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Polynomial representations of GL,(C)

Reppo1(GLA(C)) C Rep(GL,(C)) cat of polynomial representations
of GL,(C)

{poly irreps} <> {Young diagrams with < n rows}

If V is an irrep, then AId € Z(GL,(C)) = C acts on V by \? for
some d € Z called the degree of V.
V is a poly irrep iff the degree is nonnegative.

{ poly irreps } - {Young diagrams with < n rows}
of degree d and d boxes

We let Reppo?(GL,(C)) denote the subcategory generated by the
irreps of degree d with d > 0.



Schur-Weyl duality
Irreducible representations of Sy are parametrized by Young
diagrams with d boxes. Thus, if n > d,

poly irreps .
{of degree d} -~ {lrreps of Sd}

More generally, there is a combinatorial identifcation between poly

irreps of degree d and the irreps of Sy corresponding to partitions

with at most n parts.

Explanation: The d-fold tensor product C" ® --- ® C" is endowed

with actions of GL,(C) and S4 which are full mutual centralizers of
each other. This implies the decomposition

C"®---®C"=)Y Vp& Wp,
D
where the sum runs over Young diagrams with d boxes and < n

boxes and Vpp (resp. Wp) is the irrep of Sy (resp. GL,(C))
corresponding to D.



The free spider category

k a field (or commutative ring)

Definition (Cautis, Kamnitzer, Morrison 2013)

The free spider category FSp(n, k) is the monoidal category with
Objects: finite sequences with a = (a1,...,as), a; € {1,...,n}
Morphisms: k-linear combinations of webs, trivalent graphs built
out of the basic morphisms

k+1 k /
//L\\ and Y
k / k+1

Composition is given by vertical concatenation.
The monoidal structure is given by horizontal juxtaposition.



A presentation of Rep,o(GL,(C)) |
Repa(GLn(k)) C Reppoi(GLs(k)) full subcat, objects iso isomorphic
to tensor prods of the fund reps A?(k") for a € {1,...,n}.
Distinguished morphisms: S = {ji,...,js},es =€, A--- A g
AK" @ APK" — ATTPK"  ec @ et — es Aer
/\aerkn N Aakn®/\bkn es — (_1)ab Z (_1)E(S\T,T)e7_®es\_’_
TCS

There is a natural functor ¥ : FSp(n,k) — Repp(GL,(k)) with
a— A(k") =N (k") @ - @ A (k"),

a+b
/j\ — N°k" @ APK" — A2TPK"
a b

a b

\(/ — APHPRM s APK" @ APK”.

a+b



The spider category

The spider category Sp(n, k) is the quotient category of FSp(n, k)
obtained by imposing the following relations and their mirror
images on the webs:

k+1
"L :[k+/} k41
k+1 ! q
k+14m k+14m
k+1 I+ m

>
3
>
3



The spider category (cont.)
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A presentation of Repyq(GL,(C)) Il

For k = C, all polynomial irreps are direct summands of objects in
Repp(GLA(C)), so Reppol(GLA(C)) = Kar(Repa(GLA(C))).

Theorem (CKM 2013)

1. The functor V induces a monoidal equivalence
Sp(n. C) = Repy(GLA(C)).
2. Reppo1(GLA(C)) = Kar(Sp(n, C)).

The proof is quite indirect and uses skew-Howe duality, i.e., the
commuting actions of GL,(C) and GL,(C) on A(C" ® C™).



The infinite spider category

We have a diagrammatic presentation of Rep(GL,(C)). Now want
a presentation for reps of symmetric groups.

Definition (Achar-S. 2019)

The free infinite spider category FSp(o0,k) is the category with
objects finite sequences of natural numbers, morphisms as in the
finite spider category but with no upper bound on the labels.

The infinite spider category Sp(oc, k) is the quotient by similar
relations to the finite case.

There are natural “truncation” functors T" : Sp(oco,k) — Sp(n, k)
obtained by quotienting out objects and morphisms involving labels
bigger than n.



Young modules

Sa =55 x - xS,
A Young module is an indecomposable summand of some

Sy,
permutation module IndsaZ "k.
» Y(S4,k) additive category generated by the Young modules

» Vir(Sq, k) full subcategory with objects Indiza" k
» V(k) = @dzl Y(S4.k)
> Vul(k) = @dzl Vir(Sa, k)
Note Y(C) = P ,>; Rep(Sa; C).
Monoidal structure on Vi (k) and Y(k): Given V and W

appropriate reps of S, and Sy, then V x W = Indgz*xbsb(v X W).



A presentation of the category of Young modules

There is a natural functor © : FSp(oco, k) — Vi (k):

Sy,
a— Indsza’ k
a

a+b
— Ind>"*. k — Ind> "k = k
SaXSb Sa+b -
a  p
a b
\(/ = k=Ind2"k — Indg il k
a+b

The distinguished morphisms are the counit and unit respectively
of the (Ind, Res) and (Res, Ind) adjoint pairs.



A presentation of the category of Young modules (cont.)

Theorem (Achar-S. 2019)

1. The functor © induces a monoidal equivalence
Sp(c0, k) = Vir(k).
2. Y(k) is monoidally equivalent to Kar(Sp(co,k)).

Key ingredient of the proof: To show that the functor is fully
faithful, one needs to show that the dimensions of corresponding
Hom-spaces are the same. We accomplish this by finding an
explicit Z-basis for the Hom-spaces in Sp(oo, Z).



A presentation of the category of tilting modules for
GL,(k)

What about a representation-theoretic interpretation of the finite
spider categories for general k?

The indecomposable summands of the objects of Repp(GL,(k))
are the indecomposable tilting modules., so

Tilt(GL,(C)) = Kar(Rep,(GL,(k))).

Similar arguments to those in the infinite case give

Theorem (Achar-S. 2019)

1. The functor V induces a monoidal equivalence
Sp(n.k) = Repp(GLA(K)).
2. Tilt(GL,(C)) = Kar(Sp(n,k)).



A version of modular Schur-Weyl duality

{indecomp tilting mods for GL,(k)} <> {Young diagrams with < n rows}

{Young modules for S4} <+ {Young diagrams with d boxes}

Let Tilt?(GL,(Kk)) (resp. Y"(Sq4,k)) be the full subcategories
generated by the tilting modules (resp. Young modules)
corresponding to partitions of d with at most n parts.

The truncation functor induces a functor from Young modules to
tilting modules:

o7 Y(k) = Kar(Sp(o0,k))) LY Kar(Sp(m,k)) = Tilt(GLn(k))
Theorem (Achar-S. 2019)

The functor ®™ induces an equivalence
V™(Sq4,k) =2 Tilt?(GLm(K))
Over C, this is the usual Schur-Weyl duality.



A nilpotent cone interpretation of Schur-Weyl duality

Let Ny denote the set of d x d nilpotent matrices.

By Jordan canonical form, each GL4(C)-orbit corresponds to a
partition of d with kth part the number of k x k Jordan blocks.

Let N7 = {x € gl4(C) | x" = 0}, the matrices with degree of
nilpotency < n.

The simple objects in PervGLd(C)(./\/'c’,’) are parameterized by the
GL4(C) orbits:

{GLd(C)—orbits in /\/'0’/’} -~ {Youngaiijg?r:sc:ll:]tntn(i boxes}



Two tensor categories of perverse sheaves

> P = @dzl PeI’VGLd(C)(Nd)
» PN = @dzl PerVGLd(C)(Nc,;)

The simple objects of the second category are parameterized by
Young diagrams with at most n columns.

‘P is a tensor category via parabolic induction:

if 7 and G are perverse sheaves on N, and N, F * G is induced
from F X G via the block-diagonal embedding

Na X Np = Nayp C g[a+b((C).

Let 7" : P — P" be the truncation functor obtained by discarding
perverse sheaves corresponding to orbits with > n columns.

Theorem (Achar-S. 2017)

There exists a monoidal structure on P" such that T": P — P" is
monoidal.



A geometric version of Schur-Weyl duality

Let Pqiy be the subcategory of P consisting of sheaves isomorphic
to those obtained by parabolic induction of the skyscraper sheaf at
0 €N, X+ x N, for any a.

There is a functor FSp(oo,k) — P(k) with essential image Py .

Theorem (Achar-S. 2019)

1. This functor induces an equivalence Sp(co,C) — Py, and
hence a tensor equivalence Kar(Sp(oo,C)) = P.

2. There is a monoidal equivalence Kar(Sp(m,C)) — P™
compatible with truncation of the equivalence of (1).

Remark: We conjecture that the first equivalence holds for general
k if perverse sheaves are replaced by parity sheaves.



A geometric version of Schur-Weyl duality (cont.)

Let Perngd(C)(Nd, C) be the subcategory corresponding to
diagrams with with at most n columns.

Theorem (Achar-S. 2019)

The truncation functor T" induces an equivalence of categories
Pervg, ,c)WNa, C) = Pervg(c) (N, C).

This is a geometric interpretation of Schur-Weyl duality.



Construction of product on P”

We first introduce some notation and some maps.

Fix d,d’, and let Py 4 C GLg4q/(C) be the block-upper triangular
parabolic subgroup with diagonal blocks of sizes d and d’.
Let Pd.dr = Lie(Pd’d/).

Yd,d’ = {(g )Z/) ‘ X € N;],y S NC';/,Z € Md,dl((C)} C pd7drﬁ/\fd+d/

We have the following maps (all defined in the obvious way):

Ya.or > GLy i (C) xPoe Yy oo~ Nyy o

T

Nd X Nd/



Construction of product on P" (cont.)

The product ® is now defined as the following composition:

Perver,(c)(Ny) x PervGLd/(c)(Ng/) 5 PervGLd(C)XGLd,(@)(J\/’J x NJ)
Pervp(Y)

Perver, () (GLayar(C) X7 Y)
i Pervar,, ,.(c)Na+ar)

discard n
— PervGLdM,(C) (Nd+dl).

NIt

The last step throws away the simple objects corresponding to
Young diagrams with more than n columns.



