Minimal K-types for flat G-bundles, moduli spaces, and isomonodromy

Daniel Sage-joint work with Christopher Bremer

Workshop on Moduli Spaces of Connections, Université de Rennes, July 2014

Overview

New approach to the local theory of flat G-bundles over curves, i.e. formal flat G-bundles, using methods from representation theory: Systematic study of the "leading terms" of the flat structures with respect to Moy-Prasad filtrations

Two main motivations:

- Moduli spaces and the isomonodromy problem for meromorphic flat G-bundles with nondiagonalizable irregular singularities
- The wild ramification case of the geometric Langlands program

A few words about geometric Langlands

k local field, G connected reductive group over $k,{ }^{L} G$ Langlands dual group
Let W_{k} be the Weil-Deligne group- defined in terms of $\operatorname{Gal}(\bar{k} / k)$.
The local Langlands conjecture asserts a relationship between "admissible" homos $W_{k} \rightarrow{ }^{L} G$ and smooth irreps of $G(k)$.

Geometric Langlands

Replace k by $F=\mathbb{C}((z))$. $\operatorname{Spec}(F)=\Delta^{\times}$, formal punctured disk $\operatorname{Gal}(\bar{F} / F) \cong \hat{\mathbb{Z}}=\pi_{1}\left(\Delta^{\times}\right)$
Naive local Langlands parameters are $\operatorname{Hom}\left(\hat{\mathbb{Z}},{ }^{L} G\right)$, which correspond to ${ }^{L} G$-local systems; equivalently, a flat ${ }^{L} G$-bundle whose connection has a regular singularity at the origin.
There are not enough of these-wild ramification is missing. One must allow irregular singularities as well.
In the global picture, Langlands parameters are meromorphic flat ${ }^{L} G$-bundles over curves.

Flat G-bundles

$X=\mathbb{P}^{1}(\mathbb{C})$ (for convenience), \mathcal{O} structure sheaf of $\mathbb{P}^{1}(\mathbb{C}), K$ function field (meromorphic functions)
$\Omega_{K / \mathbb{C}}^{1}$ meromorphic 1-forms
Recall: A flat GL_{n}-bundle on $\mathbb{P}^{1}(\mathbb{C})$ is a rank n trivializable vector bundle with a meromorphic connection, i.e., a \mathbb{C}-derivation
$\nabla: V \rightarrow V \otimes_{\mathcal{O}} \Omega_{K / \mathbb{C}}^{1}$.
If one fixes a trivialization $\phi: V \rightarrow V^{\text {triv }}$, then

$$
\nabla=d+[\nabla]_{\phi}, \text { where }[\nabla]_{\phi} \in M_{n}\left(\Omega_{K / \mathbb{C}}^{1}\right)
$$

Definition

A flat G-bundle on X is a trivializable principal G-bundle $E \rightarrow X$ with an abstract meromorphic connection ∇; equivalently, it is a compatible family of flat vector bundles $\left(E \times_{G} W, \nabla_{W}\right), W$ f.d. rep of G, with structure group G.
Here, $\nabla=d+[\nabla]_{\phi}$ with $[\nabla]_{\phi} \in \Omega_{K / \mathbb{C}}^{1}(\mathfrak{g})$.

Localization

(E, ∇) flat G-bundle induces formal flat structures at each $y \in \mathbb{P}^{1}$ Let z be a parameter at y
$\mathfrak{o}=\mathbb{C}[[z]]$ completion of local ring at $y, F=\mathbb{C}((z))$ fraction field, $\Delta_{y}^{\times}=\operatorname{Spec}(F)$ is a formal punctured disk at y
One obtains an induced formal connection $\left(\hat{E}_{y}, \hat{\nabla}_{y}\right)$ on Δ_{y}^{\times}. Note that $\left[\hat{\nabla}_{y}\right] \in \mathfrak{g}(F) \frac{d z}{z}$.
If the singular points are y_{1}, \ldots, y_{m}, one gets a localization functor $L: \nabla \mapsto\left(\hat{\nabla}_{y_{i}}\right)$.
($\hat{\nabla}_{y}$ is trivial except at the singularities.)
If $\left[\hat{\nabla}_{y_{i}}\right]_{\phi}$ has a simple pole for some trivialization ϕ, then y_{i} is a regular singular point. Otherwise, it is irregular.

Gauge and coadjoint actions

Fix a G-invariant nondegenerate symm bilinear form (,) on \mathfrak{g} eg for $\mathrm{GL}_{n},(X, Y)=\operatorname{Tr}(X Y)$
There are two natural actions of $\hat{G}:=G(F)$ on $\Omega_{F / \mathbb{C}}^{1}(\mathfrak{g})$.
[$\hat{\nabla}$] may be viewed as an element of $\mathfrak{g}(F)^{\vee}$ via

$$
X \mapsto \operatorname{Res}(X,[\hat{\nabla}]), \text { where } X \in \hat{\mathfrak{g}}:=\mathfrak{g}(F)
$$

Hence, the coadjoint action makes sense.
Change of trivialization gives rise to gauge change on the connection matrix; this gives the coadjoint action with an additional factor.

$$
g \cdot[\hat{\nabla}]=\operatorname{Ad}^{*}(g)([\hat{\nabla}])-(d g) g^{-1}, \text { where } g \in \hat{\mathfrak{g}} .
$$

Fact
If we view $[\hat{\nabla}]$ as an element of $\mathfrak{g}(\mathfrak{o})^{\vee}$ (via restriction), then the coadjoint and gauge actions of $G(\mathfrak{o})$ coincide.
From now on, we usually view [$\hat{\nabla}$] as a functional on $\mathfrak{g}(\mathfrak{o})$ or suitable subalgebras.

Two functors on the category of flat G-bundles

$$
\begin{aligned}
& \left\{\begin{array}{c}
\text { flat } G \text {-bundles with } \\
\text { singularities at } y_{1}, \ldots, y_{m}
\end{array}\right\} \xrightarrow{M}\left\{\begin{array}{c}
\text { enhanced monodromy } \\
\text { data }
\end{array}\right\} \\
& \begin{array}{|l}
\mid L=\Pi L_{i}
\end{array} \\
& \prod_{i}\left\{\begin{array}{c}
\text { formal flat } \\
G \text {-bundles on } \Delta_{y_{i}}^{\times}
\end{array}\right\}
\end{aligned}
$$

Want to study these categories via the geometry of the moduli spaces. In general, these moduli spaces are stacks; to understand, look for better-behaved subcategories of flat G-bundles.

Some problems

1. Find classes of formal isomorphism types for which $L^{-1}\left(\left(\hat{\nabla}_{i}\right)\right)$ are well-behaved moduli spaces.
2. When are such moduli spaces nonempty (Deligne-Simpson problem)? Reduced to a singleton (a version of rigidity)?
3. Investigate the fibers of the monodromy map restricted to reasonable moduli spaces.

Nonresonant case for GL_{n} (reg semisimple leading term) $\left[\hat{\nabla}_{y}\right]=\left(M_{-r} z^{-r}+M_{1-r} z^{1-r}+\ldots\right) \frac{d z}{z}, M_{i} \in \mathfrak{g l}_{n}(\mathbb{C}), M_{-r} \neq 0$. If M_{-r} is regular semisimple, then $\left[\hat{\nabla}_{y}\right]$ is gauge equivalent to an element of $\mathcal{A}(r) \frac{d z}{z}=\left\{D_{-r} z^{-r}+\cdots+D_{0} \mid D_{i}\right.$ diag, D_{-r} reg $\} \frac{d z}{z}$. ($\mathcal{A}(r)$ is the set of "formal types").
Consider only connections with nonresonant singularities.

$$
\begin{aligned}
& \widetilde{\mathcal{M}}^{\mathrm{nr}}(\mathbf{r}) \xrightarrow{M} \widetilde{\mathcal{S}}^{\mathrm{nr}}(\mathbf{r}) \\
& \mid\left\llcorner=\Pi L_{i}\right. \\
& \prod_{i} \mathcal{A}\left(r_{i}\right)
\end{aligned}
$$

Results of Boalch (2001) building on Jimbo-Miwa-Ueno (1981)

- The moduli space $\widetilde{\mathcal{M}}^{\mathrm{nr}}(\mathbf{r})$ is a Poisson manifold; its symplectic leaves are the connected components of the fibers of L.
- The fibers of M form an integrable system (solutions of the isomonodromy equations).
- These two foliations are "orthogonal".

Understanding nonresonant connections is not enough. One only gets formal connections with integral slope. The p-adic case suggests that the fractional slope connections will be particularly interesting-eg for GL_{n}, connections with slope $1 / n$ should correspond to supercuspidal representations of loop groups.
Example (Nilpotent leading term)
$d+\left(\begin{array}{cc}0 & z^{-(s+1)} \\ z^{-s} & 0\end{array}\right) \frac{d z}{z}=d+\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right) z^{-(s+1)} \frac{d z}{z}+\left(\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right) z^{-s} \frac{d z}{z}$
Slope $s+\frac{1}{2}$. Classical techniques don't work. How to proceed?
Observations on the nonresonant case

- Look at $[\hat{\nabla}]$ with respect to the filtration of $\mathfrak{g l}_{n}(F)$ by $z^{-r} \mathfrak{g l}_{n}(\mathfrak{o})$.
- The image of the leading term in the associated graded is non-nilpotent.
- The centralizer $S=Z\left(M_{r} z^{-r}\right) \subset G L_{n}(F)$ is a split maximal torus; the filtration on \mathfrak{s} is induced by the filtration on $\mathfrak{g l}_{n}(F)$.

Moy-Prasad filtrations

$T \subset B \subset G, T$ maximal torus, B Borel subgroup, W Weyl group \mathfrak{B} the Bruhat-Tits building for $G, \mathcal{A}=\mathcal{A}(T)=X_{*}(T) \otimes \mathbb{R}$ apartment associated to $T(F)$
V a representation of $G, \hat{V}:=V_{F}=V \otimes_{\mathbb{C}} F$, enough to define
filtration for $x \in \mathcal{A}$
For $\lambda \in X^{*}(T)$, let V_{λ} be the corresponding weight space
Set $\hat{V}_{x}(r)=\bigoplus_{\lambda(x)+m=r} V_{\lambda} z^{m}$. This gives an \mathbb{R}-grading
$V \otimes \mathbb{C}\left[z, z^{-1}\right]=\bigoplus_{r \in \mathbb{R}} \hat{V}_{x}(r)$.
For any $r \in \mathbb{R}$, define \mathfrak{o}-lattices

$$
\hat{V}_{x, r}=\prod_{s \geq r} \hat{V}_{x}(s) \subset \hat{V} ; \quad \hat{V}_{x, r+}=\prod_{s>r} \hat{V}_{x}(s) \subset \hat{V}
$$

$\left\{\hat{V}_{x, r} \mid r \in \mathbb{R}\right\}$ determines the Moy-Prasad filtration on \hat{V};
$\hat{V}_{x, r} \supset \hat{V}_{x, s}$ whenever $s>r$.
Set of critical numbers $\left\{r \in \mathbb{R} \mid \hat{V}_{x, r} \neq \hat{V}_{x, r+}\right\}$ is discrete and 1-periodic.

Most important examples: the adjoint and coadjoint reps \mathfrak{g} and \mathfrak{g}^{\vee}.

Moy-Prasad filtrations (cont.)

$\pi: G(\mathfrak{o}) \rightarrow G, z \mapsto 0$

Definition

An Iwahori subgroup is a $G(F)$-conjugate of $\pi^{-1}(B)$. A parahoric subgroup (G semisimple) is a subgroup containing an Iwahori subgroup. Iwahori (parahoric) subalgebras defined similarly.
Facets in \mathfrak{B} correspond to parahorics. If $\hat{\mathfrak{g}}_{x}$ is the parahoric for $x \in \mathfrak{B}$, then $\hat{\mathfrak{g}}_{x, 0}=\hat{\mathfrak{g}}_{x}$. One can also define an $\mathbb{R}_{\geq 0}$ - filtration on the parahoric subgroup $\hat{G}_{x}=\hat{G}_{x, 0} ; \hat{G}_{x, 0+}$ is the prounipotent radical.
The pairing $\langle X, Y\rangle=\operatorname{Res}(X, Y) \frac{d z}{z}$ induces

$$
\left(\hat{\mathfrak{g}}_{x, r} / \hat{\mathfrak{g}}_{x, r+}\right)^{\vee} \cong \hat{\mathfrak{g}}_{x,-r} / \hat{\mathfrak{g}}_{-x,-r+} .
$$

Also, for $r>0$, there is a natural isomorphism

$$
\hat{G}_{x, r} / \hat{G}_{x, r+} \cong \hat{\mathfrak{g}}_{x, r} / \hat{\mathfrak{g}}_{x, r+}
$$

Lattice chain filtrations, $G=G L_{n}$

Assume $G=G L_{n}$.
Definition
A lattice chain \mathcal{L} in F^{n} is a "periodic" (with period e), decreasing chain of \mathfrak{o}-lattices $\left(L^{i}\right)_{i \in \mathbb{Z}}$: $L^{i} \supsetneq L^{i+1}$, and $L^{i+e}=z L^{i}$.
$P=\operatorname{Stab}_{\mathrm{GL}_{n}(F)}(\mathcal{L})$ is a parahoric subgroup.
$\mathfrak{P}:=\operatorname{Lie}(P)=\left\{x \in \mathfrak{g l}_{n}(F) \mid x\left(L_{i}\right) \subset L_{i}\right.$ for all $\left.i\right\}$.
One gets a natural filtration of $\mathfrak{g l}_{n}(F)$ (resp. P) by congruence subalgebras (resp. subgroups).
Congruent subalgebras: $\mathfrak{P}^{k}=\left\{x \in \mathfrak{g l}_{n}(F) \mid x\left(L_{i}\right) \subset L_{i+k} \forall i\right\}$.
Congruent subgroups: $P^{k}=\operatorname{Id}+\mathfrak{P}^{k}$ for $k \geq 1$.

Let x be the barycenter of the simplex in the reduced building corresponding to P.
Then $\mathfrak{P}^{k}=\hat{\mathfrak{g}}_{x, k / e}$ and $P^{k}=\hat{G}_{x, k / e}$; in particular, $\mathfrak{P}=\hat{\mathfrak{g}}_{x}$.

Fundamental strata

In p-adic representation theory, fundamental strata (or minimal
K-types) were introduced by Bushnell and Kutzko ($G L_{n}$) and Moy and Prasad.
Definition

- A stratum (x, r, β) consists of $x \in \mathfrak{B}$, a real number $r \geq 0$, and a functional $\beta \in\left(\hat{\mathfrak{g}}_{x, r} / \hat{\mathfrak{g}}_{x, r+}\right)^{\vee}$.
- (x, r, β) is fundamental if every representative $\tilde{\beta} \in \hat{\mathfrak{g}}_{x,-r}$ of β is non-nilpotent. If $x \in \mathcal{A}$, enough to check that the unique graded representative is non-nilpotent.
- Two fundamental strata $(x, r, \beta),\left(x^{\prime}, r^{\prime}, \beta^{\prime}\right)$ are associate if $\stackrel{r}{\sim}=r^{\prime}$ and (for $r>0$) the $G(F)$-orbits of $\tilde{\beta}+\hat{\mathfrak{g}}_{x,-r+}$ and $\tilde{\beta}^{\prime}+\hat{\mathfrak{g}}_{x^{\prime},-r^{\prime}+}$ intersect.

For lattice chain filtrations of $G L_{n}(F)$, write (P, r, β).
Moy-Prasad: Every irreducible admissible representation W of a p-adic group contains a minimal K-type. Any such has the same depth, allowing one to define the depth of W.

Fundamental strata give the correct notion of the leading term of a formal flat G-bundle.

Definition

The formal flat G-bundle $\hat{\nabla}$ contains the stratum (x, r, β) (for $r>0)$ if $\operatorname{Res}\left([\hat{\nabla}], \mathfrak{g}_{x, r+}\right)=0$ and $[\hat{\nabla}]$ induces the same functional as β on $\mathfrak{g}_{x, r} / \mathfrak{g}_{x, r+}$.
For $G=\mathrm{GL}_{n}, r>0, \hat{\nabla}$ contains (P, r, β) iff $\iota_{z \partial_{z}}[\hat{\nabla}]$ and $\tilde{\beta}$ induce the same endomorphism of the associated graded space $\bigoplus L^{j} / L^{j+1}$.

Examples

- $[\hat{\nabla}]=\left(z^{-r} M_{-r}+z^{-r+1} M_{1-r}+\right.$ h.o.t. $) \frac{d z}{z}$ with $M_{i} \in \mathfrak{g}$.
$\hat{\nabla}$ contains the G-stratum (x, r, β), where $x \in \mathfrak{B}$ is the vertex corresponding to $G(\mathfrak{o}), \beta \in\left(z^{r} \mathfrak{g}(\mathfrak{o}) / z^{r+1} \mathfrak{g}(\mathfrak{o})\right)^{\vee}$ is induced by $z^{-r} M_{-r} \frac{d z}{z}$, fundamental if M_{-r} is non-nilpotent.
- $\hat{V}=F^{2},[\hat{\nabla}]=\left(\begin{array}{cc}0 & z^{-(s+1)} \\ z^{-s} & 0\end{array}\right) \frac{d z}{z}$.

Here, $(\hat{V}, \hat{\nabla})$ contains the fundamental $G L_{2}$-stratum $\left(I, s+\frac{1}{2}, \beta\right)$, where $I \subset \mathrm{GL}_{2}(\mathfrak{o})$ is the standard Iwahori subgroup, $\beta \in\left(\mathfrak{I}^{2 s+1} / \mathfrak{I}^{2 s}\right)^{\vee}$.

Theorem (Bremer-S. 2013b, 2014)

Every formal flat G-bundle $\hat{\nabla}$ contains a fundamental stratum (x, r, β) with x an optimal point (so $r \in \mathbb{Q}$); the depth r is positive iff $\hat{\nabla}$ is irregular singular. Moreover,

- If $\hat{\nabla}$ contains a stratum ($x^{\prime}, r^{\prime}, \beta^{\prime}$), then $r^{\prime} \geq r$.
- If $r>0,\left(x^{\prime}, r^{\prime}, \beta^{\prime}\right)$ is fundamental if and only if $r^{\prime}=r$.
- Any two fundamental strata contained in $\hat{\nabla}$ are associate.

We can now define the slope of $\hat{\nabla}$ as this minimal depth.

Theorem (Bremer-S, 2013b)

The slope of the formal flat G-bundle ($\hat{E}, \hat{\nabla}$) is a nonnegative rational number. It is positive if and only if $(\hat{E}, \hat{\nabla})$ is irregular singular. The slope may also be characterized as

1. the maximum slope of the associated flat connections; or
2. the maximum slope of the flat connections associated to the adjoint representations and the characters.

Other defs of slope by Frenkel-Gross and Chen-Kamgarpour.

Regular strata

Need stronger condition on strata to get nice moduli spaces.
Let $S \subset G(F)$ be a (possibly non-split) maximal torus. There is a unique Moy-Prasad filtration $\left\{\mathfrak{s}_{r}\right\}$ on $\mathfrak{s}=\operatorname{Lie}(S)$.
Definition
A point $x \in \mathfrak{B}$ is compatible with \mathfrak{s} if $\mathfrak{s}_{r}=\hat{\mathfrak{g}}_{x, r} \cap \mathfrak{s}$ for all r.

Definition

A fundamental stratum (x, r, β) is a regular stratum centralized by S if x is compatible with \mathfrak{s} and for any representative $\tilde{\beta} \in \mathfrak{g}_{x,-r}$ of $\beta, \operatorname{Stab}_{G(F)}(\tilde{\beta})$ is a $\hat{G}_{x, 0+\text {-conjugate of }} S($ for $r>0)$.

$$
\left\{\begin{array}{c}
\text { conj classes maximal } \\
\text { tori in } G(F)
\end{array}\right\} \longleftrightarrow\left\{\begin{array}{c}
\text { conj classes } \\
\text { in } W
\end{array}\right\}
$$

Proposition

A torus centralizes a regular stratum (x, r, β) if and only if its class corresponds to a regular conjugacy class in W. In this case, $e^{2 \pi i r}$ is a regular eigenvalue of this class.

Regular strata (cont.)

For $G=\mathrm{GL}_{n}, S$ is regular if it is uniform i.e., $S=\left(E^{\times}\right)^{k}$ for some field extension E / F, or if it is of the form $S^{\prime} \times \mathbb{C}^{*}$ where S^{\prime} is uniform for GL_{n-1}.

Examples

- Take $M_{-r} \in \mathfrak{g}$ regular semisimple, let $T=Z_{G}\left(M_{-r}\right)$, and let $x \in \mathfrak{B}$ be the vertex corresponding to $G(\mathfrak{o})$. Then $\left(x, r, z^{-r} M_{-r} \frac{d z}{z}\right)$ is a regular stratum centralized by $T(F)$.
- The Frenkel-Gross rigid flat G-bundle is S-regular of slope $1 / h$, where h is the Coxeter number and S corresponds to the Coxeter element in W.
Explicitly for $G=G L_{2}$: Let $\omega=\left(\begin{array}{ll}0 & 1 \\ z & 0\end{array}\right)$, so $S=\mathbb{C}((\omega))^{*}$ is a non-split maximal torus in $\mathrm{GL}_{2}(F)$. Then, $\left(I, \frac{1}{2},\left(\begin{array}{c}0 \\ 1 \\ 1\end{array} z_{0}^{-1}\right) \frac{d z}{z}\right)$ is a regular stratum centralized by S (as are the previous GL_{2} examples).

Formal types

The set $\mathcal{A}(S, r)$ of S-formal types of depth r is an open subset of the affine space $\left(\mathfrak{s}_{0} / \mathfrak{s}_{r+}\right)^{\vee} \cong \mathfrak{s}_{-r} / \mathfrak{s}_{0+}$. (It can also be interpreted as a subset of \mathfrak{s}_{-r}.)

Examples

- $T \subset G$ split,

$$
\mathcal{A}(T(F), r)=\left\{D_{-r} z^{-r}+\cdots+D_{0} \mid D_{i} \in \mathfrak{t}, D_{-r} r e g\right\}
$$

- $S=\mathbb{C}((\omega)) \subset \mathrm{GL}_{2}(F)$

$$
\mathcal{A}(S, s+1 / 2)=\left\{\operatorname{deg} 2 s+1 \text { polys in } \omega^{-1}\right\}
$$

Theorem (Bremer-S. 2013c)
If $\hat{\nabla}$ contains the regular stratum (x, r, β) centralized by S, then [$\hat{\nabla}$] is $\hat{G}_{x, 0+}$-gauge equivalent to a unique elt of $\mathcal{A}(S, r) \frac{d z}{z}$ with "leading term" β.
We call the element of $\mathcal{A}(S, r)$ a formal type for $\hat{\nabla}$.
The formal type determines the formal isomorphism class.

Formal types vs formal isomorphism classes

$W_{S}=N(S) / S, W_{S}^{\text {aff }}=N(S) / S_{0} \cong W_{S} \ltimes S / S_{0}$ relative Weyl and affine Weyl groups
The gauge action of $N(S)$ induces a natural action of $W_{S}^{\text {aff }}$ on $\mathcal{A}(S, r)$.
Let $\mathcal{C}(S, r)$ be the full subcategory of rank n formal connections $(\hat{V}, \hat{\nabla})$ containing a regular stratum with formal type in $\mathcal{A}(S, r)$.

One can construct a "framed" version $\mathcal{C}^{\mathrm{fr}}(S, r)$ of this category, together with a forgetful "deframing" functor $\mathcal{C}^{\text {fr }}(S, r) \rightarrow \mathcal{C}(S, r)$.
Theorem (Bremer-S 2013c)
This functor induces the quotient map $\mathcal{A}(S, r) \rightarrow \mathcal{A}(S, r) / W_{S}^{\text {aff }}$ on moduli spaces.

Framable connections ($G=G L_{n}$)

∇ global flat G-bundle; fix a trivialization ϕ.
Assume $\hat{\nabla}_{y}$ has formal type A_{y}.

Definition

$g \in G$ is a compatible framing for ∇ at y if $g \cdot\left[\hat{\nabla}_{y}\right]$ has the same leading term as $A_{y} \frac{d z}{z}$. If such a g exists, ∇ is framable at y. $g \circ \phi$ is a global trivialization which makes the leading term of [$\hat{\nabla}_{y}$] match the leading term of $A_{y} \frac{d z}{z}$.
Example
$P=G(\mathfrak{o}), A_{y}=D_{-r} z^{-r}+\cdots+D_{0}$
$g \cdot\left[\hat{\nabla}_{y}\right]=\left(D_{-r} z^{-r}+M_{1-r} z^{1-r}+\right.$ h.o.t. $) \frac{d z}{z}$.

Moduli spaces $\left(G=G L_{n}\right)$

Starting data

- $\left\{y_{i}\right\}$ irregular singular points
- $\mathbf{A}=\left(A_{i}\right)$ collection of S_{i}-formal types at y_{i} (which determine regular strata $\left(P_{i}, r_{i}, \beta_{i}\right)$ at each $\left.y_{i}\right)$, each S_{i} uniform.

Let $\mathcal{C}(\mathbf{A})$ be the category of framable connections (V, ∇) with formal types \mathbf{A} :

- V is a trivializable rank n vector bundle on \mathbb{P}^{1};
- ∇ is a mero. connection on V with sing. points only at $\left\{y_{i}\right\}$;
- ∇ is framable and has formal type A_{i} at y_{i}.

The morphisms are vector bundle maps compatible with the connections.
$\mathcal{M}(\mathbf{A})$ is the corresponding moduli space.
Note that if two framable connections are isomorphic as meromorphic connections (i.e. as D-modules), then they are isomorphic as framable connections. Thus, $\mathcal{M}(\mathbf{A})$ is a subspace of the moduli stack of meromorphic connections.

Variants

There are also moduli spaces $\widetilde{\mathcal{M}}(\mathbf{A})$ (resp. $\widetilde{\mathcal{M}}(\mathbf{S}, \mathbf{r})$) of framed connections with fixed formal types (resp. fixed regular combinatorics), which include data of compatible framings.

One can also allow additional regular singular points $\left\{q_{j}\right\}$; formal isomorphism classes are given by coadjoint orbit of the residue $\operatorname{res}_{q_{j}}([\hat{\nabla}]):=\left.[\hat{\nabla}]\right|_{\mathfrak{g r}_{n}(\mathbb{C})}$.
If $\mathbf{B}=\left(\mathcal{O}^{j}\right)$ collection of nonresonant coadjoint orbits in $\mathfrak{g l}_{n}(\mathbb{C})^{\vee}$, can construct $\mathcal{M}(\mathbf{A}, \mathbf{B})$ etc; here, ∇ has residue at q_{j} in \mathcal{O}^{j}.

Symplectic and Poisson reduction

We will construct these moduli spaces via symplectic (or Poisson) reduction of a symplectic (Poisson) manifold which is a direct product of local pieces. This is a result of Boalch (2001) in the case of regular diagonalizable leading terms.

Setup

- X symplectic mfld with Hamiltonian action of the group G
- $\mu: X \rightarrow \mathfrak{g}^{\vee}$ the moment map
- $\alpha \in \mathfrak{g}^{\vee}$ is a singleton coadjoint orbit.

Definition

The symplectic reduction $X / /{ }_{\alpha} G$ is defined to be the quotient $\mu^{-1}(\alpha) / G$.
Fact
If $\mu^{-1}(\alpha) / G$ is smooth, then the symplectic structure on X descends to $X / /{ }_{\alpha} G$.
Poisson reduction is analogous.

Local pieces

A a formal type with parahoric P. A can be viewed as an elt of \mathfrak{P}^{\vee}; let \mathcal{O}_{A} be the P-coadjoint orbit.
Associated parabolic to $P: P / z \mathrm{GL}_{n}(\mathfrak{o}) \cong Q \subset G L_{n}(\mathbb{C})$
Let $\mathcal{M}(A) \subset\left(Q \backslash \mathrm{GL}_{n}(\mathbb{C})\right) \times \mathfrak{g l}_{n}(\mathfrak{o})^{\vee}$ be the subvariety

$$
\left.\mathcal{M}(A)=\left\{(Q g, \alpha)\left|\left(\operatorname{Ad}^{*}(g)(\alpha)\right)\right|_{\mathfrak{P}} \in \mathcal{O}_{A}\right)\right\} .
$$

$G L_{n}(\mathbb{C})$ acts on $\mathcal{M}(A)$ via $h(Q g, \alpha)=\left(Q g h^{-1}, A d^{*}(h) \alpha\right)$.
Proposition
$\mathcal{M}(A)$ is a symplectic manifold, and the $\mathrm{GL}_{n}(\mathbb{C})$-action is Hamiltonian with moment map $(Q g, \alpha) \mapsto \operatorname{res}(\alpha):=\left.\alpha\right|_{\mathfrak{g r}_{n}(\mathbb{C})}$.
$\mathcal{M}\left(A_{i}\right)$ encodes the local data of $\nabla \in \mathcal{M}(\mathbf{A})$ at y_{i}.
There are similar local manifolds $\widetilde{\mathcal{M}}(A)$ and $\widetilde{\mathcal{M}}(P, r)$ (symplectic and Poisson respectively) corresponding to the other moduli spaces.

Structure of the moduli spaces

Theorem (Bremer-S. 2013a)

1. The moduli space $\widetilde{\mathcal{M}}(\mathbf{A}, \mathbf{B})$ is a symplectic manifold obtained as a symplectic reduction of the product of local data:

$$
\widetilde{\mathcal{M}}(\mathbf{A}, \mathbf{B}) \cong\left[\left(\prod_{i} \widetilde{\mathcal{M}}\left(A_{i}\right)\right) \times\left(\prod_{j} \mathcal{O}^{j}\right)\right] / / 0 \mathrm{GL}_{n}(\mathbb{C})
$$

2. The moduli space $\mathcal{M}(\mathbf{A}, \mathbf{B})$ may be constructed in a similar way. Moreover, it is the symplectic reduction of $\widetilde{\mathcal{M}}(\mathbf{A}, \mathbf{B})$ via a torus action.

The condition that the moment map take value 0 just says that the sum of the residues over all singular points is 0 .

These results and those on the next slide are due to Boalch (2001) in the case where all irregular formal types have regular semisimple leading term.

Theorem (Bremer-S. 2012)

1. The space $\widetilde{\mathcal{M}}(\mathbf{P}, \mathbf{r})$ is a Poisson manifold obtained by Poisson reduction of the product of local pieces.
2. The fibers of the localization map L are the $\widetilde{\mathcal{M}}(\mathbf{A})$.
3. The symplectic leaves are the connected components of the $\mathcal{M}(\mathbf{A})$'s.

Theorem (Bremer-S. 2012)
There is an explicitly defined, Frobenius integrable Pfaffian system \mathcal{I} on $\mathcal{M}(\mathbf{P}, \mathbf{r})$ such that the solution leaves of \mathcal{I} correspond to the fibers of the monodromy map M. The independent variables of this system are the coefficients of the formal types.

Some rigid connections

Let $x=0, y=\infty$. Let the formal type at 0 be the simplest possible Iwahori type $A=\omega^{-1}$. Let \mathcal{O} be any nonresonant adjoint orbit at ∞.

Proposition (Bremer-S)

$\mathcal{M}(A, \mathcal{O})$ is a singleton when \mathcal{O} is regular and empty otherwise.
Thus, one obtains a family of rigid connections including the Frenkel-Gross example.

Idea of proof when \mathcal{O} irregular $(n=3)$

- Let $X=\left\{\left.\left(\begin{array}{lll}0 & 0 & 0 \\ x & 0 & 0 \\ 0 & y & 0\end{array}\right)+b \right\rvert\, x, y \in \mathbb{C}^{*}, b \in \mathfrak{b} \cap \mathfrak{s l}_{3}(\mathbb{C})\right\}$.
- The moment map conditions imply that $\mathcal{M}(A, \mathcal{O})$ is the set of B orbits in the set $X \cap \mathcal{O}$.
- All elements of X are regular, so if \mathcal{O} is not regular, the moduli space is empty.

References

(in Bremer and D. S. Sage, Moduli spaces of irregular singular connections, Int. Math. Res. Not. IMRN 2013 (2013), 1800-1872.
(C. Bremer and D. S. Sage, Isomonodromic deformations of connections with singularities of parahoric formal type, Comm. Math. Phys. 313 (2012), 175-208.
囯 C. Bremer and D. S. Sage, A theory of minimal K-types for flat G-bundles, arXiv:1306.3176[math.AG].
(-i C. Bremer and D. S. Sage, Flat G-bundles and regular strata for reductive groups, arXiv:1309.6060[math.AG].

