Diagrammatic and geometric approaches to Schur-Weyl duality

Daniel Sage (joint with Pramod Achar)

AMS Western Sectional Meeting, November 2019

Polynomial representations of $GL_n(\mathbb{C})$

 $\operatorname{Rep}_{\operatorname{pol}}(\operatorname{GL}_n(\mathbb{C})) \subset \operatorname{Rep}(\operatorname{GL}_n(\mathbb{C}))$ cat of polynomial representations of $\operatorname{GL}_n(\mathbb{C})$

 $\{\text{poly irreps}\} \leftrightarrow \{\text{Young diagrams with } \leq n \text{ rows}\}\$ If V is an irrep, then $\lambda \text{Id} \in Z(\text{GL}_n(\mathbb{C})) \cong \mathbb{C}$ acts on V by λ^d for some $d \in \mathbb{Z}$ called the degree of V. V is a poly irrep iff the degree is nonnegative.

$$\left\{ \begin{array}{c} \text{poly irreps} \\ \text{of degree } d \end{array} \right\} \xrightarrow{} \left\{ \begin{array}{c} \text{Young diagrams with} \leq n \text{ rows} \\ \text{and } d \text{ boxes} \end{array} \right\}$$

We let $\operatorname{Rep}_{\operatorname{pol}}^{d}(\operatorname{GL}_{n}(\mathbb{C}))$ denote the subcategory generated by the irreps of degree d with $d \geq 0$.

Schur-Weyl duality

Irreducible representations of S_d are parametrized by Young diagrams with d boxes. Thus, if $n \ge d$,

$$\begin{cases} \text{poly irreps} \\ \text{of degree } d \end{cases} \longleftrightarrow \begin{cases} \text{irreps of } S_d \end{cases}$$

More generally, there is a combinatorial identification between poly irreps of degree d and the irreps of S_d corresponding to partitions with at most n parts.

Explanation: The *d*-fold tensor product $\mathbb{C}^n \otimes \cdots \otimes \mathbb{C}^n$ is endowed with actions of $GL_n(\mathbb{C})$ and S_d which are full mutual centralizers of each other. This implies the decomposition

$$\mathbb{C}^n\otimes\cdots\otimes\mathbb{C}^n=\sum_D V_D\otimes W_D,$$

where the sum runs over Young diagrams with *d* boxes and $\leq n$ boxes and V_D (resp. W_D) is the irrep of S_d (resp. $GL_n(\mathbb{C})$) corresponding to D.

The free spider category

 \Bbbk a field (or commutative ring)

Definition (Cautis, Kamnitzer, Morrison 2013)

The free spider category $\mathcal{FSp}(n, \Bbbk)$ is the monoidal category with Objects: finite sequences with $\mathbf{a} = (a_1, \ldots, a_s)$, $a_i \in \{1, \ldots, n\}$ Morphisms: \Bbbk -linear combinations of webs, trivalent graphs built out of the basic morphisms

Composition is given by vertical concatenation.

The monoidal structure is given by horizontal juxtaposition.

A presentation of $\operatorname{Rep}_{\operatorname{pol}}(\operatorname{GL}_n(\mathbb{C}))$ |

 $\operatorname{Rep}_{\Lambda}(\operatorname{GL}_{n}(\Bbbk)) \subset \operatorname{Rep}_{\operatorname{pol}}(\operatorname{GL}_{n}(\Bbbk))$ full subcat, objects iso isomorphic to tensor prods of the fund reps $\Lambda^{a}(\Bbbk^{n})$ for $a \in \{1, \ldots, n\}$. Distinguished morphisms: $S = \{j_{1}, \ldots, j_{s}\}, e_{S} = e_{j_{1}} \wedge \cdots \wedge e_{j_{s}}$

$$\Lambda^{a} \mathbb{k}^{n} \otimes \Lambda^{b} \mathbb{k}^{n} \to \Lambda^{a+b} \mathbb{k}^{n} \qquad e_{S} \otimes e_{T} \mapsto e_{S} \wedge e_{T}$$
$$\Lambda^{a+b} \mathbb{k}^{n} \to \Lambda^{a} \mathbb{k}^{n} \otimes \Lambda^{b} \mathbb{k}^{n} \qquad e_{S} \mapsto (-1)^{ab} \sum_{T \subset S} (-1)^{\ell(S \setminus T, T)} e_{T} \otimes e_{S \setminus T}$$

There is a natural functor $\Psi : \mathcal{FSp}(n, \Bbbk) \to \operatorname{Rep}_{\Lambda}(\operatorname{GL}_{n}(\Bbbk))$ with $\mathbf{a} \mapsto \Lambda^{\mathbf{a}}(\Bbbk^{n}) := \Lambda^{a_{1}}(\Bbbk^{n}) \otimes \cdots \otimes \Lambda^{a_{s}}(\Bbbk^{n})$,

The spider category

The spider category $Sp(n, \Bbbk)$ is the quotient category of $\mathcal{FSp}(n, \Bbbk)$ obtained by imposing the following relations and their mirror images on the webs:

The spider category (cont.)

A presentation of $\operatorname{\mathsf{Rep}_{pol}}(\operatorname{\mathsf{GL}}_n(\mathbb{C}))$ II

For $\mathbb{k} = \mathbb{C}$, all polynomial irreps are direct summands of objects in $\operatorname{Rep}_{\Lambda}(\operatorname{GL}_{n}(\mathbb{C}))$, so $\operatorname{Rep}_{\operatorname{pol}}(\operatorname{GL}_{n}(\mathbb{C})) = \operatorname{Kar}(\operatorname{Rep}_{\Lambda}(\operatorname{GL}_{n}(\mathbb{C})))$. Theorem (CKM 2013)

1. The functor Ψ induces a monoidal equivalence $Sp(n, \mathbb{C}) \to \operatorname{Rep}_{\Lambda}(\operatorname{GL}_{n}(\mathbb{C})).$

2.
$$\operatorname{Rep}_{\operatorname{pol}}(\operatorname{GL}_n(\mathbb{C})) \cong \operatorname{Kar}(\mathcal{Sp}(n,\mathbb{C})).$$

The proof is quite indirect and uses skew-Howe duality, i.e., the commuting actions of $GL_n(\mathbb{C})$ and $GL_m(\mathbb{C})$ on $\Lambda(\mathbb{C}^n \otimes \mathbb{C}^m)$.

The infinite spider category

We have a diagrammatic presentation of $\operatorname{Rep}(\operatorname{GL}_n(\mathbb{C}))$. Now want a presentation for reps of symmetric groups.

Definition (Achar-S. 2019)

The free infinite spider category $\mathcal{FSp}(\infty, \Bbbk)$ is the category with objects finite sequences of natural numbers, morphisms as in the finite spider category but with no upper bound on the labels. The infinite spider category $\mathcal{Sp}(\infty, \Bbbk)$ is the quotient by similar relations to the finite case.

There are natural "truncation" functors $T^n : Sp(\infty, \mathbb{k}) \to Sp(n, \mathbb{k})$ obtained by quotienting out objects and morphisms involving labels bigger than n.

Young modules

$$\begin{split} S_{\mathbf{a}} &= S_{a_1} \times \cdots \times S_{a_s} \\ \text{A Young module is an indecomposable summand of some} \\ \text{permutation module } \text{Ind}_{S_{\mathbf{a}}}^{S_{\sum a_i}} \Bbbk. \end{split}$$

• $\mathcal{Y}(S_d, \Bbbk)$ additive category generated by the Young modules

•
$$\mathcal{Y}_{tr}(S_d, \Bbbk)$$
 full subcategory with objects $Ind_{S_a}^{S \geq a_j} \Bbbk$

•
$$\mathcal{Y}(\Bbbk) = \bigoplus_{d \ge 1} \mathcal{Y}(S_d, \Bbbk)$$

•
$$\mathcal{Y}_{\mathrm{tr}}(\Bbbk) = \bigoplus_{d \ge 1} \mathcal{Y}_{\mathrm{tr}}(S_d, \Bbbk)$$

Note $\mathcal{Y}(\mathbb{C}) = \bigoplus_{d \ge 1} \operatorname{Rep}(S_d, \mathbb{C})$. Monoidal structure on $\mathcal{Y}_{\operatorname{tr}}(\Bbbk)$ and $\mathcal{Y}(\Bbbk)$: Given V and Wappropriate reps of S_a and S_b , then $V * W = \operatorname{Ind}_{S_a \times S_b}^{S_{a+b}}(V \boxtimes W)$.

A presentation of the category of Young modules

There is a natural functor $\Theta : \mathcal{FSp}(\infty, \Bbbk) \to \mathcal{Y}_{\mathrm{tr}}(\Bbbk)$:

$$\mathsf{a}\mapsto \mathsf{Ind}_{S_{\mathsf{a}}}^{S_{\sum a_{i}}}\,\Bbbk$$

The distinguished morphisms are the counit and unit respectively of the (Ind, Res) and (Res, Ind) adjoint pairs.

A presentation of the category of Young modules (cont.)

Theorem (Achar-S. 2019)

- 1. The functor Θ induces a monoidal equivalence $\mathcal{Sp}(\infty, \mathbb{k}) \to \mathcal{Y}_{tr}(\mathbb{k}).$
- 2. $\mathcal{Y}(\Bbbk)$ is monoidally equivalent to $Kar(\mathcal{S}p(\infty, \Bbbk))$.

Key ingredient of the proof: To show that the functor is fully faithful, one needs to show that the dimensions of corresponding Hom-spaces are the same. We accomplish this by finding an explicit \mathbb{Z} -basis for the Hom-spaces in $Sp(\infty, \mathbb{Z})$.

A presentation of the category of tilting modules for $GL_n(\Bbbk)$

What about a representation-theoretic interpretation of the finite spider categories for general \Bbbk ? The indecomposable summands of the objects of $\operatorname{Rep}_{\Lambda}(\operatorname{GL}_n(\Bbbk))$ are the indecomposable tilting modules., so $\operatorname{Tilt}(\operatorname{GL}_n(\mathbb{C})) = \operatorname{Kar}(\operatorname{Rep}_{\Lambda}(\operatorname{GL}_n(\Bbbk)))$. Similar arguments to those in the infinite case give

Theorem (Achar-S. 2019)

- 1. The functor Ψ induces a monoidal equivalence $Sp(n, \mathbb{k}) \to \operatorname{Rep}_{\Lambda}(\operatorname{GL}_{n}(\mathbb{k})).$
- 2. $\operatorname{Tilt}(\operatorname{GL}_n(\mathbb{C})) \cong \operatorname{Kar}(\mathcal{Sp}(n, \mathbb{k})).$

A version of modular Schur-Weyl duality

{indecomp tilting mods for $GL_n(\mathbb{k})$ } \leftrightarrow {Young diagrams with $\leq n$ rows}

{Young modules for S_d } \leftrightarrow {Young diagrams with d boxes}

Let Tilt^{*d*}(GL_{*n*}(\Bbbk)) (resp. $\mathcal{Y}^n(S_d, \Bbbk)$) be the full subcategories generated by the tilting modules (resp. Young modules) corresponding to partitions of *d* with at most *n* parts. The truncation functor induces a functor from Young modules to tilting modules:

 $\Phi^m: \mathcal{Y}(\Bbbk) \cong \mathsf{Kar}(\mathcal{Sp}(\infty, \Bbbk))) \xrightarrow{\mathcal{T}^m} \mathsf{Kar}(\mathcal{Sp}(m, \Bbbk)) \cong \mathsf{Tilt}(\mathsf{GL}_m(\Bbbk))$

Theorem (Achar-S. 2019)

The functor Φ^m induces an equivalence $\mathcal{Y}^m(S_d, \Bbbk) \cong \operatorname{Tilt}^d(\operatorname{GL}_m(\Bbbk))$

Over $\mathbb{C},$ this is the usual Schur-Weyl duality.

A nilpotent cone interpretation of Schur-Weyl duality

Let \mathcal{N}_d denote the set of $d \times d$ nilpotent matrices.

By Jordan canonical form, each $GL_d(\mathbb{C})$ -orbit corresponds to a partition of d with kth part the number of $k \times k$ Jordan blocks.

Let $\mathcal{N}_d^n = \{x \in \mathfrak{gl}_d(\mathbb{C}) \mid x^n = 0\}$, the matrices with degree of nilpotency $\leq n$.

The simple objects in $\text{Perv}_{\text{GL}_d(\mathbb{C})}(\mathcal{N}_d^n)$ are parameterized by the $\text{GL}_d(\mathbb{C})$ orbits:

$$\left\{ \mathsf{GL}_d(\mathbb{C}) \text{-orbits in } \mathcal{N}_d^n \right\} \longleftrightarrow \left\{ \begin{array}{l} \mathsf{Young diagrams with } d \text{ boxes} \\ \mathsf{and} \leq n \text{ columns} \end{array} \right\}$$

Two tensor categories of perverse sheaves

$$\mathcal{P} = \bigoplus_{d \ge 1} \operatorname{Perv}_{\operatorname{GL}_d(\mathbb{C})}(\mathcal{N}_d)$$
$$\mathcal{P}^n = \bigoplus_{d \ge 1} \operatorname{Perv}_{\operatorname{GL}_d(\mathbb{C})}(\mathcal{N}_d^n)$$

The simple objects of the second category are parameterized by Young diagrams with at most n columns.

 $\ensuremath{\mathcal{P}}$ is a tensor category via parabolic induction:

if \mathcal{F} and \mathcal{G} are perverse sheaves on \mathcal{N}_a and \mathcal{N}_b , $\mathcal{F} * \mathcal{G}$ is induced from $\mathcal{F} \boxtimes \mathcal{G}$ via the block-diagonal embedding

$$\mathcal{N}_{\mathsf{a}} \times \mathcal{N}_{\mathsf{b}} \hookrightarrow \mathcal{N}_{\mathsf{a}+\mathsf{b}} \subset \mathfrak{gl}_{\mathsf{a}+\mathsf{b}}(\mathbb{C}).$$

Let $\hat{T}^n : \mathcal{P} \to \mathcal{P}^n$ be the truncation functor obtained by discarding perverse sheaves corresponding to orbits with > n columns.

Theorem (Achar-S. 2017)

There exists a monoidal structure on \mathcal{P}^n such that $\hat{T}^n : \mathcal{P} \to \mathcal{P}^n$ is monoidal.

A geometric version of Schur-Weyl duality

Let \mathcal{P}_{sky} be the subcategory of \mathcal{P} consisting of sheaves isomorphic to those obtained by parabolic induction of the skyscraper sheaf at $0 \in \mathcal{N}_{a_1} \times \cdots \times \mathcal{N}_{a_s}$ for any **a**. There is a functor $\mathcal{FSp}(\infty, \Bbbk) \to \mathcal{P}(\Bbbk)$ with essential image \mathcal{P}_{sky} .

Theorem (Achar-S. 2019)

- 1. This functor induces an equivalence $Sp(\infty, \mathbb{C}) \to \mathcal{P}_{sky}$, and hence a tensor equivalence $Kar(Sp(\infty, \mathbb{C})) \cong \mathcal{P}$.
- 2. There is a monoidal equivalence $\operatorname{Kar}(\mathcal{Sp}(m,\mathbb{C})) \to \mathcal{P}^m$ compatible with truncation of the equivalence of (1).

Remark: We conjecture that the first equivalence holds for general k if perverse sheaves are replaced by parity sheaves.

A geometric version of Schur-Weyl duality (cont.)

Let $\operatorname{Perv}^n_{\operatorname{GL}_d(\mathbb{C})}(\mathcal{N}_d,\mathbb{C})$ be the subcategory corresponding to diagrams with with at most *n* columns.

Theorem (Achar-S. 2019)

The truncation functor \hat{T}^n induces an equivalence of categories $\operatorname{Perv}^n_{\operatorname{GL}_d(\mathbb{C})}(\mathcal{N}_d,\mathbb{C}) \cong \operatorname{Perv}_{\operatorname{GL}_d(\mathbb{C})}(\mathcal{N}_d^n,\mathbb{C}).$

This is a geometric interpretation of Schur-Weyl duality.

Construction of product on \mathcal{P}^n

We first introduce some notation and some maps. Fix d, d', and let $P_{d,d'} \subset \operatorname{GL}_{d+d'}(\mathbb{C})$ be the block-upper triangular parabolic subgroup with diagonal blocks of sizes d and d'. Let $\mathfrak{p}_{d,d'} = \operatorname{Lie}(P_{d,d'})$.

$$Y_{d,d'} = \left\{ \begin{pmatrix} x & z \\ 0 & y \end{pmatrix} \mid x \in \mathcal{N}_d^n, y \in \mathcal{N}_{d'}^n, z \in \mathcal{M}_{d,d'}(\mathbb{C}) \right\} \subset \mathfrak{p}_{d,d'} \cap \mathcal{N}_{d+d'}$$

We have the following maps (all defined in the obvious way):

$$Y_{d,d'} \xrightarrow{\mu} \mathcal{R}_{d+d'}(\mathbb{C}) \times^{P_{d,d'}} Y_{d,d'} \xrightarrow{\mu} \mathcal{N}_{d+d'}$$

$$\downarrow^{\pi}_{\mathcal{N}_{d}} \times \mathcal{N}_{d'}$$

Construction of product on \mathcal{P}^n (cont.)

The product \circledast is now defined as the following composition:

$$\begin{array}{l} \operatorname{\mathsf{Perv}}_{\operatorname{\mathsf{GL}}_d(\mathbb{C})}(\mathcal{N}_d^n) \times \operatorname{\mathsf{Perv}}_{\operatorname{\mathsf{GL}}_{d'}(\mathbb{C})}(\mathcal{N}_{d'}^n) \xrightarrow{\boxtimes} \operatorname{\mathsf{Perv}}_{\operatorname{\mathsf{GL}}_d(\mathbb{C}) \times \operatorname{\mathsf{GL}}_{d'}(\mathbb{C})}(\mathcal{N}_d^n \times \mathcal{N}_{d'}^n) \\ \xrightarrow{\pi^*} \to \operatorname{\mathsf{Perv}}_P(Y) \\ \xrightarrow{\cong} \operatorname{\mathsf{Perv}}_{\operatorname{\mathsf{GL}}_{d+d'}(\mathbb{C})}(\operatorname{\mathsf{GL}}_{d+d'}(\mathbb{C}) \times^P Y) \\ \xrightarrow{\mu_*} \to \operatorname{\mathsf{Perv}}_{\operatorname{\mathsf{GL}}_{d+d'}(\mathbb{C})}(\mathcal{N}_{d+d'}) \\ \xrightarrow{\operatorname{discard}} \operatorname{\mathsf{Perv}}_{\operatorname{\mathsf{GL}}_{d+d'}(\mathbb{C})}(\mathcal{N}_{d+d'}^n). \end{array}$$

The last step throws away the simple objects corresponding to Young diagrams with more than n columns.