Diagrammatic and geometric approaches to Schur-Weyl duality

Daniel Sage (joint with Pramod Achar)

AMS Western Sectional Meeting, November 2019

Polynomial representations of $\mathrm{GL}_{n}(\mathbb{C})$

$\operatorname{Rep}_{\mathrm{pol}}\left(\mathrm{GL}_{n}(\mathbb{C})\right) \subset \operatorname{Rep}\left(\mathrm{GL}_{n}(\mathbb{C})\right)$ cat of polynomial representations of $\mathrm{GL}_{n}(\mathbb{C})$
\{poly irreps $\} \leftrightarrow\{$ Young diagrams with $\leq n$ rows $\}$
If V is an irrep, then $\lambda \operatorname{Id} \in Z\left(\mathrm{GL}_{n}(\mathbb{C})\right) \cong \mathbb{C}$ acts on V by λ^{d} for some $d \in \mathbb{Z}$ called the degree of V.
V is a poly irrep iff the degree is nonnegative.

$$
\left\{\begin{array}{c}
\text { poly irreps } \\
\text { of degree } d
\end{array}\right\} \longleftrightarrow\left\{\begin{array}{c}
\text { Young diagrams with } \leq n \text { rows } \\
\text { and } d \text { boxes }
\end{array}\right\}
$$

We let $\operatorname{Rep}_{\text {pol }}{ }^{d}\left(G L_{n}(\mathbb{C})\right)$ denote the subcategory generated by the irreps of degree d with $d \geq 0$.

Schur-Weyl duality

Irreducible representations of S_{d} are parametrized by Young diagrams with d boxes. Thus, if $n \geq d$,

$$
\left\{\begin{array}{c}
\text { poly irreps } \\
\text { of degree } d
\end{array}\right\} \longleftrightarrow\left\{\text { irreps of } S_{d}\right\}
$$

More generally, there is a combinatorial identifcation between poly irreps of degree d and the irreps of S_{d} corresponding to partitions with at most n parts.
Explanation: The d-fold tensor product $\mathbb{C}^{n} \otimes \cdots \otimes \mathbb{C}^{n}$ is endowed with actions of $\mathrm{GL}_{n}(\mathbb{C})$ and S_{d} which are full mutual centralizers of each other. This implies the decomposition

$$
\mathbb{C}^{n} \otimes \cdots \otimes \mathbb{C}^{n}=\sum_{D} V_{D} \otimes W_{D}
$$

where the sum runs over Young diagrams with d boxes and $\leq n$ boxes and $V_{D}\left(\right.$ resp. $\left.W_{D}\right)$ is the irrep of $S_{d}\left(\right.$ resp. $\left.\mathrm{GL}_{n}(\mathbb{C})\right)$ corresponding to D .

The free spider category

\mathbb{k} a field (or commutative ring)

Definition (Cautis, Kamnitzer, Morrison 2013)

The free spider category $\mathcal{F} \mathcal{S p}(n, \mathbb{k})$ is the monoidal category with Objects: finite sequences with $\mathbf{a}=\left(a_{1}, \ldots, a_{s}\right), a_{i} \in\{1, \ldots, n\}$ Morphisms: \mathbb{k}-linear combinations of webs, trivalent graphs built out of the basic morphisms

Composition is given by vertical concatenation.
The monoidal structure is given by horizontal juxtaposition.

A presentation of $\operatorname{Rep}_{\mathrm{pol}}\left(\mathrm{GL}_{n}(\mathbb{C})\right)$ I

$\operatorname{Rep}_{\Lambda}\left(\operatorname{GL}_{n}(\mathbb{k})\right) \subset \operatorname{Rep}_{\text {pol }}\left(\mathrm{GL}_{n}(\mathbb{k})\right)$ full subcat, objects iso isomorphic to tensor prods of the fund reps $\Lambda^{a}\left(\mathbb{k}^{n}\right)$ for $a \in\{1, \ldots, n\}$.
Distinguished morphisms: $S=\left\{j_{1}, \ldots, j_{s}\right\}, e_{S}=e_{j_{1}} \wedge \cdots \wedge e_{j_{s}}$

$$
\begin{gathered}
\Lambda^{a} \mathbb{k}^{n} \otimes \Lambda^{b} \mathbb{K}^{n} \rightarrow \Lambda^{a+b_{\mathbb{k}}}{ }^{n} \quad e_{S} \otimes e_{T} \mapsto e_{S} \wedge e_{T} \\
\Lambda^{a+b_{\mathbb{K}} n} \rightarrow \Lambda^{a} \mathbb{k}^{n} \otimes \Lambda^{b} \mathbb{K}^{n} \quad e_{S} \mapsto(-1)^{a b} \sum_{T \subset S}(-1)^{\ell(S \backslash T, T)} e_{T} \otimes e_{S \backslash T}
\end{gathered}
$$

There is a natural functor $\Psi: \mathcal{F} \mathcal{S} p(n, \mathbb{k}) \rightarrow \operatorname{Rep}_{\Lambda}\left(\operatorname{GL}_{n}(\mathbb{k})\right)$ with $\mathbf{a} \mapsto \Lambda^{\mathbf{a}}\left(\mathbb{k}^{n}\right):=\Lambda^{a_{1}}\left(\mathbb{k}^{n}\right) \otimes \cdots \otimes \Lambda^{a_{s}}\left(\mathbb{k}^{n}\right)$,

The spider category

The spider category $\mathcal{S} p(n, \mathbb{k})$ is the quotient category of $\mathcal{F} \mathcal{S} p(n, \mathbb{k})$ obtained by imposing the following relations and their mirror images on the webs:

The spider category (cont.)

A presentation of $\operatorname{Rep}_{\mathrm{pol}}\left(\mathrm{GL}_{n}(\mathbb{C})\right)$ II

For $\mathbb{k}=\mathbb{C}$, all polynomial irreps are direct summands of objects in $\operatorname{Rep}_{\Lambda}\left(\operatorname{GL}_{n}(\mathbb{C})\right)$, so $\operatorname{Rep}_{\text {pol }}\left(\mathrm{GL}_{n}(\mathbb{C})\right)=\operatorname{Kar}\left(\operatorname{Rep}_{\Lambda}\left(\mathrm{GL}_{n}(\mathbb{C})\right)\right)$.

Theorem (CKM 2013)

1. The functor Ψ induces a monoidal equivalence $\mathcal{S} p(n, \mathbb{C}) \rightarrow \operatorname{Rep}_{\Lambda}\left(\mathrm{GL}_{n}(\mathbb{C})\right)$.
2. $\operatorname{Rep}_{\mathrm{pol}}\left(\mathrm{GL}_{n}(\mathbb{C})\right) \cong \operatorname{Kar}(\mathcal{S p}(n, \mathbb{C}))$.

The proof is quite indirect and uses skew-Howe duality, i.e., the commuting actions of $\mathrm{GL}_{n}(\mathbb{C})$ and $\mathrm{GL}_{m}(\mathbb{C})$ on $\Lambda\left(\mathbb{C}^{n} \otimes \mathbb{C}^{m}\right)$.

The infinite spider category

We have a diagrammatic presentation of $\operatorname{Rep}\left(\mathrm{GL}_{n}(\mathbb{C})\right)$. Now want a presentation for reps of symmetric groups.
Definition (Achar-S. 2019)
The free infinite spider category $\mathcal{F} \mathcal{S} p(\infty, \mathbb{k})$ is the category with objects finite sequences of natural numbers, morphisms as in the finite spider category but with no upper bound on the labels.
The infinite spider category $\mathcal{S p}(\infty, \mathbb{k})$ is the quotient by similar relations to the finite case.
There are natural "truncation" functors $T^{n}: \mathcal{S} p(\infty, \mathbb{k}) \rightarrow \mathcal{S} p(n, \mathbb{k})$ obtained by quotienting out objects and morphisms involving labels bigger than n.

Young modules

$S_{a}=S_{a_{1}} \times \cdots \times S_{a_{s}}$
A Young module is an indecomposable summand of some permutation module $\operatorname{Ind}_{S_{\mathrm{a}}}^{\sum_{\mathrm{a}} a_{i}} \mathbb{k}$.

- $\mathcal{Y}\left(S_{d}, \mathbb{k}\right)$ additive category generated by the Young modules
- $\mathcal{Y}_{\operatorname{tr}}\left(S_{d}, \mathbb{k}\right)$ full subcategory with objects $\operatorname{Ind} \int_{S_{\mathrm{a}}}^{S_{\sum a_{i}}} \mathbb{k}$
- $\mathcal{Y}(\mathbb{k})=\bigoplus_{d \geq 1} \mathcal{Y}\left(S_{d}, \mathbb{k}\right)$
- $\mathcal{Y}_{\operatorname{tr}}(\mathbb{k})=\bigoplus_{d \geq 1} \mathcal{Y}_{\operatorname{tr}}\left(S_{d}, \mathbb{k}\right)$

Note $\mathcal{Y}(\mathbb{C})=\bigoplus_{d \geq 1} \operatorname{Rep}\left(S_{d}, \mathbb{C}\right)$.
Monoidal structure on $\mathcal{Y}_{\operatorname{tr}}(\mathbb{k})$ and $\mathcal{Y}(\mathbb{k})$: Given V and W appropriate reps of S_{a} and S_{b}, then $V * W=\operatorname{Ind}_{S_{a} \times S_{b}}^{S_{a+b}}(V \boxtimes W)$.

A presentation of the category of Young modules

There is a natural functor $\Theta: \mathcal{F S p}(\infty, \mathbb{k}) \rightarrow \mathcal{Y}_{\mathrm{tr}}(\mathbb{k})$:

$$
\mathbf{a} \mapsto \operatorname{Ind}_{S_{\mathrm{a}}}^{\sum_{\mathrm{a}} a_{i}} \mathbb{k}
$$

The distinguished morphisms are the counit and unit respectively of the (Ind, Res) and (Res, Ind) adjoint pairs.

A presentation of the category of Young modules (cont.)

Theorem (Achar-S. 2019)

1. The functor Θ induces a monoidal equivalence $\mathcal{S p}(\infty, \mathbb{k}) \rightarrow \mathcal{Y}_{\text {tr }}(\mathbb{k})$.
2. $\mathcal{Y}(\mathbb{k})$ is monoidally equivalent to $\operatorname{Kar}(\mathcal{S p}(\infty, \mathbb{k}))$.

Key ingredient of the proof: To show that the functor is fully faithful, one needs to show that the dimensions of corresponding Hom-spaces are the same. We accomplish this by finding an explicit \mathbb{Z}-basis for the Hom-spaces in $\mathcal{S p}(\infty, \mathbb{Z})$.

A presentation of the category of tilting modules for

 $G L_{n}(\mathbb{k})$What about a representation-theoretic interpretation of the finite spider categories for general \mathbb{k} ?
The indecomposable summands of the objects of $\operatorname{Rep}_{\Lambda}\left(\operatorname{GL}_{n}(\mathbb{k})\right)$ are the indecomposable tilting modules., so
$\operatorname{Tilt}\left(\mathrm{GL}_{n}(\mathbb{C})\right)=\operatorname{Kar}\left(\operatorname{Rep}_{\Lambda}\left(\mathrm{GL}_{n}(\mathbb{k})\right)\right)$.
Similar arguments to those in the infinite case give
Theorem (Achar-S. 2019)

1. The functor Ψ induces a monoidal equivalence $\mathcal{S p}(n, \mathbb{k}) \rightarrow \operatorname{Rep}_{\Lambda}\left(\mathrm{GL}_{n}(\mathbb{k})\right)$.
2. $\operatorname{Tilt}\left(\mathrm{GL}_{n}(\mathbb{C})\right) \cong \operatorname{Kar}(\mathcal{S} p(n, \mathbb{k}))$.

A version of modular Schur-Weyl duality

$\left\{\right.$ indecomp tilting mods for $\left.\mathrm{GL}_{n}(\mathbb{k})\right\} \leftrightarrow\{$ Young diagrams with $\leq n$ rows $\}$
\{Young modules for $\left.S_{d}\right\} \leftrightarrow\{$ Young diagrams with d boxes $\}$ Let $\operatorname{Tilt}^{d}\left(\mathrm{GL}_{n}(\mathbb{k})\right)\left(\right.$ resp. $\left.\mathcal{Y}^{n}\left(S_{d}, \mathbb{k}\right)\right)$ be the full subcategories generated by the tilting modules (resp. Young modules) corresponding to partitions of d with at most n parts.
The truncation functor induces a functor from Young modules to tilting modules:
$\left.\Phi^{m}: \mathcal{Y}(\mathbb{k}) \cong \operatorname{Kar}(\mathcal{S} p(\infty, \mathbb{k}))\right) \xrightarrow{T^{m}} \operatorname{Kar}(\mathcal{S} p(m, \mathbb{k})) \cong \operatorname{Tilt}\left(\mathrm{GL}_{m}(\mathbb{k})\right)$
Theorem (Achar-S. 2019)
The functor Φ^{m} induces an equivalence $\mathcal{Y}^{m}\left(S_{d}, \mathbb{k}\right) \cong \operatorname{Tilt}^{d}\left(\mathrm{GL}_{m}(\mathbb{k})\right)$
Over \mathbb{C}, this is the usual Schur-Weyl duality.

A nilpotent cone interpretation of Schur-Weyl duality

Let \mathcal{N}_{d} denote the set of $d \times d$ nilpotent matrices.
By Jordan canonical form, each $\mathrm{GL}_{d}(\mathbb{C})$-orbit corresponds to a partition of d with k th part the number of $k \times k$ Jordan blocks.

Let $\mathcal{N}_{d}^{n}=\left\{x \in \mathfrak{g l}{ }_{d}(\mathbb{C}) \mid x^{n}=0\right\}$, the matrices with degree of nilpotency $\leq n$.

The simple objects in $\operatorname{Perv}_{\mathrm{GL}_{d}(\mathbb{C})}\left(\mathcal{N}_{d}^{n}\right)$ are parameterized by the $\mathrm{GL}_{d}(\mathbb{C})$ orbits:

$$
\left\{\mathrm{GL}_{d}(\mathbb{C}) \text {-orbits in } \mathcal{N}_{d}^{n}\right\} \longleftrightarrow\left\{\begin{array}{c}
\text { Young diagrams with } d \text { boxes } \\
\text { and } \leq n \text { columns }
\end{array}\right\}
$$

Two tensor categories of perverse sheaves

- $\mathcal{P}=\bigoplus_{d \geq 1} \operatorname{Perv}_{\mathrm{GL}_{d}(\mathbb{C})}\left(\mathcal{N}_{d}\right)$
- $\mathcal{P}^{n}=\bigoplus_{d \geq 1} \operatorname{Perv}_{G_{d}(\mathbb{C})}\left(\mathcal{N}_{d}^{n}\right)$

The simple objects of the second category are parameterized by Young diagrams with at most n columns.
\mathcal{P} is a tensor category via parabolic induction:
if \mathcal{F} and \mathcal{G} are perverse sheaves on \mathcal{N}_{a} and $\mathcal{N}_{b}, \mathcal{F} * \mathcal{G}$ is induced from $\mathcal{F} \boxtimes \mathcal{G}$ via the block-diagonal embedding
$\mathcal{N}_{a} \times \mathcal{N}_{b} \hookrightarrow \mathcal{N}_{a+b} \subset \mathfrak{g l}_{a+b}(\mathbb{C})$.
Let $\hat{T}^{n}: \mathcal{P} \rightarrow \mathcal{P}^{n}$ be the truncation functor obtained by discarding perverse sheaves corresponding to orbits with $>n$ columns.

Theorem (Achar-S. 2017)

There exists a monoidal structure on \mathcal{P}^{n} such that $\hat{T}^{n}: \mathcal{P} \rightarrow \mathcal{P}^{n}$ is monoidal.

A geometric version of Schur-Weyl duality

Let $\mathcal{P}_{\text {sky }}$ be the subcategory of \mathcal{P} consisting of sheaves isomorphic to those obtained by parabolic induction of the skyscraper sheaf at $0 \in \mathcal{N}_{a_{1}} \times \cdots \times \mathcal{N}_{a_{s}}$ for any \mathbf{a}.
There is a functor $\mathcal{F} \mathcal{S p}(\infty, \mathbb{k}) \rightarrow \mathcal{P}(\mathbb{k})$ with essential image $\mathcal{P}_{\text {sky }}$.
Theorem (Achar-S. 2019)

1. This functor induces an equivalence $\mathcal{S p}(\infty, \mathbb{C}) \rightarrow \mathcal{P}_{\text {sky }}$, and hence a tensor equivalence $\operatorname{Kar}(\mathcal{S} p(\infty, \mathbb{C})) \cong \mathcal{P}$.
2. There is a monoidal equivalence $\operatorname{Kar}(\mathcal{S p}(m, \mathbb{C})) \rightarrow \mathcal{P}^{m}$ compatible with truncation of the equivalence of (1).

Remark: We conjecture that the first equivalence holds for general \mathbb{k} if perverse sheaves are replaced by parity sheaves.

A geometric version of Schur-Weyl duality (cont.)

Let $\operatorname{Perv}_{\mathrm{GL}_{d}(\mathbb{C})}^{n}\left(\mathcal{N}_{d}, \mathbb{C}\right)$ be the subcategory corresponding to diagrams with with at most n columns.

Theorem (Achar-S. 2019)
The truncation functor \hat{T}^{n} induces an equivalence of categories $\operatorname{Perv}_{\mathrm{GL}_{d}(\mathbb{C})}^{n}\left(\mathcal{N}_{d}, \mathbb{C}\right) \cong \operatorname{Perv}_{\mathrm{GL}_{d}(\mathbb{C})}\left(\mathcal{N}_{d}^{n}, \mathbb{C}\right)$.
This is a geometric interpretation of Schur-Weyl duality.

Construction of product on \mathcal{P}^{n}

We first introduce some notation and some maps.
Fix d, d^{\prime}, and let $P_{d, d^{\prime}} \subset G L_{d+d^{\prime}}(\mathbb{C})$ be the block-upper triangular parabolic subgroup with diagonal blocks of sizes d and d^{\prime}.
Let $\mathfrak{p}_{d, d^{\prime}}=\operatorname{Lie}\left(P_{d, d^{\prime}}\right)$.

$$
Y_{d, d^{\prime}}=\left\{\left.\left(\begin{array}{ll}
x & z \\
0 & y
\end{array}\right) \right\rvert\, x \in \mathcal{N}_{d}^{n}, y \in \mathcal{N}_{d^{\prime}}^{n}, z \in \mathcal{M}_{d, d^{\prime}}(\mathbb{C})\right\} \subset \mathfrak{p}_{d, d^{\prime}} \cap \mathcal{N}_{d+d^{\prime}}
$$

We have the following maps (all defined in the obvious way):

$$
\begin{aligned}
& \quad Y_{d, d^{\prime}} \longrightarrow \mathrm{GL}_{d+d^{\prime}}(\mathbb{C}) \times{ }^{P_{d, d^{\prime}}} Y_{d, d^{\prime}} \xrightarrow{\mu} \mathcal{N}_{d+d^{\prime}} \\
& { }^{\Downarrow} \\
& \mathcal{N}_{d}
\end{aligned}
$$

Construction of product on \mathcal{P}^{n} (cont.)

The product \circledast is now defined as the following composition:

$$
\begin{aligned}
\operatorname{Perv}_{\mathrm{GL}_{d}(\mathbb{C})}\left(\mathcal{N}_{d}^{n}\right) \times \operatorname{Perv}_{\mathrm{GL}_{d^{\prime}}(\mathbb{C})}\left(\mathcal{N}_{d^{\prime}}^{n}\right) & \xrightarrow{\boxtimes} \operatorname{Perv}_{\mathrm{GL}_{d}(\mathbb{C}) \times \mathrm{GL}_{d^{\prime}}(\mathbb{C})}\left(\mathcal{N}_{d}^{n} \times \mathcal{N}_{d^{\prime}}^{n}\right) \\
& \xrightarrow{\pi^{*}} \operatorname{Perv}_{P}(Y) \\
& \xrightarrow{\simeq} \operatorname{Perv}_{\mathrm{GL}_{d+d^{\prime}}(\mathbb{C})}\left(\mathrm{GL}_{d+d^{\prime}}(\mathbb{C}) \times{ }^{P} Y\right) \\
& \xrightarrow{\mu_{*}} \operatorname{Perv}_{\mathrm{GL}_{d+d^{\prime}}(\mathbb{C})}\left(\mathcal{N}_{d+d^{\prime}}\right) \\
& \xrightarrow{\text { discard }} \operatorname{Perv}_{G L_{d+d^{\prime}}}(\mathbb{C})\left(\mathcal{N}_{d+d^{\prime}}^{n}\right) .
\end{aligned}
$$

The last step throws away the simple objects corresponding to Young diagrams with more than n columns.

