φ = d + ιτ ([∇]φ)dzz . The left action of GLn(F )
on trivializations has the following effect on the matrix of a connection, known as
a gauge transformation: for g ∈ GLn(F ),

(4) [∇]gφ = g · [∇]φ = g[∇]φg
−1 − (dg)g−1.

We remark that if T ∈ Ω1(End(U)), the formula d + T does not give a well-
defined connection on U . However, if U is endowed with a fixed k-structure, say
U = Uk ⊗ F , then d + T makes sense: (d + T )(fv) = df

dz v + fT (v) for f ∈ F and
v ∈ Uk. In particular, below we will frequently consider flat vector bundles with
U = V̂ := V ⊗ F , where V is a k-vector space, and expressions of the form d + T
will be defined in terms of the natural k-structure.

A flat vector bundle (U,∇) is called regular singular if there exists an o-lattice
L ⊂ U with the property that ∇(L) ⊂ L⊗o Ω1

o/k(1). Equivalently, (U,∇) is regular

singular if and only if there exists a lattice L for which (ιτ ◦ ∇)(L) ⊂ L. This
means that there is some trivialization φ with respect to which the matrix [∇]φ has
at worst a simple pole. Otherwise, ∇ is said to be irregular singular.

The deviation of an irregular singular connection from the regular singular case
is measured by an invariant called the slope. We recall the precise definition. Fix a
lattice L ⊂ U . If e = {ej} is a finite collection of vectors in U , we define v(e) = m if
m is the greatest integer such that e ⊂ zmL. Let (U,∇) be an irregular flat vector
bundle. Take e to be any basis for U . By a theorem of Katz [13, Theorem II.1.9],
there is a unique positive rational number r such that the subset of Q given by

(5) {v(ιτ ◦ ∇)ie) + ri | i > 0}
is bounded. Here, (ιτ ◦ ∇)ie = {(ιτ ◦ ∇)i(ej)}. This number is independent of the
choice of basis e and is called the slope of (U,∇). For a regular singular connection,
the set in (5) is never bounded for positive r, and we say that its slope is 0.

2.2. Filtrations on F -vector spaces. A previous paper by the authors [4] is
concerned with the interaction between flat vector bundles (U,∇) and decreasing
R-indexed filtrations on U consisting of o-lattices {Ur}r∈R. We will only consider
periodic (more specifically, 1-periodic) filtrations, for which zUr = Ur+1 for all r.
Such filtrations are parameterized by points in a certain complex B = B(GL(U))
called the Bruhat-Tits building for GL(U). We will not describe this correspondence
in detail here; see Section 2.6 where we discuss analogous filtrations for an arbitrary
reductive group. For the present, we only recall a few properties of the building.3

First, B is the union of n-dimensional real affine spaces called apartments, which

3References for Bruhat-Tits buildings include the survey article [34] and the book [25], as well
as the original papers of Bruhat and Tits [7, 8].
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are in one-to-one correspondence with the set of split maximal tori in GL(U). A
choice of basis for U determines a specific apartment together with an origin for
the affine space. Second, B is endowed with a surjection onto a simplicial complex
B̄ called the reduced building with fibers isomorphic to R; furthermore, one can
decompose the building as B = B̄×R. If x ∈ B lies over x̄ ∈ B̄, then the filtrations
for points lying above x̄ are precisely those of the form U ′r = Ux,r+s for some fixed
s ∈ R. Finally, the origin determined by a choice of basis lies over a fixed vertex in
B̄.

Example 2.1 (Degree filtration). Let U = Fn and Uj = zjon whenever j ∈ Z.
This Z-filtration extends to an R-filtration by Ui = Udie. This periodic filtration
corresponds to the origin of B determined by the standard basis of Fn.

The most familiar class of periodic filtrations comes from lattice chains in U .
Recall that a lattice chain L = {Lj}j∈Z in U is a collection of o-lattices in U such
that Lj ⊃ Lj+1 and zLj = Lj+e with fixed period e [4, 31]. The corresponding
R-filtration is given by setting UL

j/e = Ldje. Note that lattice chain filtrations are

uniform in the sense that the “jumps” in the filtration are evenly spaced a distance
1/e apart. More formally, given any filtration {Ur}, set Ur+ = ∪s>rUs. The
critical numbers of the filtration are those r for which Ur 6= Ur+. A filtration is
called uniform if the distance between consecutive critical numbers is a constant.
An arbitrary uniform filtration is obtained from an appropriate {UL

r } by translating
the indices by a constant.

Uniform filtrations correspond to distinguished points in the building. Let
P ⊂ GL(U) be the stabilizer of L; equivalently, it is the stabilizer of any uni-
form filtration coming from L up to translation of the indices. Such subgroups are
called parahoric subgroups, and they parameterize the facets in both B and B̄ in a
way compatible with the natural map B→ B̄. The uniform filtrations coming from
L are precisely those Ux,r with x ∈ B lying above the barycenter of the simplex in
B̄ corresponding to P (c.f. Appendix A). We denote the Lie algebra of P by p; it
is called a parahoric subalgebra.

A periodic filtration on U also induces a periodic filtration on the endomorphism
ring gl(U) of U . Indeed, if x ∈ B corresponds to the filtration Ux,r, then one sets
gl(U)x,r = {X ∈ gl(U) | X(Ux,s) ⊂ Ux,s+r for all s}. In particular, if x is in
the facet corresponding to the parahoric subgroup P , then gl(U)x,0 = p. These
subspaces should be viewed as generalized congruence subalgebras. To see why,
let L be a lattice chain with period e. The corresponding sequence of congruence
subalgebras is given by pm = {X ∈ gl(U) | X(Li) ⊂ Li+m for all i}, with p0 = p.
It is now easy to check that the filtration {gl(U)L} with critical numbers 1

eZ and

gl(U)Lm/e = pm for all m is the same as the filtration induced from {UL
r }.

The degree filtration is an example of a uniform filtration coming from a lattice
chain of period 1. The corresponding parahoric subgroup is the maximal parahoric
subgroup GLn(o). We now give an example corresponding to a minimal parahoric
(or Iwahori) subgroup.

Example 2.2 (Iwahori filtration). Let U = Fn. For m ∈ Z, write m = sn+ j with
0 ≤ j < n, and let Lm be the lattice with o-basis {zsei | i ≤ n − j} ∪ {zs+1ei |
i > n − j}. The lattice chain L = {Lm} has period n, so that the associated
periodic filtration has critical numbers 1

nZ. The stabilizer of this lattice chain is
the standard Iwahori subgroup I, consisting of the pullback of the standard upper
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triangular Borel subgroup under the natural map GLn(o) → GLn(k). The point
xI ∈ B corresponding to the Iwahori filtration lies above the barycenter of the
chamber (i.e., maximal facet) in B̄ corresponding to I.

We will also need to consider periodic filtrations on the space of 1-forms Ω1(U)
and on the smooth k-dual space gl(U)∨, i.e., the space of k-functionals vanishing
on a nonempty bounded open subgroup. First, we define Ω1(U)x,r as the image of

Ux,r via the isomorphism U → Ω1(U) given by u 7→ udzz . Next, observe that there
is a pairing

(6) gl(U)× gl(U)→ k, (X,Y ) 7→ Res Tr(XY )dzz ,

which induces an isomorphism gl(U)→ gl(U)∨. We set gl(U)∨x,r to be the image of
gl(U)x,r under this isomorphism.

2.3. U-strata and flat vector bundles. In order to relate filtrations to connec-
tions, we introduce the notion of a U -stratum. We will denote the k-dual of a
finite-dimensional k-vector space W by W∨.

Definition 2.3. A U -stratum of depth r is a triple (x, r, β), where x ∈ B, r ≥ 0,
and β ∈ (gl(U)x,r/ gl(U)x,r+)∨.

The pairing (6) induces an isomorphism (gl(U)x,r/ gl(U)x,r+)
∨ ∼= gl(U)∨x,−r/ gl(U)∨x,−r+,

and we say that β̃ ∈ gl(U)∨x,−r is a representative of β if β̃ + gl(U)∨x,−r+ corre-
sponds to β. The stratum (x, r, β) is called fundamental if every representative is
nonnilpotent. (We define nilpotent elements in gl(U)∨ via transport of structure
from gl(U).)

We can now show how U -strata can be used to define the leading term of a
flat connection with respect to a periodic filtration. Given β̃ ∈ gl(U)∨, set Xβ̃ ∈
Ω1(gl(U)) equal to the unique 1-form such that Res β̃(Y )dzz = Res Tr(Xβ̃Y ).

Definition 2.4. Let (U,∇) be a flat vector bundle. We say that (U,∇) contains

the stratum (x, r, β) if, given any (or equivalently, some) representative β̃ for β,

(7) (∇− j dz
z
−Xβ̃)(Ux,j) ⊆ Ω1(U)x,(j−r)+, ∀j ∈ R.

Example 2.5. Let o ∈ B correspond to the degree filtration on Fn determined by
the standard basis as in Example 2.1. The connection given in (1) makes Fn into
a flat vector bundle that contains the stratum (o, r,M−rz

−r dz
z ). Here, M−r

dz
z is

viewed as the functional on zr gln(k) ∼= zr gln(o)/zr+1 gln(o) given by the residue
of the trace form. This stratum is fundamental if and only if M−r is nonnilpotent.

Example 2.6. The connection on F 2 given by (2) contains the nonfundamental
stratum (o, s,

(
0 z−s

0 0

)
dz
z ) based at the degree filtration. However, it contains a

fundamental stratum with respect to the Iwahori filtration of Example 2.2, namely

(xI , s−
1

2
,
(

0 z−s

z−s+1 0

) dz
z

).

Setting i = Lie(I), the sth Iwahori congruence subalgebra is given by

is =

(
zds/2eo zbs/2co
zbs/2c+1o zds/2eo

)
.

The 1-form in the stratum acts by Res Tr on spank{
(

0 0
zs 0

)
,
(

0 zs−1

0 0

)
} ∼= i2s−1/i2s.
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Remark 2.7. The theory of U -strata described here is somewhat different from that
given in [4]. For example, the definition of strata in [4, Definition 2.13] (as well
as the original definition from [10] in the context of p-adic representation theory)
only allows for filtrations coming from lattice chains. Also, the present definition
of containment of a stratum in a connection differs from that in [4, Definition 4.1];
it is equivalent for strata of positive depth. This is discussed in the appendix; see,
in particular, Proposition A.3.

2.4. Flat G-bundles. We now turn from flat vector bundles to flat G-bundles.
We will need to fix some notation.

Let G be a connected reductive group over k with Lie algebra g. The category
of finite-dimensional representations of G over k will be denoted by Rep(G). We
fix a nondegenerate invariant symmetric bilinear form 〈, 〉 on g throughout. We set

Ĝ = GF and ĝ = g⊗k F ; note that Ĝ represents the functor sending a k-algebra R
to G(R((z))). We will use the analogous notation Ĥ and ĥ for any algebraic group
H over k.

A formal principal G-bundle G is a principal G-bundle over ∆×. The G-bundle G

induces a tensor functor from Rep(G) to the category of formal vector bundles via
(V, ρ) 7→ VG = G ×G V , and by Tannakian formalism, this tensor functor uniquely
determines G. Formal principalG-bundles are trivializable, so we may always choose
a trivialization φ : G → Ĝ. Note that this trivialization induces an isomorphism
between the groups Aut(G) and Ĝ. Moreover, there is a left action of Ĝ on the set
of trivializations of G. The trivialization φ induces a compatible collection of maps
φV : VG → V̂ := V ⊗k F ; we will usually omit the subscript from the notation.

A flat structure on a principal G-bundle is a formal derivation ∇ that determines
a compatible family of flat connections ∇V (which we usually write simply as ∇)
on VG for all (V, ρ) ∈ Rep(G). In practice, once one has fixed a trivialization φ for
G, ∇ may be expressed in terms of a one-form with coefficients in ĝ. This means
that there exists an element [∇]φ ∈ Ω1(ĝ), called the matrix of ∇ with respect to

the trivialization φ, for which the induced connection on V̂ is given by d+ ρ([∇]φ).

We will formally write ∇φ = d+ [∇]φ for the flat structure on Ĝ induced by φ. To
express the effect of change of trivialization (or gauge change) on the matrix, we

first observe that there is a natural action of Ĝ on Ω1(ĝ) which we will denote by
Ad∗.4 Recalling that ιτ is the inner derivation by the Euler vector field, we can write
[∇]φ = ιτ ([∇]φ)dzz ∈ ĝdzz ; with this notation, Ad∗(g)([∇]φ) = Ad(g)(ιτ ([∇]φ))dzz .

The gauge transformation action of Ĝ is then given by

(8) [∇]gφ = g · [∇]φ = Ad∗(g)([∇]φ)− (dg)g−1.

Here, the right-invariant Maurer-Cartan form (dg)g−1 lies in Ω1(ĝ) and may be
calculated explicitly.

We remark that there is an equivalence of categories between flat GLn-bundles
and flat rank n vector bundles given by (G,∇) 7→ (VG,∇V ), where V is the standard
representation.

2.5. The Bruhat-Tits building. As for flat vector bundles, we will study flat G-
bundles in terms of appropriate periodic R-filtrations; however, here we will need
compatible filtrations on V̂ for all V ∈ Rep(G). We will consider a class of filtrations

4As we will see in Remark 3.5, this may be viewed as the coadjoint action on g∨ ⊗ F .



10 CHRISTOPHER L. BREMER AND DANIEL S. SAGE

introduced by Moy and Prasad that are parameterized by a complex B(Ĝ) called

the Bruhat-Tits building of Ĝ [28].
In this section, we recall some basic information about the Bruhat-Tits building.

Fix a maximal torus T ⊂ G with corresponding Cartan subalgebra t. LetN = N(T )
be the normalizer of T , so that the Weyl group W of G is isomorphic to N/T . We
denote the set of roots with respect to T by Φ; if α ∈ Φ, Uα ⊂ G is the associated
root subgroup and uα ⊂ g is the weight space for t corresponding to α. We will write
Z for the center of G and z for its Lie algebra. We also let Waff = N(T (F ))/T (o)
denote the affine Weyl group.

We will define two versions of the building, the reduced building B̄(Ĝ) and

the enlarged building B(Ĝ), which we will simply refer to as the building of Ĝ.
Both are defined as appropriate unions of affine spaces called apartments, which
are in one-to-one correspondence with the split maximal tori in Ĝ. We start by
defining the apartments Ā0 = Ā(T̂ ) and A0 = A(T̂ ) associated to T̂ , which we
call standard apartments; they are affine spaces isomorphic to X∗(T ∩ [G,G])⊗Z R
and Ā0 × (X∗(Z)⊗Z R) ∼= X∗(T ) ⊗Z R respectively. The standard apartments
are endowed with a cell structure induced by the roots. Explicitly, the facets are
intersections of half-spaces determined by the affine hyperplanes {x ∈ A0 | α(x) =
j} for α ∈ Φ and j ∈ Z (and similarly for Ā0). A facet in Ā0 is a polysimplex while
the facets in A0 are pullbacks of those in Ā0 under the projection map. The group
N(T̂ ) acts on these apartments by affine transformations which preserve the cell
structure.

We next need to define the parahoric subgroup Ĝx associated to x ∈ A0. Given
α ∈ Φ, let Ûα,x be the image of zd−α(x)eo under the isomorphism F ∼= Ûα. The

subgroup Ĝx is then generated by T (o) and the Ûα,x’s. Its pro-unipotent radical is

denoted by Ĝx,+. The reduced building B̄(Ĝ) is defined as the quotient of Ĝ× Ā0

by the following equivalence relation [25, §9]:

(g, x) ∼ (h, y) ⇐⇒ there exists n ∈ N(T̂ ) such that y = n · x and g−1hn ∈ Ĝx+.

We then set B(Ĝ) = B̄(Ĝ)× (X∗(Z)⊗Z R). We will view B̄(Ĝ) as a subset of B(Ĝ)

via the zero section. The group Ĝ acts on the buildings, and the buildings inherit
cell structures from the standard apartments via these actions. The cell structures
are compatible with the projection B(Ĝ)→ B̄(Ĝ).

Since every point is conjugate to an element in the standard apartments, the
buildings are covered by translates of the standard apartments. These are the
apartments of the buildings. They are parameterized by the split maximal tori in
Ĝ. More specifically, any split maximal torus T ′ is of the form gT̂ g−1 for some
g ∈ Ĝ; we define the corresponding apartments via A(T ′) = gA0 and Ā(T ′) = gĀ0.

Given x ∈ B(Ĝ), we define the parahoric subgroup Ĝx to be the connected
stabilizer of x; it is a finite index subgroup of Stab(x).5 The corresponding Lie
subalgebra is denoted ĝx. The parahoric subgroups are in bijective correspondence
with the facets of B(Ĝ). Indeed, Ĝx = Ĝy if and only if x and y are in the
same facet. In particular, the parahoric subgroups only depend on the image of
x in B̄(Ĝ). The maximal parahoric subgroup G(o) corresponds to the origin in
X∗(T ∩ [G,G])⊗Z R. See [7, 8, 34, 25] for more details.

5If x ∈ A0, this definition agrees with our previous definition. Indeed, this follows from the

fact that for x ∈ A0, Stab(x) is generated by StabN(T̂ )(x) and the Ûα,x’s [25, §8].
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We will also need to consider the Bruhat-Tits building B(Aut(G)) for the F -
group of automorphisms of the formal principal G-bundle G. This may be defined in
exactly the same way, starting with a fixed maximal torus of Aut(G). Alternatively,

any trivialization of G induces an isomorphism between B(Aut(G)) and B(Ĝ), and

in fact, we see that B(Aut(G)) = B(Ĝ)×Ĝ G.

2.6. Moy-Prasad filtrations. We now define filtrations associated to points in
B(Ĝ).

Let V be a finite-dimensional representation of G over k, and let V̂ be the
corresponding representation of Ĝ. For any x ∈ B(Ĝ), the Moy-Prasad filtration

associated to x is a decreasing R-filtration {V̂x,r | r ∈ R} of V̂ by o-lattices [17, 28].
We briefly review the construction. First, assume x ∈ A0. In this case, the filtration
can be obtained from an R-grading on V ⊗k k[z, z−1] (cf. [17]). If χ ∈ X∗(T ), let
Vχ ⊂ V be the weight space {v ∈ V | sv = χ(s)v ∀s ∈ T}. The rth graded
subspace is defined to be

(9) V̂x,A0(r) =
⊕

χ(x)+m=r

Vχz
m ⊂ V̂ .

Note that the set {r | V̂x,A0
(r) 6= 0} is discrete and closed under translations by Z.

For any r ∈ R, define

V̂x,r =
∏
s≥r

V̂x,A0
(s) ⊂ V̂ ; V̂x,r+ =

∏
s>r

V̂x,A0
(s) ⊂ V̂ .

If x ∈ B(Ĝ) is arbitrary, we write x = gy for g ∈ Ĝ, y ∈ A0, and set V̂x,r = gV̂y,r.
It is shown in [28] that this definition is independent of the choice of g and y.

The collection of lattices {V̂x,r} is the Moy-Prasad filtration on V̂ associated

to x. It is immediate that V̂x,r+1 = zV̂x,r. Note that if x ∈ A0, V̂x,r/V̂x,r+ ∼=
V̂x,A0

(r) 6= {0} if and only if there exists χ ∈ X∗(T ) such that Vχ 6= {0} and

r−χ(x) ∈ Z. We call the real numbers for which V̂x,r 6= V̂x,r+ the critical numbers
of V at x, and denote the set of such points by Critx(V ). We will write Critx for
Critx(g), the critical numbers of the adjoint representation. The set Critx(V ) is
a discrete subset of R closed under translation by Z. If the set of weights in V is
closed under inversion, then Critx(V ) is also symmetric around 0. In particular,
this is the case for representations on which z acts trivially such as the adjoint and
coadjoint representations g and g∨. We further observe that when z acts trivially,
the Moy-Prasad filtrations depend only on the image x̄ ∈ B̄(Ĝ) of x.

Moy-Prasad filtrations are canonically associated to points in the building, but
this is not true for gradings. Given T ′ ⊂ G a maximal torus and x′ ∈ A′ = A(T̂ ′),

one can define an analogous grading V̂x′,A′(r); moreover, if T ′ = gTg−1 and gx = x′

for some g ∈ G, then V̂x′,A′(r) = gV̂x,A0(r). Accordingly, if gx = x, but gTg−1 6=
T , we need not have V̂x,A′(r) = V̂x,A0

(r), so the grading depends on a choice of
apartment containing x. In this paper, we will only consider gradings coming from
A0, so we will usually simplify notation by writing V̂x(r) instead of V̂x,A0(r).

We will also need to consider Moy-Prasad filtrations on the space of 1-forms
Ω1(V̂ ) and on the smooth k-dual space ĝ∨. We define Ω1(V̂ )x,r to be the image

of V̂x,r via the isomorphism V̂ → Ω1(V̂ ) given by u 7→ udzz . Next, our fixed
nondegenerate invariant symmetric bilinear form 〈, 〉 on g induces an isomorphism
ĝ → ĝ∨ given by X 7→ Res 〈X, ·〉 dzz . We set ĝ∨x,r equal to the image of ĝx,r under
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this isomorphism. Note that composing the isomorphisms Ω1(ĝ) → ĝ and ĝ → ĝ∨

gives an isomorphism Ω1(ĝ)→ ĝ∨ which preserves Moy-Prasad filtrations.

There is also a corresponding filtration {Ĝx,r}r∈R≥0
of the parahoric subgroup

Ĝx = Ĝx,0 for x ∈ B(Ĝ) [28, Section 2.6]. To define Ĝx,r, first let T̂r be the

subgroup of T̂ generated by the images of the dreth congruent subgroup in o×

under each cocharacter λ ∈ X∗(T ). Similarly, if ψ ∈ Φ, let Ûψ,x,r be the image

of zdr−ψ(x)eo under the isomorphism F ∼= Ûψ. The subgroup Ĝx,r is generated

by the T̂r and the Ûψ,x,r’s. We set Ĝx,r+ =
⋃
s>r Ĝx,s. In particular, we write

Ĝx+ = Ĝx,0+; it is the pro-unipotent radical of Ĝx [28, p.397]. (We use similar
notation for the Lie algebras: ĝx = ĝx,0 and ĝx+ = ĝx,0+.) For r > 0, there is

a natural isomorphism Ĝx,r/Ĝx,r+ ∼= ĝx,r/ĝx,r+ [28, p.399], so that this quotient

group is unipotent. However, Ĝx/Ĝx+ is reductive. Indeed, in Section 3.1, we will
construct an explicit isomorphism between this group and a maximal rank reductive
subgroup of G. The parahoric subgroup Ĝx stabilizes V̂x,r, and V̂x,r/V̂x,r+ is a

representation of Ĝx/Ĝx+. Note that when G is a torus, i.e., G = T , then the
reduced building is a point. Accordingly, there is a unique Moy-Prasad filtration
on T̂0 = T (o) and t̂; the filtration on T (o) is given by the subgroups T̂r above.

One can similarly define Moy-Prasad filtrations on the vector bundles VG param-
eterized by points in B(Aut(G)). Of course, fixing a trivialization identifies these

filtrations with filtrations on the F -vector spaces V̂ . To be explicit, let φ be a
trivialization of G. Given x ∈ B(Aut(G)), let φ(x) be the induced point in B(Ĝ).

Then, the trivialization φV identifies (VG)x,r and V̂φ(x),r for all r.

2.7. Strata and flat G-bundles. In this section, we generalize the geometric
theory of strata for GLn given in [4] to arbitrary reductive groups. More precisely,
given a formal flat G-bundle (G,∇), its leading term with respect to a Moy-Prasad
filtration is described either in terms of a G-stratum or in terms of a trivialization
and a Ĝ-stratum.

Definition 2.8. Let x ∈ B(Ĝ) and let r ≥ 0 be a real number. A Ĝ-stratum of
depth r is a triple (x, r, β) such that β ∈ (ĝx,r/ĝx,r+)∨.

One can similarly define G-strata associated to points in B(Aut(G)). For a stra-
tum (x, r, β) of this type, x ∈ B(Aut(G)) and β ∈ ((gG)x,r/(gG)x,r+)∨.

Recall from geometric invariant theory that ifW is a representation of a reductive
group H, then a point w ∈W is called unstable if 0 is in the Zariski closure of the
orbit H · w; otherwise, it is semistable. In characteristic zero, w is unstable if and
only if there exists a one-parameter subgroup γ : Gm → H such that limt→0 γ(t) ·
w = 0 [23]. For example, X ∈ ĝ is unstable if and only if it is nilpotent. We call a
functional in ĝ∨ nilpotent if it is unstable.

Definition 2.9. We say that a stratum (x, r, β) is fundamental if the functional β

is a semistable point of the Ĝx/Ĝx+-representation (ĝx,r/ĝx,r+)∨.

Note that a GL(V̂ )-stratum is the same thing as a V̂ -stratum in the sense of
Definition 2.3.

Remark 2.10. Observe that (x, r, β) can only be fundamental when r ∈ Critx.

We will give some equivalent conditions which are easier to compute in Propo-
sition 3.7. For example, we will see in Proposition 3.6 that (ĝx,r/ĝx,r+)∨ may be
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identified with ĝ∨x,−r/ĝ
∨
x,−r+. We will call β̃ ∈ ĝ∨x,−r a representative for β if β

corresponds to β̃ + ĝ∨x,−r+ ∈ ĝ∨x,−r/ĝ
∨
x,−r+. Then, (x, r, β) is fundamental if and

only if every representative β̃ is nonnilpotent.
We now show how to associate strata to formal flat G-bundles. Recall that

ĝ∨ ∼= Ω1(ĝ) and similarly g∨G
∼= Ω1(gG). In both cases, we will let Xβ̃ be the

one-form corresponding to the functional β̃.

Definition 2.11. A flat G-bundle (G,∇) contains the G-stratum (x, r, β) if, for any

(or equivalently, some) representative β̃ ∈ g∨Gx,−r of β,

(10) (∇− idz
z
−Xβ̃)((VG)x,i) ⊂ Ω1(VG)x,(i−r)+, ∀i ∈ R, V ∈ Rep(G).

It will be convenient to make use of a similar concept involving an explicit triv-
ialization.

Definition 2.12. A flat G-bundle (G,∇) contains the Ĝ-stratum (x, r, β) with
respect to the trivialization φ if, for any (or equivalently, some) representative

β̃ ∈ ĝ∨x,−r of β,

(11) (∇φ − i
dz

z
−Xβ̃)(V̂x,i) ⊂ Ω1(V̂ )x,(i−r)+, ∀i ∈ R, V ∈ Rep(G).

Lemma 4.2 states that if (G,∇) contains the stratum (x, r, β) with respect to φ,
then it contains (gx, r, gβ) with respect to gφ.

Since Xβ̃(V̂x,i) ⊂ Ω1(V̂ )x,i−r and idzz (V̂x,i) ⊂ Ω1(V̂x,i) ⊂ Ω1(V̂ )x,i−r, an imme-

diate consequence of (11) is that ∇φ(V̂x,i) ⊂ Ω1(V̂ )x,i−r for all i. Also, note that

the term idzz can be omitted from (11) if r > 0. Similar considerations apply to
Definition 2.11.

As we will see in Proposition 4.3, when x ∈ A0, stratum containment with
respect to φ is equivalent to a concrete and easily verified condition on the matrix
[∇]φ.

Just as for flat vector bundles, there is a notion of regular and irregular singu-
larity for a flat G-bundle.

Definition 2.13. We say that a formal flat G-bundle (G,∇) is regular singular
if for all representations V , the associated flat vector bundle (VG,∇V ) is regular
singular. Otherwise, it is called irregular singular.

As one would hope, a flat GLn-bundle is regular singular if and only if the
corresponding flat vector bundle is regular singular. This is indeed true; see Corol-
lary A.6.

It is more subtle to define the slope of (G,∇). One of the major results of
this paper is using the theory of fundamental strata to provide the appropriate
generalization.

2.8. Main theorems. We can now state the main results of the paper. The proofs
are given in Section 4.3.

In the following theorem, A0 ⊂ B(Ĝ) is the apartment corresponding to the split

maximal torus T̂ ⊂ Ĝ, where T is a fixed maximal torus in G. We call a point in
B(Ĝ) (resp. B(Aut(G))) rational if for every V ∈ Rep(G), the critical numbers for

the filtration on V̂ (resp. VG) are rational. We denote the set of rational points in
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B(Aut(G)), B(Ĝ), and A0 by B(Aut(G))rat, B(Ĝ)rat, and Arat
0 respectively. We call

a stratum rational if it is based at a rational point in the building. Optimal points
are certain points in A0 that generalize the barycenters of simplices in the reduced
building for GLn. (See Section 4.3 for the definition.) One of their nice properties
is that they lie in Arat

0 .
We only wish to consider nonrational strata when R ⊂ k. Accordingly, through-

out the paper, we adopt the following convention:

Convention. All strata are assumed to be rational without further comment unless
R ⊂ k.

Theorem 2.14. Every flat G-bundle (G,∇) contains a fundamental G-stratum
(x, r, β) with x ∈ B(Aut(G))rat; the depth r is positive if and only if (G,∇) is
irregular singular. More precisely, x can be chosen to be the preimage of an optimal
point in A0 under some trivialization φ. Moreover, the following statements hold.

(1) If (G,∇) contains the stratum (y, r′, β′), then r′ ≥ r.
(2) If (G,∇) is irregular singular, a stratum (y, r′, β′) contained in (G,∇) is

fundamental if and only if r′ = r.

It is an important question to understand the set of strata contained in a given
flat G-bundle. As a first step in this direction, we have shown that two such strata
of the same depth r are associates of each other. The formal definition is given in
Definition 3.10.

Theorem 2.15. Suppose that (G,∇) contains the Ĝ-strata (x, r, β) and (y, r, β′)
with respect to the trivializations φ and φ′ respectively. Then, (x, r, β) and (y, r, β′)
are associates of each other. In particular, all fundamental strata contained in
(G,∇) are associates of each other.

We now define the slope of a flat G-bundle.

Definition 2.16. The slope of the flat G-bundle (G,∇) is the depth of any funda-
mental stratum contained in (G,∇).

This definition makes sense by Theorem 2.14. It also follows that the slope is
always an optimal number in the sense of [1], i.e., a critical number for the filtration
on ĝ determined by an optimal point.

Theorem 2.17. The slope of the flat G-bundle (G,∇) is a nonnegative rational
number. It is positive if and only if (G,∇) is irregular singular. The slope may also
be characterized as

(1) the minimum depth of any stratum contained in (G,∇);
(2) the minimum depth of any stratum contained in (G,∇) and based at an

optimal point;
(3) the maximum slope of the associated flat vector bundles (VG,∇V ); or
(4) the maximum slope of the flat vector bundles associated to the adjoint rep-

resentations and the characters.

Remark 2.18. Since the category of formal flat GLn(V )-bundles is equivalent to
the category of rank n flat vector bundle, one would expect the notions of strata,
stratum containment, and slope on the two categories to correspond. This is indeed
the case; see Corollaries A.2 and A.6.
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If E is a degree e field extension of F , then E is generated by an element uE
with ueE = z. We let πE : Spec(E) → Spec(F ) be the associated map of spectra.
The pullback of a flat G-bundle (G,∇) to Spec(E) will be denoted by (π∗EG, π

∗
E∇).

Lemma 2.19. If a flat G-bundle (G,∇) over Spec(F ) has slope r, then (π∗EG, π
∗
E∇)

has slope [E : F ]r.

Proposition 2.20. A flat G-bundle (G,∇) has slope r if and only if there exists a
finite field extension E/F and a trivialization φ of the pullback of (G,∇) to Spec(E)
such that

(12) (π∗E [∇])φ =

∞∑
i=−n

Miu
i du

u
,

with Mi ∈ g, M−n nonnilpotent, and r = n/[E : F ].

Remark 2.21. In [15, Section 5], Frenkel and Gross suggest the condition of Propo-
sition 2.20 as a definition of the slope of a flat G-bundle. The corollary shows
that this approach is independent of the choices and hence provides an alternate
description of the slope. (This can also be shown directly using results from Section
9 of [2].)

We remark that there are advantages to the approach to the slope taken in this
paper. For example, there is no need to pass to a ramified cover in order to put
[∇] into the appropriate form; indeed, there is an explicit algorithm appearing in
the proof of Theorem 2.14 that allows one to find a trivialization of G with respect
to which (G,∇) contains a fundamental stratum. Moreover, one is able to predict
which rational numbers occur as the slope of a flat G-bundle, since these must
be optimal numbers for Ĝ. Finally, a fundamental stratum provides additional
structural information about a formal flat G-bundle beyond the slope. This is
explored further in [6].

There is also a recent preprint of Chen and Kamgarpour which shows how the
slope may be characterized using opers [12]. More specifically, they define the
slope of an oper and show that it agrees with the slope of the underlying flat G-
bundle, using the formulation of [15]. Since any formal flat G-bundle has an oper
structure [16], its slope can be given as the slope of any associated oper. However,
unlike fundamental strata, there is no known algorithm for effectively computing
the oper structure on a flat G-bundle.

3. Moy-Prasad filtrations and strata

We continue with the notation of Section 2, so G is a connected reductive group
over k with Lie algebra g. All results about Bruhat-Tits buildings, Moy-Prasad
filtrations, and strata will be stated only for Ĝ, but analogous statements hold
throughout for Aut(G). To simplify notation, we will write B = B(Ĝ) and B̄ =

B̄(Ĝ).

3.1. Filtrations on loop group representations. In this section, we will discuss
some further properties of Moy-Prasad filtrations.

Recall that A0
∼= X∗(T ) ⊗ R is the standard apartment of B determined by

the split maximal torus T̂ . As long as R ⊂ k, points in A0 may also be viewed
as elements of t. The Lie algebra t′ of any split torus T ′ over k is canonically
isomorphic to X∗(T

′)⊗Z k; the map is induced by sending a cocharacter λ to dλ(1).
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If k′ is a subfield of k, we let t′k′ be the image of X∗(T
′) ⊗Z k

′ under this map.
Assuming that R ⊂ k, we have A0

∼= tR, and we write x̃ ∈ tR for the image of
x ∈ A0.

Remark 3.1. A point x ∈ B is called rational if Critx(V ) ⊂ Q for all V ∈ Rep(G).
Every element of Brat is conjugate to a point in Arat

0 , and Arat
0 consists precisely

of those elements of A0 coming from X∗(T ) ⊗Z Q. In particular, the map x 7→ x̃
defined above when R ⊂ k always makes sense when restricted to Arat

0 ; it gives an
isomorphism Arat

0
∼= tQ. We adopt the convention that when the notation x̃ for

x ∈ A0 is used, it will automatically mean that x ∈ Arat
0 unless R ⊂ k.

There is a very useful alternate description of Moy-Prasad filtrations for x ∈ A0

in terms of operators related to the Euler vector field τ = z d
dz .

Proposition 3.2. Let V be a finite-dimensional representation of G, and fix x ∈ A0

and r ∈ R.

(1) The space V̂x(r) is the eigenspace corresponding to the eigenvalue r in V̂
for the differential operator τ + x̃.

(2) An element v ∈ V̂ lies in V̂x,r if and only if (τ + x̃)(v)− rv ∈ V̂x,r+.

(3) The set V̂x(r) constitutes a full set of coset representatives for the coset

space V̂x,r/V̂x,r+.

(4) If X ∈ ĝx(s), then ad(X)(V̂x(r)) ⊂ V̂x(r + s).

Proof. Each of these statements follows immediately from the definitions of V̂x(r)

and V̂x,r. �

The following lemma allows one to express the action of N̂ = NF on A0 in term
of the differential calculus above.

Lemma 3.3. Suppose that n ∈ N̂ is a coset representative of w ∈ Waff. For all

x ∈ A0, Ad(n)(x̃)− τ(n)n−1 ∈ w̃x+ t̂0+.

Proof. Write n = tn′, with t ∈ T̂ and n′ ∈ N . Since T̂ /T̂0
∼= X∗(T ) (as abstract

groups), we may write t = zyt′ for some y ∈ X∗(T ) and t′ ∈ T̂0. An application of
the Leibniz rule shows that

(13) τ(n)n−1 = Ad(t)
[
τ(n′)(n′)−1

]
+ τ(t)t−1 = τ(zy)z−y + τ(t′)(t′)−1 ∈ ỹ + t̂0+.

Here, τ(n′)(n′)−1 = 0, since n′ ∈ G.

Define a ∈ A0 by ã = Ad(n)(x̃)−ỹ. Suppose that v ∈ V̂x,r for some representation

V , and let u = nv ∈ V̂wx,r. We will show that

(14) τ(u) + ãu ∈ ru+ V̂wx,r+.

Assuming this, Proposition 3.2(2) implies that (ã− w̃x)(u) ∈ V̂wx,r+. Furthermore,
if this expression holds for arbitrary V , r, and u, then ã = w̃x. (Otherwise, let
V be a faithful representation. Then, there exists r ∈ R and an eigenvector in
V̂wx,r/V̂wx,r+ with nonzero eigenvalue for the action of ã− w̃x, a contradiction.)
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It remains to prove (14). Calculating, we obtain

τ(nv) + ãu = τ(n)n−1u+ n(τ(v)) + ãu by the Leibniz rule

∈ n(τ(v)) + (Ad(n)x̃)(u) + t̂0+u by (13)

= n((τ + x̃)(v)) + t̂0+u by definition of a

⊂ rn(v) + nV̂x,r+ = ru+ V̂wx,r+ by Proposition 3.2(2).

�

Next, we discuss further the quotient group Ĝx/Ĝx+. This group is isomorphic
to a reductive maximal rank subgroup of G. We will construct an explicit iso-
morphism. We will first define this isomorphism for x ∈ A0 and then will apply
equivariance to define the map in the general case.

Fix x ∈ A0. Let hx ⊂ g be the subalgebra hx = t⊕
⊕
{α|dα(x̃)∈Z} uα. It is the Lie

algebra of the reductive subgroup Hx ⊂ G generated by T and the corresponding
root subgroups Uα. The group Hx is the connected centralizer of exp(2πix̃) ∈ G.6

Note that Hx only depends on the image of x in B̄.
Next, we define a T -equivariant homomorphism θ′x : Hx → Ĝx. Choose isomor-

phisms uα : Ga → Uα giving a realization of the root system of Hx with respect to
T in the sense of Springer [33, Section 8.1]. On the generating subgroups, θ′x is de-
fined via T ↪→ T (o) and θ′x(uα(c)) = uα(cz−α(x̃)) for c ∈ k. It is easy to check that
θ′x satisfies the relations among the generators (see for example [33, Section 9.4])
and hence is a homomorphism. (If x̃ ∈ tQ, then θ′x is just conjugation by z−x̃; here,
if λ1, . . . λn is a basis for X∗(T ) and x̃ =

∑
dλi(x̃i), then z−x̃ =

∏
λi(z

−x̃i) ∈ T (F̄ ),
where F̄ =

⋃
n≥1 C((z1/n)) is an algebraic closure of F .)

Let θx : Hx → Ĝx/Ĝx+ be the induced map. Since

ĝx/ĝx+
∼= ĝx(0) = t⊕

⊕
α:dα(x̃)∈Z

uαz
−α(x̃),

it is clear that dθx is an isomorphism. The map θx is thus an isogeny which restricts
to an isomorphism on the maximal torus T , hence is an isomorphism. The group Hx

acts on V̂x(r) for any r. It is now easy to see that θx intertwines the representations

V̂x(r) and V̂x,r/V̂x,r+.

If y = gx for some g ∈ Ĝ, then θx composed with conjugation by g gives an
isomorphism θx,g : Hx

∼→ Ĝy/Ĝy+. This map depends on the choice of g. If
y = g′x also, then g′ = gh for some h ∈ Stab(x), and θx,g′ and θx,g differ by an

automorphism of H. However, if Stab(x) = Ĝx, then θx,g′ is just conjugation by

θ−1
x (hĜx+) composed with θx,g. Thus, in this case, the isomorphism is well-defined

up to an inner automorphism of Hx. In particular, this is true when x lies in
a minimal facet (i.e., Ĝx is a maximal parahoric) or G is semisimple and simply
connected [34, p.50]. We sum up this discussion in the following proposition.

Proposition 3.4. Fix x ∈ A0.

(1) The map θx : Hx → Ĝx/Ĝx+ is an isomorphism that intertwines the rep-

resentations V̂x(r) and V̂x,r/V̂x,r+ for all r.

6If k contains R (and hence C), then exp(2πix̃) makes sense; otherwise, by our convention,
x̃ ∈ tQ.
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(2) If Stab(x) = Ĝx, the maps θx,g induce a compatible family of bijections

between the sets of conjugacy classes of Ĝy/Ĝy+ for y ∈ Ĝ · x and the set
of conjugacy classes of Hx.

Moy-Prasad filtrations are well-behaved with respect to the usual algebraic op-

erations. The filtration on the trivial representation k̂ = F is just the usual degree
filtration; it is independent of x ∈ B. If W is a subrepresentation of V , then Ŵx,r =

V̂x,r ∩ Ŵ . If V and W are two representations, then ̂(V ⊕W )x,r = V̂x,r ⊕ Ŵx,r.

Next, under the identification ̂Homk(V,W ) ∼= HomF (V̂ , Ŵ ), we have

(15) ̂Homk(V,W )x,r = {f | f(V̂x,s) ⊂ Ŵx,s+r for all s ∈ R}.

If we let V ∨ = Hom(V, k) and denote the F -linear dual of an F -vector space U by

U∗, then this formula also gives the filtrations on (̂V ∨) = V̂ ∗ and on V̂ ⊗F Ŵ ∼=
V̂ ⊗W ∼= ̂Homk(V ∨,W ).

We have already seen how to define Moy-Prasad filtrations on the space of one-
forms Ω1(V̂ ); we set Ω1(V̂ )x,r equal to the image of V̂x,r under the isomorphism

V̂ → Ω1(V̂ ) given by u 7→ udzz . While this map depends on the choice of uni-
formizer, it is easy to see that the filtrations do not.

We have also defined Moy-Prasad filtrations on the smooth k-dual of ĝ. To
do this, we identified ĝ and ĝ∨ using the fixed G-invariant form 〈, 〉 and defined
filtrations on the dual space by transport of structure. For completeness, we will
show how to define filtrations on smooth dual spaces V̂ ∨, where V ∈ Rep(G) is not
necessarily endowed with an appropriate invariant form. The new approach will of
course give the same filtrations on ĝ∨.

If V is a representation of G, we define an isomorphism V̂ ∗ = (̂V ∨)
κ→ (V̂ )∨

via κ(α)(v) = Resα(v)dzz , and set (V̂ ∨)x,r = κ(V̂ ∗x,r). Again, although the map
depends on the uniformizer, the filtrations do not. (To see this, simply observe

that κ is the composition of the map V̂ ∗ → Ω1(V̂ ∨) with the canonical isomorphism

Ω1(V̂ ∨)→ (V̂ )∨ sending ω to v 7→ Resω(v).)
If one further supposes that V is endowed with a nondegenerate G-invariant

symmetric bilinear form (, ), then the resulting isomorphism V → V ∨ induces an

isomorphism V̂ → (V̂ )∨ given by v 7→ Res (v, ·) dzz . We denote the corresponding

k-bilinear pairing V̂ × V̂ → k by (, ) dz
z

.

Remark 3.5. In the case of the adjoint representation, the isomorphism Ω1(ĝ) ∼= ĝ∗

intertwines the G-action defined in Section 2.4 with the coadjoint action.

We now give the basic facts about the relationship between duality and the
Moy-Prasad filtration. For the adjoint representation, these results appear in [28,
Sections 3.5 and 3.7].

If W is a k-subspace of V̂ , we let W⊥ = {φ ∈ V̂ ∨ | φ(W ) = 0}.
Proposition 3.6. Let V be a finite-dimensional representation of G. Fix x ∈ B

and r ∈ R.

(1) The Moy-Prasad filtrations on V̂ ∨ may be expressed in terms of the anni-

hilators of the filtrations on V̂ as V̂ ∨x,−r = V̂ ⊥x,r+ and V̂ ∨x,−r+ = V̂ ⊥x,r.

(2) There is a natural Ĝx-invariant perfect pairing

V̂ ∨x,−r/V̂
∨
x,−r+ × V̂x,r/V̂x,r+ → k,
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which induces the isomorphism (V̂x,r/V̂x,r+)∨ ∼= V̂ ∨x,−r/V̂
∨
x,−r+.

(3) There are Ĝx-isomorphisms (V̂x,r)
∨ ∼= V̂ ∨/V̂ ∨x,−r+ and (V̂x,r+)∨ ∼= V̂ ∨/V̂ ∨x,−r.

(4) Suppose that V is endowed with a nondegenerate G-invariant symmetric

bilinear form (, ). Then, (, ) dz
z

induces Ĝx-isomorphisms V̂ ∨x,−r
∼= V̂x,−r ∼=

Ω1(V̂ )x,−r and V̂ ∨x,−r+
∼= V̂x,−r+ ∼= Ω1(V̂ )x,−r+; in particular, (V̂x,r/V̂x,r+)∨ ∼=

V̂x,−r/V̂x,−r+.

Proof. If x ∈ A0, these statements are easily checked using the gradings. For
example, to prove (1), one need only observe that the natural pairing V̂ ∨x (s) ×
V̂x(r) → k is perfect if s = −r and 0 otherwise. (Here, the graded components of

V̂ ∨x are defined using transport of structure from V̂ ∗ via κ.) Parts (2) and (3) then
follow from (1), and part (4) is a consequence of (2) and (3).

The general case is obtained by conjugating x into A0. �

In the situation of part (4), we obtain Critx(V ∨) = −Critx(V ). If in addition z
acts trivially on V , Critx(V ∨) = Critx(V ); in particular, Critx(g∨) = Critx.

3.2. Fundamental Strata. In this section, we provide more information about
strata. Recall that a Ĝ-stratum of depth r is a triple (x, r, β) such that β ∈
(ĝx,r/ĝx,r+)∨. We denote the set of G-strata (resp, G-strata of depth r) by SG

(resp. SGr ).
By Proposition 3.6, we may identify (ĝx,r/ĝx,r+)∨ with ĝ∨x,−r/ĝ

∨
x,−r+. We will

call β̃ ∈ ĝ∨x,−r a representative for β if β corresponds to β̃+ ĝ∨x,−r+ ∈ ĝ∨x,−r/ĝ
∨
x,−r+.

If x ∈ A0, we let β̃0 denote the unique homogeneous representative in ĝ∨x (−r).
The Ĝ-equivariance of Moy-Prasad filtrations induces a natural action of Ĝ

on SG and on each SGr . Indeed, the coadjoint action induces a map Ād
∗
(g) :

ĝ∨x,−r/ĝ
∨
x,−r+ → ĝ∨gx,−r/ĝ

∨
gx,−r+. If we let gβ ∈ (ĝgx,r/ĝgx,r+)∨ be the functional in-

duced by Ād
∗
(g)(β̃), then the action on strata is defined by g ·(x, r, β) = (gx, r, gβ).

Definition 2.9 states that a stratum (x, r, β) is fundamental if the functional β

is a semistable point of the Ĝx/Ĝx+-representation (ĝx,r/ĝx,r+)∨. This condition
may be expressed more explicitly as follows.

Proposition 3.7. The stratum (x, r, β) is nonfundamental if and only if the coset

β̃ + ĝ∨x,−r+ contains a nilpotent element. Moreover, if x ∈ A0, (x, r, β) is nonfun-

damental if and only if the graded representative β̃0 is nilpotent.

Proof. Since the stratum (x, r, β) is fundamental if and only if g(x, r, β) is funda-
mental, it suffices to assume that x ∈ A0. Suppose that (x, r, β) is nonfundamental.

By Proposition 3.4(1), the homogeneous representative β̃0 is an unstable point of
the Hx-representation ĝ∨x (−r). Let γ : k∗ → Hx be a one-parameter subgroup for

which limt→0 γ(t)·β̃0 = 0. Let γ̂ : F ∗ → Ĝ be the one-parameter subgroup obtained

from γ by extension of scalars. Since β̃0 lies in the sum of positive weight spaces for
γ, it also is in the sum of positive weight spaces for γ̂. Thus, limt→0 γ̂(t) · β̃0 = 0,

and β̃0 is nilpotent.
Next, if β̃ + ĝ∨x,−r+ contains a nilpotent element, then β is unstable by [28,

Proposition 4.3]. Finally, if β̃0 is nilpotent, then β̃ + ĝ∨x,−r+ of course contains a
nilpotent element.

�
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Remark 3.8. The proof of the proposition gives a practical way of determining
whether a stratum is fundamental. One conjugates into the standard apartment
(or any apartment corresponding to a maximal torus of G) and checks to see if the
graded component of the functional is nonnilpotent.

We conclude this section by defining what it means for two strata to be associates
of each other. We have seen in Theorem 2.15 that two fundamental strata contained
in a flat G-bundle are associates of each other. Before giving the definition, we need
a proposition.

Proposition 3.9. Suppose that x, y ∈ B. There exists a element δx,y ∈ ĝ∨x,0 ∩ ĝ∨y,0
with the following property: for all g ∈ Ĝ such that gx, gy ∈ A0,

(16) Ad∗(g)(δx,y) ⊂ (g̃y − g̃x)
dz

z
+ ĝ∨gx,0+ + ĝ∨gy,0+.

The proof will be deferred to Section 4.3. When x, y ∈ A0, it will follow from the
proof that we may take δx,y = (x̃− ỹ)dzz . We will usually do so without comment.

Definition 3.10. Let (x, r, β) and (y, r, β′) be two G-strata. Choose representa-

tives β̃ ∈ ĝ∨x,−r and β̃′ ∈ ĝ∨y,−r for β and β′, respectively. We say that (x, r, β) and

(y, r, β′) are associates of each other if there exists g ∈ Ĝ such that

(17)
(

Ad∗(g)(β̃) + ĝ∨gx,−r+

)
∩
(
β̃′ − δgx,y + ĝ∨y,−r+

)
6= ∅.

Note that when r > 0, the δgx,y term is unnecessary.

It is immediate that this definition is independent of the particular elements δx,y
chosen to satisfy (16). It is also symmetric. We observe further that conjugate
strata are associates. Indeed, if (y, r, β′) = (gx, r, gβ), then the two cosets coincide.
(One may take δy,y = 0.)

4. Formal flat G-bundles and fundamental strata

Recall from Section 2.4 that a formal flat G-bundle is a principal G-bundle G

over ∆× endowed with a connection ∇. Upon fixing a trivialization φ : G→ Ĝ, the
corresponding connection on the trivial flat G-bundle can be written as ∇φ = d+
[∇]φ with [∇]φ ∈ Ω1(ĝ). Equivalently, (G,∇) can be viewed as a compatible family
of flat vector bundles (VG,∇V ) indexed by Rep(G). In terms of the trivialization

φ, the flat vector bundle associated to (V, ρ) is (V̂ , d+ ρ([∇]φ). We remark that if
V is the standard representation of GLn, then the functor (G,∇) 7→ (VG,∇V ) is an
equivalence of categories between flat GLn-bundles and flat rank n vector bundles.

As discussed before Proposition 3.6, Ω1(ĝ) ∼= ĝ∨, where the isomorphism depends
only on our fixed choice of invariant form 〈, 〉. Recall that Xβ̃ ∈ Ω1(ĝ) denotes the

one-form corresponding to β̃ ∈ ĝ∨.

4.1. Strata contained in flat G-bundles. In Section 2.7, we showed how to
associate G-strata to flat G-bundles. In particular, a flat G-bundle (G,∇) contains

the Ĝ-stratum (x, r, β) with respect to the trivialization φ if, for any representative

β̃ ∈ ĝ∨x,−r of β, (∇φ−idzz −Xβ̃)(V̂x,i) ⊂ Ω1(V̂ )x,(i−r)+ for all i ∈ R and V ∈ Rep(G).

More succinctly, this holds if for all (V, ρ), the induced flat vector bundle (VG,∇V )

contains the V̂ -stratum (ρ(x), r, ρ(β)).
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In this section, we will explain some properties of stratum containment. In
particular, we will prove an equivariance result for containment of Ĝ-strata which
shows that the trivialization-free version of containment in terms of G-strata (Def-

inition 2.11) is well-defined. We will also show that when x ∈ A0, Ĝ-stratum
containment with respect to the trivialization φ is equivalent to a concrete and
easily verified condition on the matrix [∇]φ.

Remark 4.1. As one would expect, the notions of containment of strata in flat GLn-
bundles and in rank n vector bundles are the same. This is shown in Corollary A.2.
The proof uses the fact that Rep(GLn) is generated by the standard representation
V in the sense that every representation of G may be obtained from V via some
combination of duals, direct sums, tensor products, and subrepresentations. More
generally, suppose that Rep(G) is generated (in the same sense) by {Vi} ⊂ Rep(G).
We show in Proposition A.1 that a flat G-bundle contains a stratum if and only if
(2.12) is satisfied for each Vi.

Stratum containment is well-behaved with respect to change of trivialization:

Lemma 4.2. If (G,∇) contains (x, r, β) with respect to φ, then it contains (gx, r, gβ)
with respect to gφ.

Proof. Fix a representation (V, ρ). Changing the trivialization φ by g changes

∇φ− idzz −Xβ̃ , viewed as an element of Endk(V̂ )dzz , to ρ(g)(∇φ− idzz −Xβ̃)ρ(g)−1.

(From now on, we will omit the ρ’s from the notation.) However, the gauge change
formula implies that ∇gφ = g∇φg−1 and equivariance of Moy-Prasad filtrations
gives Xgβ̃ = gXβ̃g

−1. Accordingly,

(18)

g(∇φ − i
dz

z
−Xβ̃)g−1V̂gx,i = g(∇φ − i

dz

z
−Xβ̃)g−1gV̂x,i

= g(∇φ − i
dz

z
−Xβ̃)V̂x,i

⊂ g(Ω1(V̂ )x,(i−r)+) = Ω1(V̂ )gx,(i−r)+.

�

We now give a more explicit description of what is means for a stratum to be
contained in a flat G-bundle when the stratum is based at a point in the standard
apartment. This characterization will be useful in calculations throughout the rest
of the paper.

Proposition 4.3. Let x ∈ A0. Then, (G,∇) contains the stratum (x, r, β) with
respect to the trivialization φ if and only if [∇]φ − x̃dzz ∈ ĝ⊥x,r+ and the coset(
[∇]φ − x̃dzz

)
+ ĝ∨x,−r+ determines the functional β ∈ (ĝx,r/ĝx,r+)∨.

Proof. Assume that [∇]φ satisfies the given conditions, and take V ∈ Rep(G). By

the hypothesis, we can take Xβ̃ = [∇]φ − x̃dzz ∈ Ω1(ĝ)x,−r, so ∇φ − idzz − Xβ̃ =

d+ [∇]φ − idzz − ([∇]φ − x̃dzz ) = d+ x̃dzz − i
dz
z . Since Proposition 3.2(2) implies

(19) (d+ x̃
dz

z
− idz

z
)(V̂x,i) ⊂ Ω1(V̂ )x,i+ ⊂ Ω1(V̂ )x,(i−r)+,

the defining property (11) is satisfied.
For the converse, suppose that (G,∇) contains the stratum (x, r, β) with respect

to the trivialization φ, and let V be a faithful representation. As usual, take
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β̃ ∈ ĝ∨x,−r a representative for β with Xβ̃ ∈ Ω1(ĝ)x,−r the corresponding one-form.
We then have

(d+ [∇]φ − i
dz

z
−Xβ̃)V̂x,i ⊂ Ω1(V̂ )x,(i−r)+

Subtracting (19), we obtain ([∇]φ − x̃dzz −Xβ̃)V̂x,i ⊂ Ω1(V̂ )x,(i−r)+ for all i ∈ R.

The faithfulness of V now implies that [∇]φ−x̃dzz −Xβ̃ ∈ Ω1(ĝ)x,−r+. In particular,

Xβ̃ ∈ ([∇]φ − x̃dzz ) + Ω1(ĝ)x,−r+. Viewing [∇]φ − x̃dzz as a functional, we see that

it lies in it ĝ∨x,−r
∼= ĝ⊥x,r+ and determines the same coset in ĝ∨x,−r/ĝ

∨
x,−r+ as β̃. This

proves the result.
�

Remark 4.4. The additional −idzz terms in Definition 2.12 (or equivalently, the

−x̃dzz term in the previous proposition) are needed to make the map Q → S equi-

variant. The −x̃dzz term also plays an important role in our study of the isomon-
odromy equations for flat vector bundles (c.f. [5, Definition 2.12]).

Remark 4.5. Any trivialization φ and x ∈ B (or equivalently, any point in B(Aut(G))
determines a stratum contained in (G,∇). By equivariance, it is enough to show
this for x ∈ A0. Let r be the smallest critical number satisfying [∇]φ− x̃dzz ∈ ĝ⊥x,r+.
If β ∈ (ĝx,r/ĝx,r+)∨ is the induced functional, then by Proposition 4.3, (G,∇)
contains (x, r, β) with respect to φ.

In general, a nonfundamental stratum provides very little information about a
flat G-bundle. However, we will see that all flat G-bundles contain fundamental
strata, and the depth of any such stratum determines whether the flat G-bundle is
regular singular, and if not, how irregular it is. Moreover, we will see that it always
possible to find a fundamental stratum for which x ∈ B is an optimal point in the
sense of [28, Section 6].

We now recall the definition of optimal points. Fix an alcove C ⊂ A0, and let
ΣC be the collection of minimal affine roots on C, that is, the set of affine roots ψ
such that for all x ∈ C̄, 0 ≤ ψ(x) ≤ 1. For any nonempty subset Ξ ⊂ ΣC , define a
function fΞ on C̄ by

fΞ(x) = min{ψ(x) | ψ ∈ Ξ}.
Choose a point xΞ ∈ C̄ at which fΞ attains its maximum value and x̃Ξ ∈ tQ. We can
further assume that xΞ ∈ B̄. The set of optimal points in C̄ is given by ΨC = {xΞ}.
It can be shown that ΨC contains all the vertices of C̄ ∩ B̄.

Example 4.6. For SL(V ), there is no ambiguity about the optimal points in a closed
alcove; they can only be taken to be the barycenters of the simplices. With our
convention that optimal points are in the reduced building, the optimal points for
GL(V ) are also uniquely determined. Thus, optimal points here give rise to lattice
chain filtrations.

We will need to understand the effect of change of trivialization on strata con-
tained in G. The following lemma establishes the necessary calculus.

Lemma 4.7.

(1) If n ∈ N̂ , ([∇]nφ − ñxdzz ) ∈ Ad∗(n)([∇]φ − x̃dzz ) + t̂0+
dz
z .

(2) If X ∈ ûα ∩ ĝx,`, then

[∇]exp(X)φ − x̃
dz

z
∈ Ad∗(exp(X))([∇]φ − x̃

dz

z
)− `X dz

z
+ ĝ∨x,`+.
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(3) If p ∈ Ĝx, then [∇]pφ − x̃dzz ∈ Ad∗(p)([∇]φ − x̃dzz ) + ĝ∨x,0+.

(4) If p ∈ Ĝx,` for ` > 0, then [∇]pφ − x̃dzz ∈ Ad∗(p)([∇]φ − x̃dzz ) + ĝ∨x,`.

Proof. By Lemma 3.3, ñx ∈ Ad(n)(x̃) − τ(n)n−1 + t̂0+. Dualizing, we obtain
ñxdzz ∈ Ad∗(n)(x̃dzz ) − (dn)n−1 + t̂0+

dz
z . Part (1) follows by applying the gauge

transformation formula and substituting the above expression into [∇]nφ − ñxdzz .
Suppose that X ∈ ûα ∩ ĝx,`, and write u = exp(X). In order to prove (2), it

suffices to show that

(du)u−1 ∈ Ad∗(u)(x̃
dz

z
)− x̃dz

z
+ `X

dz

z
+ ĝ∨x,`+.

Recall that τ(X) + ad(x̃)(X) ∈ `X + ĝx,`+ by Proposition 3.2. Thus,

(du)u−1 = τ(X)
dz

z
∈ −ad(x̃)(X)

dz

z
+ `X

dz

z
+ ĝ∨x,`+

= (Ad(u)(x̃)− x̃)
dz

z
+ `X

dz

z
+ ĝ∨x,`+.

The right hand side of this equation proves the desired result.
Observe that when t ∈ T`, (dt)(t−1) ∈ t1

dz
z (resp. t`

dz
z when t ∈ T` and ` > 0).

Furthermore, t̃x = x̃ for all t ∈ T`, since T` ⊆ T0. Since Ĝx,` is generated by the

root subgroups Ûα ∩ Ĝx,` and the congruence subgroups T` ⊂ T , statements (3)
and (4) now follow from (2).

�

Recall that the treatment of formal flat vector bundles in [4] only involved strata
coming from lattice chain filtrations. Moreover, the definition of containment there
differs from Definition 2.4, and it is not equivalent for strata of depth 0. However,
we will need to know that certain results from [4] remain true using the present
definition of containment and allowing arbitrary periodic filtrations. The following
theorem generalizes [4, Theorem 4.10]; we relegate the proof to Section A.2 of the
appendix.

Proposition 4.8. The slope of a flat vector bundle (U,∇) is the minimum of
the depths of the strata (x, r, β) contained in it. If (x, r, β) is fundamental, then
r = slope(U,∇); the converse is true if r > 0. In particular, (U,∇) is regular
singular if and only if it contains a stratum of depth 0.

4.2. Regular and irregular singularity. Recall that a formal flat G-bundle
(G,∇) is regular singular if for all representations V , the associated flat vector
bundle (VG,∇V ) is regular singular. Otherwise, it is called irregular singular. As
one would hope, a flat GLn-bundle is regular singular if and only if the correspond-
ing flat vector bundle is regular singular. This is indeed true; see Corollary A.6.

We next show that if a flat G-bundle contains a stratum of depth r, then the
same is true for each associated flat vector bundle.

Proposition 4.9. Let ρ : G→ GL(V ) be a representation for G.

(1) For any x ∈ B, there is a uniquely determined ρ∗(x) ∈ B(GL(V̂ )) that

induces the same filtration on V̂ as x. Moreover, gl(V̂ )ρ∗(x),r ∩ ρ(ĝ) =
ρ(ĝx,r) for all r ∈ R.

(2) If Tρ is a maximal torus in GL(V ) containing ρ(T ), then ρ∗ restricts to the

map A0 → A(T̂ρ) determined by ρ̃∗(x) = ρ(x̃).
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Proof. Since x determines a periodic filtration on V̂ and B(GL(V̂ )) parameterizes

such filtrations, there is a unique ρ∗(x) ∈ B(GL(V̂ )) such that V̂ρ∗(x),r = V̂x,r
for all r. Next, choose a maximal torus Tρ ⊂ GL(V ) such that ρ(T ) ⊂ Tρ. If

x ∈ A0, let y ∈ A(T̂ρ) ⊂ B(GL(V̂ )) be the point determined by ỹ = ρ(x̃). To

prove that y = ρ∗(x), we must show that V̂y,r = V̂x,r for all r. It suffices to show

that V̂y(r) = V̂x(r) for all r. By Proposition 3.2(1), V̂x(r) is the r-eigenspace of the

action of τ + x̃ on V̂ . Since this operator on V̂ coincides with τ + ρ(x̃) = τ + ρ̃∗(x),
another application of Proposition 3.2(1) gives the desired equality of graded spaces.

To prove the remaining statement, first note that by equivariance of Moy-Prasad
filtrations, we may assume that x ∈ A0. Observe that (τ + ad(ρ(x̃))ρ(X) = ρ((τ +

ad(x̃))(X)) for all X ∈ ĝ. Therefore, if Xr ∈ ĝx(r), then ρ(Xr) ∈ gl(V̂ )ρ∗(x)(r).

By continuity, there exists s ≥ r such that ĝx,s ⊂ ρ−1(gl(V )ρ∗(x),r+). Repeated
application of Proposition 3.2(3) shows that

∑
r≤j<s ĝx(j) constitutes a full set of

coset representatives for ĝx,r/ĝx,s. Since ρ(ĝx(j)) ⊂ gl(V )ρ∗(x),r by the work above,
we deduce that ρ(ĝx,r) ⊂ gl(V )ρ∗(x),r.

We now show that X ∈ gl(V̂ )ρ(x),r ∩ ρ(ĝ) implies X ∈ ρ(ĝx,r). If this is false,

let r′ < r be the largest critical number s for which ĝx,s intersects ρ−1(X). Take
Y ∈ ĝx,r′ with ρ(Y ) = X. By Proposition 3.2(3), there exists Yr′ ∈ ĝx(r′) such

that Y ∈ Yr′ + ĝx,r′+ The argument above shows that ρ(Yr′) ∈ X + gl(V̂ )ρ∗(x),r′+,

and since r′ < r, this implies that ρ(Yr′) ∈ gl(V̂ )ρ∗(x),r′+. However, we also have

ρ(Yr′) ∈ gl(V̂ )ρ∗(x)(r
′). Since gl(V̂ )ρ∗(x),r′+ ∩ gl(V̂ )ρ∗(x)(r

′) = {0}, we deduce that
ρ(Yr′) = 0. This means that ρ(Y −Yr′) = X, but Y −Yr′ /∈ ĝx,r′ , contradicting the
definition of r′. It follows that X ∈ ρ(ĝx,r).

�

If β is a functional on ĝx,r/ĝx,r+ and (V, ρ) is a representation of G, we can use
the proposition to define a functional ρ(β) on gl(V )ρ∗(x),r/ gl(V )ρ∗(x),r+ which is

represented (with respect to the residue of the trace form) by ρ(β̃) ∈ gl(V )∨ρ∗(x),−r.

The proposition also shows that the functional is independent of the choice of
representative β̃.

Corollary 4.10. Let (V, ρ) be a representation of G. If (G,∇) contains the stratum
(x, r, β) with respect to φ, then (VG,∇V ) contains the stratum (ρ∗(x), r, ρ(β)) with
respect to the induced trivialization φV .

Proof. By Definition 2.12, (∇φ − idzz − Xβ̃)(V̂x,i) ⊂ Ω1(V̂ )x,(i−r)+ for all i ∈ R.

Since it is obvious that Xρ(β̃) = ρ(Xβ̃) ∈ Ω1(gl(V̂ )), the action of (∇φ − idzz −Xβ̃)

on V̂ is the same as that given by ρ(∇φ− idzz −Xβ̃) = ∇V,φ− idzz −Xρ(β̃). Applying

Proposition 4.9, we obtain (∇φ − idzz −Xβ̃)(V̂ρ∗(x),i) ⊂ Ω1(V̂ )ρ∗(x),(i−r)+ for all i.

By Definition 2.4, (V̂ ,∇V,φ) contains the stratum (ρ∗(x), r, ρ(β)). �

Since the slope of a vector bundle is the minimum depth of a stratum that it
contains, we immediately obtain an upper bound on the slope of (VG,∇V ).

Corollary 4.11. The slope of (VG,∇V ) is not greater than the minimum depth of
a stratum contained in (G,∇).

Next, we show that if a flat G-bundle contains a stratum of depth 0, then it is
regular singular. We will see later that the converse is also true.
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Proposition 4.12. Suppose that the flat G-bundle (G,∇) contains a stratum (x, 0, β)
of depth 0 with respect to the trivialization φ. The following statements hold.

(1) The flat G-bundle (G,∇) is regular singular.
(2) Suppose x ∈ A0, and let ∆ ⊂ A0 be the open facet containing x. Then, for

any y ∈ ∆̄, (G,∇) contains the stratum (y, 0, βy) with respect to φ, with βy

induced by [∇]φ − ỹ dzz . In particular, this is true for y in a minimal facet

contained in ∆̄.

Proof. By equivariance, we may assume that x ∈ A0. By Proposition 4.3, [∇]φ −
x̃dzz ∈ ĝ⊥x,0+. Since the same is true for x̃dzz , [∇]φ ∈ ĝ⊥x,0+ as well. Take y ∈ ∆̄.

Since ĝy+ ⊂ ĝx+, we have [∇]φ ∈ ĝ⊥x+ ⊂ ĝ⊥y+. Accordingly, [∇]φ − ỹ dzz ∈ ĝ⊥y+, and
(y, 0, βy) is contained in (G,∇).

Now, suppose that V is a finite dimensional representation for G. We have
[∇]φ = ιτ ([∇]φ)dzz with ιτ ([∇]φ) ∈ ĝx,0. Since ĝx,0 preserves the lattice V̂x,0 ⊂ V̂ ,

ιτ ([∇]φ)(V̂x,0) ⊂ V̂x,0, and it follows that (VG,∇V ) is regular singular.
�

If a flat G-bundle contains a fundamental stratum of positive depth, then at
least one of the associated vector bundles is irregular singular. In fact, we can be
more specific.

Proposition 4.13. If (G,∇) contains a fundamental stratum (x, r, β) of depth r >
0, then either the flat bundle (gG,∇g) corresponding to the adjoint representation
has slope r or G has a one dimensional representation W such that (WG,∇W ) has
slope r.

Proof. Suppose that slope(gG,∇g) < r. We will show that G has a character (W,χ)
for which (WG,∇W ) has slope r.

As usual, we can assume that x ∈ A0. Since (x, r, β) is fundamental, Proposi-
tion 3.7 implies that the coset ιτ ([∇]φ) + ĝx,−r+ contains no nilpotent elements.
(We omit the x̃ term, since r > 0.) Let Y ∈ ĝx(−r) be the homogeneous coset rep-
resentative. By Corollary 4.10, (gG,∇g) contains the corresponding GL(g)-stratum

(ad∗(x), r, ad(Y )dzz ). Proposition 4.8 implies that this stratum is not fundamental,
so the graded representative ad(Y ) is nilpotent. This means that Y = Y1 + Y2

with Y1 ∈ ẑ(−r) nonzero and Y2 a nilpotent element of gx(−r) ∩ [ĝ, ĝ]. Note that
this already implies that r ∈ Z>0, since homogeneous element of the center have
integral degrees.

Since the connected center Z0 ∼= G/[G,G] is a torus, there exists a character
(W,χ) of G, vanishing on [G,G] such that χ(Y1) ∈ z−rk∗. The corresponding
stratum contained in (WG,∇W ) is (χ∗(x), r, χ(Y1)dzz ), which is evidently funda-
mental. �

Flat line bundles have integral slope, so we obtain the following corollary.

Corollary 4.14. If (G,∇) contains a fundamental stratum of nonintegral depth r,
then slope(gG,∇g) = r.

4.3. Proofs of the main theorems. Recall that ΨC denotes the set of optimal
points in a given closed chamber C̄ ⊂ A0.

Lemma 4.15. Suppose that (G,∇) contains a stratum (x, r, β) of depth r > 0.
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(1) If r is not a critical number for x, then (G,∇) contains a stratum of the
form (x, s, β′) where s < r is a critical number.

(2) If r is a critical number and (x, r, β) is not fundamental, then (G,∇) con-
tains a stratum (y, s, β′) with y ∈ ΨC and s < r.

Proof. By Lemma 4.2, we may assume without loss of generality that x ∈ C̄. First,
suppose that (G,∇) contains (x, r, β) with respect to the trivialization φ and that
r /∈ Critx. Let s be the greatest critical number for x less than r. We claim that
[∇]φ ∈ ĝ∨x,−s. Write [∇]φ = (Y0 +

∑
α∈Φ Yα)dzz , where Y0 ∈ t̂ and Yα ∈ ûα. If

[∇]φ /∈ ĝ∨x,−s, then Yγ
dz
z /∈ ĝ∨x,−s for some γ ∈ Φ ∪ {0}. Since Yγ

dz
z ∈ ĝ∨x,−r,

we may take s′ = min{t ∈ (s, r] | Yγ dzz ∈ ĝ∨x,−t} > s. However, since Yγ
dz
z has

nonzero image in ĝ∨x,−s′/ĝ
∨
x,−s′+, s′ is a critical point with s′ < r. This contradicts

the assumption that s is the greatest critical point less than r. We now apply
Proposition 4.3 to see that (G,∇) contains the stratum (x, s, β′) with respect to φ,
where β′ is induced by [∇]φ − x̃dzz .

We now assume that r is a critical number for x and (x, r, β) is not fundamental.

By [28, Proposition 6.3], there exists p ∈ Ĝx and y ∈ ΨC such that for some s < r,
Ad∗(p)([∇]φ − x̃dzz ) + ĝ∨x,−r+ ⊂ ĝ∨y,−s. Lemma 4.7(3) implies that Ad∗(p)([∇]φ −
x̃dzz )+ĝ∨x,−r+ = [∇]pφ−x̃dzz +ĝ∨x,−r+. Since [∇]pφ−x̃dzz ∈ ĝ∨y,−s and (x̃−ỹ)dzz ∈ ĝ∨y,0,

[∇]pφ− ỹ dzz ∈ ĝ∨y,−s. Letting β′ be the functional induced by [∇]pφ− ỹ dzz , it follows
that (G,∇) contains the stratum (y, s, β′) with respect to the trivialization pφ. �

Proposition 4.16. Suppose that (G,∇) contains a fundamental stratum (x, r, β)
of depth r > 0. If (y, s, β′) is another stratum contained in (G,∇), then s ≥ r.
Moreover, if s = r, this stratum is fundamental.

Proof. Recall that any two points in the building lie in a common apartment.
Hence, by equivariance, we may assume without loss of generality that the two
strata are contained in (G,∇) with respect to the same trivialization and that
x, y ∈ A0.

Suppose that s < r. We can apply [28, Proposition 6.4] to obtain ĝ∨y,−s ∩ (β̃ +
ĝ∨x,−r+) = ∅. By Proposition 4.3, there exists ω ∈ ĝ∨x,−r+ and ω′ ∈ ĝ∨y,−s+ such that

β̃ = [∇]φ − x̃dzz + ω and β̃′ = [∇]φ − ỹ dzz + ω′. Since (ỹ − x̃)dzz ∈ ĝ∨y,0, it follows

that β̃′−ω′+ (ỹ− x̃)dzz = β̃−ω ∈ ĝ∨y,−s ∩ (β̃+ ĝ∨x,−r+). This contradiction implies
that s ≥ r.

Now, suppose that s = r. If (y, r, β′) is not fundamental, then Lemma 4.15 states
that (G,∇) contains a stratum of depth s′ strictly less than r. This contradicts the
conclusion of the previous paragraph.

�

Corollary 4.17. All fundamental strata contained in (G,∇) have the same depth.

Proof. Suppose (G,∇) contains two fundamental strata with different depths r and
s, say with r > s. Then r > 0, so the proposition gives the contradiction s ≥ r. �

Proof of Theorem 2.14. We only need to consider Ĝ-strata in the proof as the state-
ments about G-strata are immediate consequences. We first prove that every flat
G-bundle (G,∇) contains a fundamental stratum (resp. a stratum of depth 0) if it
is irregular singular (resp. regular singular). Fix a chamber C ⊂ A0, and let ΨC be
the set of optimal points in C̄. Consider the set of positive real numbers s such that
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(G,∇) contains a stratum (x, s, β) with x ∈ ΨC . This set is clearly nonempty, as
by Remark 4.5, any choice of trivialization and optimal point determines a stratum
for (G,∇). Since ΨC is finite, it attains its lower bound r > 0.

Suppose that (x, r, β) is a stratum contained in (G,∇) such that x ∈ ΨC and
r is the lower bound described above. We write φ for the associated trivialization
of G. Assume that this stratum is not fundamental. Note that Proposition 4.13
guarantees that this is the case when (G,∇) is regular singular. Lemma 4.15 implies
that (G,∇) contains a stratum of the form (y, s, β′), where y ∈ ΨC and s < r. (If
r is not a critical point, one can take y = x.) By minimality of r, we must have
s = 0, and it follows from Proposition 4.12 that (G,∇) is regular singular. Thus,
(x, r, β) is fundamental if (G,∇) irregular singular, and (G,∇) contains a stratum
of depth 0 if it is regular singular. Statements (1) and (2) now follow immediately
from Proposition 4.16 and Corollary 4.17.

Next, suppose that r = 0. It remains to show that (G,∇) contains a fundamental
stratum. We have shown that (G,∇) contains a stratum of the form (x, 0, β) with
respect to a trivialization φ, and by Proposition 4.12 we may assume that x is in a
minimal facet ∆ ⊂ A0. If this stratum is nonfundamental, then, using the notation
of Proposition 3.4, dθ∗x(β) ∈ h∨x is unstable. In particular, there exists a Borel
subgroup Bβ ⊂ Hx such that dθ∗x(β) ∈ (bβ)⊥. Choose h ∈ Hx such that hBβh

−1

is the standard Borel subgroup Bx ⊂ Hx containing T coming from a choice of
positive roots for G, and let m ∈ Gx be a lift of θx(h). By part (3) of Lemma 4.7,
(G,∇) contains the stratum m · (x, 0, β). Thus, we may assume without loss of
generality that the stratum (x, 0, β) satisfies dθ∗x(β) ∈ (bx)⊥, where bx = Lie(Bx).

Let δ ∈ t be the element corresponding to the half sum of positive coroots of
Hx. We define xε ∈ A0 via x̃ε = x̃ + εδ. For small ε > 0, we will show that
β̃0 + ĝ∨x+ ⊂ ĝ∨xε+. (Recall that β̃0 is the homogeneous representative for β.) First,

since x is in a minimal facet, x+εδ must be contained in a chamber C with x ∈ C̄ for
ε sufficiently small. (Note that x /∈ C). Therefore, ĝxε ⊂ ĝx, so taking annihilators
gives ĝ∨x+ ⊂ ĝ∨xε+. An elementary calculation, using the fact that ad∗(εδ) has strictly

positive eigenvalues on b⊥x , shows that (dθ∗x)−1(b⊥x ) ⊂ ĝ∨xε+ + ĝ∨x+. We conclude

that β̃0 ∈ ĝxε+ since dθ∗x(β) ∈ (b)⊥. This proves the assertion above.

Write β̃ε = β̃0−εδ dzz ∈ ĝ∨xε , and let βε be the corresponding element of (ĝxε/ĝxε+)∨.
We deduce that (G,∇) contains the stratum (xε, 0, βε) with respect to the trivial-
ization φ. By Proposition 4.12, (G,∇) contains the stratum (y, 0, βy)for any y ∈ C̄,
where βy is determined by [∇]mφ − ỹ dzz .

Finally, since [∇]φ − x̃dzz ∈ β̃0 + ĝ∨x+ ⊂ ĝ∨xε+, it follows that [∇]φ − ỹ dzz + ĝ∨xε+ ∈
(x̃ − ỹ)dzz + ĝ∨xε+; as (x̃ − ỹ) ∈ ĝ∨(0), the proof of Proposition 3.7 shows that this

coset is semistable if ỹ 6= x̃. Therefore, [∇]φ − ỹ dzz + ĝ∨y,0+ has the same property,

so (y, 0, β′) is fundamental. In particular, this is true for any optimal point in C̄
besides x, for example, any other vertex of C̄ ∩ B̄.

�

Remark 4.18. If (G,∇) contains a nonfundamental stratum (x, 0, β) with x in a
minimal facet, then the proof above, replacing δ with wδ for w in the Weyl group
of Hx, gives a construction of a fundamental stratum contained in (G,∇) at every
y 6= x in the closed star of x in A0. Moreover, this stratum induces a fundamental
stratum in gG as long as y is not in the same facet as x.
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We now turn to the proof of Theorem 2.15, which states that strata of the same
depth contained in a flat G-bundle are associates of each other. First, we supply
the proof of Proposition 3.9, which was needed for Definition 3.10.

Proof of Proposition 3.9. Choose g ∈ Ĝ such that gx, gy ∈ A0. (For example, let
A be an apartment containing x and y, and take g such that gA = A0.) We now
set δx,y = Ad∗(g−1)((g̃y − g̃x)dzz ). This, of course, depends on the choice of g, but
the defining property will be satisfied independently of the choice.

In order to show (16), one may easily reduce to the special case of x, y ∈ A0 and

g ∈ Ĝx ∩ Ĝy. Here, we will set δx,y = (x̃ − ỹ)dzz . In other words, we must show

that whenever g ∈ Ĝx ∩ Ĝy,

(20) Ad∗(g)(δx,y) ∈ δx,y + ĝ∨x,0+ + ĝ∨y,0+.

Using the notation introduced at the beginning of Appendix B below, observe
that δx,y = dA0,y − dA0,x. However, by (21), gdA0,xg

−1 ∈ dA0,x + ĝ∨x,0+ and

gdA0,yg
−1 ∈ dA0,y + ĝ∨y,0+. Subtracting, we obtain (20).

�

Proof of Theorem 2.15. Since conjugate strata are associates of each other, we may
assume without loss of generality that φ′ = φ. Applying Lemma 4.2 and the fact
that we can find h ∈ Ĝ such that hx, hy ∈ A0, we may further assume that
x, y ∈ A0.

We now verify (17) in this situation with g = 1. By Proposition 4.3, β̃ ∈ [∇]φ −
x̃dzz + ĝ∨x,−r+ and β̃′ ∈ [∇]φ− ỹ dzz + ĝ∨y,−r+. Taking δx,y = (x̃− ỹ)dzz , it is immediate

that [∇]φ − x̃dzz lies in the intersection
(
β̃ + ĝ∨x,−r+

)
∩
(
β̃′ − δx,y + ĝ∨y,−r+

)
.

�

Proof of Theorem 2.17. By Corollary 4.11, slope(VG,∇V ) is at most the minimum
of the depths of the strata contained in (G,∇). The equivalence of the four char-
acterizations and the positivity statement follow from Theorem 2.14 and Proposi-
tion 4.13. The slope is rational, since slopes of flat vector bundles are rational. �

Finally, we turn to the proof of Proposition 2.20. Let E be a degree e field
extension of F , and fix a generator uE satisfying ueE = z. We let πE : Spec(E) →
Spec(F ) be the associated map of spectra. We let B(E) be the building for G(E)
and denote the apartment corresponding to T (E) by A0(E). The pullback of the
flat G-bundle (G,∇) to Spec(E) will be denoted by (π∗EG, π

∗
E∇). We will suppress

the subscripts when the field E is clear from context.

Proof of Lemma 2.19. Set e = [E : F ]. Take x ∈ A0, and let ex ∈ A0(E) be the
point corresponding to ex̃. If V is any representation of G, it is easily checked
that V̂x(r) = V (E)ex(er) ∩ V̂ and V̂x,r = V (E)ex,er ∩ V̂ . Indeed, it suffices to

check the statement about gradings. Setting τE = u d
du = eτ , Proposition 3.2(1)

implies that V (E)ex(er)∩ V̂ consists of those elements v ∈ V̂ such that erv = (τE+

ẽx)(v) = e(τ+x̃)(v), which is precisely V̂x(r). We can now define a pullback map on
strata based at points in A0: π∗(x, r, β) = (ex, er, β′); here, β′ is the functional on

g(E)ex,er/g(E)ex,er+ determined by the representative eβ̃ in ĝ∨x,−r ⊂ g(E)∨ex,−er.
Moreover, since β and β′ have graded representatives differing by a factor of e,
Remark 3.8 implies that π∗(x, r, β) is fundamental if and only if (x, r, β) is.
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Since (G,∇) has slope r, there exists a fundamental stratum (x, r, β) contained
in (G,∇) with respect to a trivialization φ. By equivariance, we may assume that
x ∈ A0. Applying Proposition 4.3, the functional β is determined by [∇]φ − x̃dzz ∈
ĝ∨x,−r ⊂ g(E)∨ex,−er. However, e[π∗∇]φ−ẽxduu = [∇]φ−x̃dzz , so the same proposition
shows that (π∗G, π∗∇) contains the fundamental stratum (ex, er, β′). It follows that
the pullback bundle has slope er. �

Proof of Proposition 2.20. Set e = [E : F ]. The condition involving (12) is equiv-
alent to the statement that (π∗G, π∗∇) contains a fundamental stratum (o, n, β)
based at the origin of A0(E) ⊂ B(E). It must then have slope n = re. By
Lemma 2.19, its slope is also equal to e slope(G,∇), so the original flat G-bundle
has slope r. On the other hand, by [2, Theorem 9.5], there exists an algebraic field
extension E/F and a trivialization φ for π∗G such that (π∗[∇])φ has nonnilpotent
leading term with respect to powers of u, say in degree −n. Again, this means that
the pullback bundle has slope n. If the original bundle has slope r, then the same
lemma implies that r = n/e as desired. �

5. Examples

In this section, we provide some examples to illustrate the theory. In each
example, we write down the matrix for the flat G-bundle (G,∇) with respect to a
fixed trivialization φ, which will be omitted from the notation.

Example 5.1. Let m be a nonnegative integer, and set [∇] = (
∑
i≥−mXiz

i)dzz ,

where Xi ∈ g and X−m 6= 0. Then, (G,∇) contains the stratum (o,m, βo), where
o ∈ A0 is the origin and βo is induced by Xm

dz
z , so slope(∇) ≤ m. If m > 0, then

this stratum is fundamental at the origin in A0 if and only if X−m is not nilpotent,
in which case, ∇ has slope m. If we assume that X−m is contained in a Borel
subalgebra b ⊃ t (which we can accomplish by a constant change of gauge), then
(x,m, βx) is contained in (G,∇) for all x ∈ A0 if and only if X−m ∈ t. If m = 0,
slope(∇) = 0 for any X0 while the stratum at o is fundamental if and only if X0

is nonnilpotent. If we assume that X0 ∈ b, then (x,m, βx) is fundamental for all
x ∈ A0 precisely when X0 ∈ t− tR.

Example 5.2. Suppose that g has connected Dynkin diagram. Let α1, . . . , αn be
a set of simple roots, and let α0 be the highest root. Let y−i ∈ u−αi , yα0

∈ uα0

be a collection of nonzero root vectors, and set X = (z−1yα0
+
∑n
i=1 y−i). Fix

m ∈ Z≥0, and let [∇] = Xz−m dz
z . As explained in the previous example, this flat

G-bundle contains the stratum (o,m+ 1, βo), but the stratum is not fundamental,
since it is induced by the nilpotent element z−m−1yα0

. However, one readily checks
that X ∈ ĝx(−1/h), where h is the Coxeter number and x is any zR-translate of
the barycenter corresponding to the standard Iwahori subgroup. Since X is regular
semisimple, it follows that (G,∇) contains a fundamental stratum based at x of
depth m + 1

h , which is accordingly the slope. Note that when m = 0, this is the
rigid flat G-bundle described by Katz for GLn and Frenkel-Gross for simple G [15].

In fact, no other points in A0 support a fundamental stratum contained in ∇
with respect to φ. To see this, note that X ∈ ĝy,−1/h implies that αi(y) ≤ 1

h

for 1 ≤ i ≤ n and α0(y) ≥ h−1
h . Using the fact that α0 has height h − 1 and

adding the first inequalities appropriately, we get α0(y) ≤ h−1
h , so α0(y) = h−1

h .
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This immediately gives αi(y) = 1
h , so y lies over the vertex in the reduced building

corresponding to the standard Iwahori subgroup.
A variation on this construction gives flat G-bundles with slope m+ h−1

h : define

[∇′] = X ′z−m dz
z , where X ′ = (z−1y−α0

+
∑n
i=1 yi) and yi ∈ uαi , y−α0

∈ u−α0
are

nonzero root vectors.

For SLn, the previous example gives flat SLn-bundles of slope m + 1/n and
m+ (n− 1)/n. The next example constructs flat SLn-bundles with slopes that are
integer translates of 1/(n − 1). Here, ∇ supports fundamental strata on a line in
A0. For clarity, we take n = 3.

Example 5.3. Let G = SL3(k). Set X = z−1e12 + e21 ∈ ĝ, and consider the
flat G-bundle [∇] = Xz−m dz

z . We show that slope(∇) = m + 1
2 . It suffices to

find x ∈ A0 for which the regular semisimple matrix X lies in ĝx(− 1
2 ). Writing

x̃ = diag(x1, x2, x3) with x1 +x2 +x3 = 0, this is equivalent to x1−x2 = 1/2. This
is the line connecting the barycenters of the faces of the fundamental alcove where
the last simple root α2 (with respect to the usual order) vanishes and the highest
root α0 equals 1. It is easy to check that x supports a stratum of depth m + 1

2
(with respect to φ) precisely for x on this line. Note that this line does not contain
a barycenter of an alcove; if it did, the slope of ∇ would have to be a multiple of
1/3.

A more intuitive explanation is obtained by looking at lattice chains. For any
s ∈ Z, write s = 3q+j with 0 ≤ j < 3. Now, define Ls to be the lattice with o-basis
{zqei | i ≤ 3− j} ∪ {zq+1ei | i > 3− j}. The lattice chain L = (Ls) corresponds to
the fundamental alcove while the period 2 lattice chains Lj = (Ls | s 6≡ j mod 3)
correspond to the faces. In this terminology, L1 and L0 correspond to the faces
α2 = 0 and α0 = 1 respectively. Note that X(Ls) ⊂ Ls−1 − Ls unless s ≡ 1, in
which case X(Ls) ⊂ Ls−2−Ls−1. Accordingly, the depth of the stratum contained
in ∇ induced by the lattice filtrations for L is m+ 2/3 while for Lj , it is m+ 1/2
if j equals 0 or 1 and m+ 1 if j = 2.

A similar analysis shows that the flat SLn(k)-bundle [∇] = Xz−m dz
z with X =

z−1e1(n−1) +
∑n−2
i=1 e(i+1)i has slope m+ 1

n−1 .

The following example shows that one can have a flat G-bundle that supports a
fundamental stratum only at a single point in B̄, which, unlike Example 5.2, is not
in an (open) alcove.

Example 5.4. LetG = Sp4(k), with the form defined by 〈ei, ej+2〉 = δij = −〈ei+2, ej〉
and 〈ei, ej〉 = 0 for 1 ≤ i, j ≤ 2. Set Y = z−1(e13 − e24) + e31 + e42, and let ∇ be

the flat Sp4(k)-bundle defined by [∇] = Y z−m dz
z . Here, ∇ is a connection of slope

m+ 1
2 , and there is a unique point in the standard apartment supporting a funda-

mental stratum for φ with this depth. Indeed, setting x̃ = (x1, x2,−x1,−x2), the
4 inequalities −2xi ≥ −1/2 and 2xi − 1 ≥ −1/2 immediately give x1 = x2 = 1/4.
This point is the barycenter of the edge of the fundamental alcove where the short
simple root α1 vanishes. Since Y is regular semisimple and is graded with respect
to this filtration, the corresponding stratum at x is fundamental.

One can give a lattice-theoretic interpretation here as well. Parahoric subgroups
of Sp2n(k) are stabilizers of symplectic lattice chains: lattice chains which are closed
under homothety and duality with respect to the symplectic form [31]. For n = 2,



A THEORY OF MINIMAL K-TYPES FOR FLAT G-BUNDLES 31

one period of the lattice chain L stabilized by the standard Iwahori subgroup is

L0 = o4 ⊃ L1 = span{e1, e2, ze3, e4} ⊃
L2 = span{e1, e2, ze3, ze4} ⊃ L3 = span{e1, ze2, ze3, ze4}.

The edges are obtained from Lj for 0 ≤ j ≤ 2, the symplectic lattice chain generated
by Li, 0 ≤ i ≤ 2, i 6= j. In particular, α1 = 0, α2 = 0, and α0 = 1 (with α2 the long
simple root and α0 the highest root) correspond to j equal to 1, 2, and 0 respectively.
We have Y (L4q+3) ⊂ L4q − L4q+1 and Y (Lj) ⊂ Lj−2 − Lj−1 otherwise. Thus, Y
shifts L1 by −1, L0 and L2 by −2, and L by −3. The depths of the corresponding
strata are m + 1/2, m + 1, and m + 3/4. (Note that for partial symplectic lattice
chains, one does not obtain the depth by dividing the magnitude of the shift by the
period.)

The previous three examples have the special property that they contain fun-
damental strata whose graded representative in ĝ∨ has a maximal nonsplit torus
in Ĝ as its connected stabilizer under the coadjoint action. In the case of GLn,
these regular strata have been the key ingredient in constructing smooth symplec-
tic and Poisson moduli spaces of connections and have allowed the realization of
the isomonodromy equations as an integrable system [4, 5]. Regular strata and flat
G-bundles containing them for reductive G are studied in detail in [6].

Appendix A. Complements on flat vector bundles

The authors have studied flat vector bundles using GLn-strata in previous work [4],
and these results are cited frequently in this paper. However, there are certain dif-
ferences between the set-up in [4] and our present approach to flat vector bundles.
For example, only lattice chain filtrations were considered in [4], and the notation
for strata was given in terms of parahoric subgroups instead of points in the build-
ing. Furthermore, the definition of containment of a stratum in a flat vector bundle
([4, Definition 4.1]) is different from Definition 2.4 and is only equivalent for strata
of depth greater than 0. Here, we provide the necessary explanations. We also
show that our theory gives the same results for the equivalent concepts of flat rank
n vector bundles and flat GLn-bundles.

A.1. Definitions of containment. We begin with a general proposition about
stratum containment.

Proposition A.1. The subset of Rep(G) satisfying (11) for the flat G-bundle
(G,∇) and the stratum (x, r, β) is closed under taking subrepresentations, duals,
direct sums, tensor products, and homomorphism spaces. Moreover, it always con-
tains the trivial representation.

Proof. The fact that this set is closed under subrepresentations and direct sums is
trivial. Let U and W be two representations satisfying (11). Using the fact that
U∨ = Hom(U, k) and U ⊗W ∼= Hom(U∨,W ), it suffices to check (11) for the trivial

representation k and for Hom(U,W ). For k̂ = F , each Moy-Prasad filtration is
the usual one, so we need only check that the operator τ − i strictly increases the
valuation for Laurent series of valuation at least i. This follows since, for any a ∈ o
and k ≥ i, (τ − i)(azk) = (k − i)azk + da

dz z
k+1 has valuation at least i+ 1.
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Next, take f ∈ ̂Hom(U,W )x,i = Hom(Û , Ŵ )x,i, so f(Ux,s) ⊂ Wx,s+i for all s.
Recalling that ∇φ acts on f via ∇φ ◦ f − f ◦∇φ and similarly for Xβ̃ , we compute:

[(∇φ − i
dz

z
−Xβ̃)(f)](Ux,s)

= (∇φ − (i+ s)
dz

z
−Xβ̃)(f(Ux,s))− f((∇φ − s

dz

z
−Xβ̃)(Ux,s))

⊂ (∇φ − (i+ s)
dz

z
−Xβ̃)(Wx,s+i)− f(Ux,(s−r)+)

dz

z

⊂ Ω1(Ŵ )x,(s+i−r)+.

Hence, (∇φ − idzz −Xβ̃)( ̂Hom(U,W )x,i) ⊂ Ω1( ̂Hom(U,W ))x,(i−r)+ as desired. �

Corollary A.2. The GLn-stratum (x, r, β) is contained in the flat GLn-bundle
(G,∇) if and only if it is contained in the associated vector bundle for the standard
representation.

Proof. Recall that (x, r, β) is contained in (G,∇) if and only if (11) holds for
W ∈ Rep(GL(V )) while it is contained in (GV ,∇V ) if the same equation holds
for the standard representation V . It thus suffices to show that if (11) holds for
the standard representation V , then it holds for any representation. Since any rep-
resentation of GL(V ) is obtained from V via some combination of the operations
in the previous proposition, the result follows. �

In [4], a U -stratum was defined as a triple (P, s, β) with P ⊂ GL(U) a parahoric
subgroup, s a nonnegative integer, and β a functional on the quotient of consecutive
congruent subalgebras β ∈ (ps/ps+1)∨. The congruent subalgebras are defined in
terms of a lattice chain L (say of period e) satisfying Stab(L) = P . (This lattice
chain is unique up to translation of the indices by an integer.) As explained in
Section 2.2, L gives rise to uniform R-filtrations {UL

r } and {gl(U)Lr } with critical
numbers at 1

eZ. The latter filtration is the Moy-Prasad filtration at x, where
x ∈ B is any point in the building lying above the barycenter of the simplex in
B̄ corresponding to P ; the filtration on U comes from a unique such x which we
denote by xL.

To see this, fix a k-structure for U , i.e., a k-subspace V such that U = V ⊗ F .
Recall that any parahoric subgroup in GL(U) is conjugate to a standard parahoric
subgroup with respect to V , i.e., the pullback under GL(V ⊗ o) → GL(V ) of a
standard parabolic subgroup Q ⊂ GL(V ) (so Q ⊃ B). We may thus assume
without loss of generality that P is a standard parahoric subgroup of this form.
Any lattice chain with stabilizer P contains V ⊗ o, so we may assume that this
lattice is L0. If e1, . . . en is an ordered basis of V compatible with the flag of Q,
then there exist indices s0 = n + 1 > s1 > s2 > · · · > se = 1 such that for q ∈ Z
and 0 ≤ j < e, Lqe+j has o-basis {zqei | i < sj}∪{zq+1ei | i ≥ sj}. Let x̃ =

∑
aie
∗
ii

where ai = e−j
e for sj ≤ i < sj−1, so that x ∈ A0 is the barycenter of the simplex

in B̄ corresponding to P . A direct calculation now shows that Critx = 1
eZ and for

all m ∈ Z, Ux,m/e = Lm and gl(U)x,m/e = pm.
In [4], the association of U -strata with a formal flat vector bundle (U,∇) was

slightly different than that given here. We will show that for strata of positive
depth, the two formulations agree. For (U,∇) to contain a stratum (P, s, β) in the
sense of [4, Definition 4.1] (with P the stabilizer of a period e lattice chain L), one
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first needs L to be “compatible” with ∇. One can then consider the endomorphism
of the associated graded space gr(L) =

⊕
Li/Li+1 induced by ιτ ◦ ∇. Note that

β also induces an endomorphism of gr(L); indeed, this endomorphism is given

by multiplication by an element Y ∈ p−r corresponding to a representative β̃.
Containment now means that these two endomorphism coincide on all sufficiently
large graded subspaces. (If r > 0, the endomorphisms will actually be the same.)

By choosing a trivialization of U compatible with L (as in [4, Remark 2.9])
and an appropriate k-rational structure V for U , one may assume without loss of
generality that P is a standard parahoric subgroup in GLn(o) associated to the
optimal point xL ∈ A0. For s > 0, it is now immediate that the criterion described
above is the same as that given in Proposition 4.3 for containment of (xL, s/e, β).
Here, we are using the fact that the normalization term −x̃dzz , which does not
appear in [4], makes no contribution in this case. We are also using Corollary A.2,
which allows us to apply Proposition 4.3 instead of Definition 2.4.

When s = 0, the definitions are not equivalent due to the normalization term.
However, to apply results from [4], we only need to know that (U,∇) contains a
stratum (xL, 0, β

′) if and only if it contains a stratum (P, 0, β). In the latter case,
after choosing a trivialization identifying L0 ∈ L with on, we see that ιτ ([∇]φ) ∈
gln(o). Accordingly, ∇ contains the depth 0 stratum supported at the origin of A0

determined by [∇]φ. Conversely, suppose that ∇ contains (x, 0, β) for x an optimal

point corresponding to the lattice chain L. Since [∇]φ − x̃dzz and x̃dzz are both in

gln(F )⊥x+, the same is true for [∇]φ. It follows that ιτ ([∇]φ) preserves every lattice
in L, so by [13, Lemme 6.21], ∇ is regular singular. Lemma 4.8 of [4] now implies
that ∇ contains a depth 0 stratum (P, 0, β′).

Summing up the proceeding discussion, we see:

Proposition A.3. Let (U,∇) be a flat vector bundle. Let P ⊂ GL(U) be a para-
horic subgroup corresponding to a lattice chain L of period e, and let x ∈ B be any
point which has the same image in B̄ as xL.

(1) If s > 0, (U,∇) contains (P, s, β) in the sense of [4, Definition 4.1] if and
only it contains (x, s/e, β) in the sense of Definition 2.4.

(2) The flat vector bundle (U,∇) contains a depth 0 stratum (P, 0, β) if and
only if it contains a depth 0 stratum (x, 0, β′).

A.2. Slopes of vector bundles via the theory of strata. In [4, Theorem 4.10],
we showed that the slope of a flat vector bundle is determined by the strata con-
tained in it associated to lattice chain filtrations. We are now ready to prove
Proposition 4.8, which generalizes this result to allow arbitrary Moy-Prasad filtra-
tions.

Lemma A.4. If (V̂ ,∇) contains a fundamental stratum (x, r, β) with respect to the
trivialization φ with x ∈ C̄ ⊂ A0 and r > 0, then it also contains a fundamental
stratum (x′, r, β′) with respect to φ with the same depth and x′ ∈ C̄ an optimal
point.

Proof. Let y ∈ A0 be a vertex adjacent to the alcove containing x. Since G = GLn,
there exists n ∈ N̂ such that ny is the origin and nx is in the fundamental alcove.
By Lemma 4.7(1), we see that [∇]nφ − ñxdzz ∈ Ad∗(n)([∇]φ − x̃dzz ) + ĝ∨nx,0+. It

follows that the stratum (nx, r, β′) determined by [∇]nφ is contained in (V̂ ,∇).
Moreover, this stratum is fundamental if and only if (x, r, β) is.
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Thus, without loss of generality, we can assume that C is the fundamental alcove
and x is further in the open star of the origin. In particular, this implies that
the corresponding filtration on V̂ gives rise to a lattice chain V̂x,bj+qe with one

term given by V ⊗ o, say V̂x,b0 ; here b0 < b1 < · · · < be−1 < b0 + 1, and the
critical numbers of the filtration are precisely at the translates of the bi’s. Up to
indexing, this is just the lattice chain described above for the optimal point in
the same open facet. Accordingly, the graded pieces of the filtration are given by
V̂x(bj + qe) = span{zq+1ej | sj ≤ j < sj−1}. We claim that (V̂ ,∇) contains a
fundamental stratum at an optimal point coming from an appropriate sub-lattice
chain.

Let X ∈ gl(V̂ )x(−r) be the graded representative corresponding to the functional

β̃0 via the trace form as in Proposition 3.6. Since (x, r, β) is fundamental, X

is not nilpotent. Hence, for some j, Xm is a nonzero map sending V̂x(bj) into

V̂x(bj − mr) for all m > 0, and so each bj − mr is an integral translate of some
bi. Since there are only a finite number of distinct bi’s, r must be a rational
number with denominator at most e, say r = a/f with (a, f) = 1 and 1 ≤ f ≤ e.

The set of lattices Lm
def
= V̂x(bj + m/f) for m ∈ Z is thus a sub-lattice chain of

period f . Note that ιτ (([∇]φ)(Lm)) ⊂ Lm−a. Thus, if x′ is the optimal point

corresponding to this lattice chain, (V̂ ,∇) contains the stratum (x′, r, β′), with β′

induced by ∇. Finally, we observe that (ιτ ◦ [∇]φ)m /∈ gl(V̂ )x′,−mr+1/f for any

m > 0. Indeed, if this were true, then (ιτ ◦ [∇]φ)m(V̂x,bj ) ⊂ V̂x,(bj−mr)+; since

r > 0 implies (ιτ ◦ [∇]φ)−X ∈ gl(V̂ )x,−r+, Xm(V̂x,bj ) ⊂ V̂x,(bj−mr)+ as well. This
contradicts the fact that (x, r, β) is fundamental. Applying [9, Lemma 2.1], we
conclude that (x′, r, β′) is fundamental.

�

Remark A.5. It is not true that x′ can be taken to be an optimal point in the
same open facet as x. The rank 3 connection defined in Example 5.3 contains
fundamental strata at x in the fundamental alcove C̄ for SL3 precisely for x lying
on the line connecting the midpoints of two sides of this triangle.

Proof of Proposition 4.8. By [4, Theorem 4.10], these statements hold if one only
allows x to range over uniform filtrations. By Proposition 4.12 (for G = GLn), if
(U,∇) contains a stratum (x, 0, β), then it also contains a stratum (x′, 0, b′) with x′

in a minimal facet. Since x′ thus corresponds to a uniform filtration, slope(U,∇) = 0
and ∇ is regular singular. We can thus assume that ∇ is irregular singular, i.e.,
slope(∇) > 0. It now follows from the previous lemma that all fundamental strata
contained in (U,∇) have depth slope(∇). It remains to show that one cannot have
a nonfundamental (x, r, β) contained in the connection with 0 < r ≤ slope(∇).
However, this follows from Corollary A.2 and the GLn case of Proposition 4.16.

�

We may now combine this proposition with Corollary A.2 and Theorem 2.14 to
obtain the following corollary.

Corollary A.6. The slope of a flat GL(V )-bundle (G,∇) is the same as the slope
of the flat vector bundle (VG,∇V ). In particular, (G,∇) is regular singular if and
only if (VG,∇V ) is regular singular.
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Appendix B. Equivariance of stratum containment

We have seen in Lemma 4.2 that stratum containment is well-behaved with
respect to change of trivialization. Here, we show that it also satisfies a stronger
equivariance property. In order to state this, it will be useful to introduce some
notation. Suppose that x ∈ A0. There exists a unique flat structure dA0,x on the

trivial G bundle Ĝ that satisfies the following properties:

(1) for every V ∈ Rep(G), (dA0,x − idzz )V̂x(i) = {0}; and

(2) for all g ∈ Ĝ,

(21) (gdA0,xg
−1 − idz

z
)V̂gx,i ⊂ Ω1(V̂ )gx,i+.

In fact, we will show that dA0,x = d + x̃dzz . It follows from Proposition 3.2(1)

that d + x̃dzz satisfies the first property. This immediately shows that the second
property holds when g is the identity. One obtains the general case of (21) from

the observations that idzz = gidzz g
−1 and V̂gx,i = gV̂x,i.

To see that dA0,x is unique, note that if d′ satisfies the first condition above,

then d′−dA0,x is the zero map on all V̂x(i). Since connections are continuous (with
respect to the z-adic topology), d′ = dA0,x.

Consider the space QG of quintuples (G,∇, x, r, φ), where (G,∇) is a formal flat

G-bundle with trivialization φ, such that ∇φ(V̂x,i) ⊂ Ω1(V̂ )x,i−r for all i ∈ R and

V ∈ Rep(G). We denote the subset of QG with fixed r by QGr . The group Ĝ acts
on QG (and each QGr ) via g(G,∇, x, r, φ) = (G,∇, gx, r, gφ).

Lemma B.1. Given (G,∇, x, r, φ) ∈ QG, there is a unique stratum (x, r, β) con-
tained in (G,∇) with respect to φ.

Proof. First, we show uniqueness. Suppose that (G,∇) contains both (x, r, β) and

(x, r, β′) with respect to φ. It follows that (Xβ̃−Xβ̃′)V̂x,i ⊂ Ω1(V̂ )x,i−r+ for all i and

V ∈ Rep(G). In particular, (Xβ̃ −Xβ̃′) ∈ Ω1(ĝ)x,−r+. Therefore, β̃ − β̃′ ∈ ĝ∨x,−r+
and β = β′.

To prove existence, suppose that x = gy for some g ∈ Ĝ and y ∈ A0. Write
d′ = gdA0,yg

−1 and X = ∇φ − d′. We see that X is F -linear; moreover, by (21)

and the assumption on ∇φ, XV̂x,i ⊂ Ω1(V̂ )x,i−r for all V ∈ Rep(G). Therefore,

X ∈ Ω1(ĝ)x,−r. Since (21) implies that (d′ − idzz )V̂x,i ⊂ V̂x,i+, (11) holds with Xβ̃

replaced with X. There is a corresponding element B ∈ ĝ∨x,−r, and we may take β
to be the induced functional on (ĝx,r/ĝx,r+).

�

Containment thus induces a map QG → SG which restricts to maps QGr → SGr .
The image of QG (resp. QGr ) is the set of strata (resp. strata of depth r) contained
in some flat G-bundle (G,∇) with respect to some trivialization.

Proposition B.2. The map QG → SG and the maps QGr → SGr are Ĝ-equivariant.

Proof. Suppose that (G,∇, x, r, φ) maps to (x, r, β). Lemma 4.2 implies that (gx, r, gβ)
is contained in (G,∇) with respect to gφ, and Lemma B.1 implies that (gx, r, gβ)
is the image of (G,∇, gx, r, gφ).

�
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