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Abstract. The classical Frobenius–Schur indicators for finite groups are char-
acter sums defined for any representation and any integer m ≥ 2. In the

familiar case m = 2, the Frobenius–Schur indicator partitions the irreducible
representations over the complex numbers into real, complex, and quaternionic
representations. In recent years, several generalizations of these invariants have

been introduced. Bump and Ginzburg, building on earlier work of Mackey,
have defined versions of these indicators which are twisted by an automor-
phism of the group. In another direction, Linchenko and Montgomery have
defined Frobenius–Schur indicators for semisimple Hopf algebras. In this pa-

per, the authors construct twisted Frobenius–Schur indicators for semisimple
Hopf algebras; these include all of the above indicators as special cases and
have similar properties.

1. Introduction

Classically, the Frobenius–Schur indicator of a character of a finite group is the
character evaluated at the sum of squares of the group elements divided by the
order of the group. This indicator was introduced by Frobenius and Schur in their
investigation of real representations. Indeed, they showed that the only possible
values for an irreducible representation are 1, 0, and −1, corresponding to the
partition of the irreducible representations into real, complex, and quaternionic
representations [FS06]. Higher order versions can be obtained by replacing squares
with other powers of group elements.

In recent years, there has been increasing interest in various generalizations of
these invariants. In one direction, Bump and Ginzburg [BG04], building on earlier
work of Mackey [Mac58] and Kawanaka and Matsuyama [KM90], have defined
versions of Frobenius–Schur indicators which are twisted by an automorphism of
the group. These indicators have applications to the study of multiplicity-free
permutation representations, models for finite groups (in the sense of [BGG76]),
and Shintani lifting of characters of finite reductive groups.

Another direction involves extending the theory from finite groups to suitable
Hopf algebras. In 2000, Linchenko and Montgomery constructed Frobenius–Schur
indicators for semisimple Hopf algebras over an algebraically closed field of char-
acteristic zero and proved that the second indicator again only takes the values 0
or ±1 on irreducible representations [LM00]. The higher indicators were further
studied by Kashina, Sommerhäuser, and Zhu, who used them to prove a version
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of Cauchy’s theorem for Hopf algebras, namely that the dimension and exponent
of a semisimple Hopf algebra have the same prime factors [KSZ06]. The second
indicators have also been used in classifying certain Hopf algebras [Kas03] and in
studying possible dimensions of representations [KSZ02]. More recently, Ng and
Schauenburg have introduced a categorical definition of Frobenius–Schur indica-
tors for pivotal categories [NS07b] and shown that the two definitions coincide
in the case of Hopf algebras [NS08]. This perspective has led to an extension
of Cauchy’s theorem to spherical fusion categories [NS07a], applications to ratio-
nal conformal field theory [Ban97, Ban00, NS07a], and some remarkable relations
between certain generalizations of these indicators and congruence subgroups of
SL2(Z) [SZ08, NS10].

The goal of this paper is to construct twisted Frobenius–Schur indicators for
semisimple Hopf algebras over an algebraically closed field of characteristic zero
that include the group and Hopf algebra indicators described above as special cases
and have similar properties. Given an automorphism of order n of such a Hopf
algebra, we define the m-th twisted Frobenius–Schur indicator for m any positive
multiple of n. This definition is given in Section 2. In the next section, we show
that the m-th twisted Frobenius–Schur indicator can be realized as the trace of
an endomorphism of order m (Theorem 3.5), so that the indicator is a cyclotomic
integer. In Section 4, we consider the case of automorphisms of order at most two.
We show that the second twisted Frobenius–Schur indicator gives rise to a partition
of the simple modules into three classes; this partition involves the relationship
between the module and its “twisted dual” (Theorem 4.3). In the final section, we
compute a closed formula for the twisted indicator of the regular representation
(Theorem 5.1).

2. Definition

Let k be an algebraically closed field of characteristic 0, and letH be a semisimple
Hopf algebra over k with comultiplication ∆, counit ε, and antipode S. The Hopf
algebra H contains a unique two-sided integral Λ normalized so that ε(Λ) = 1.
We will use the usual Sweedler notation for iterated comultiplication: ∆m−1(Λ) =∑

(Λ) Λ1 ⊗ Λ2 ⊗ · · · ⊗ Λm. Let Rep(H) be the category of finite-dimensional left

H-modules. All H-modules considered will be objects in Rep(H). Throughout the
paper, an automorphism of H will always refer to a Hopf algebra automorphism
(or equivalently, a bialgebra automorphism). In particular, such an automorphism
commutes with the antipode.

We are now ready to define the twisted indicators. Let τ be an automorphism
of H such that τm = Id for some m ∈ N. Let (V, ρ) be an H-module with
corresponding character χ.

Definition 2.1. The m-th twisted Frobenius–Schur indicator of (V, ρ) (or χ) is
defined to be the character sum

(2.1) νm(χ, τ) =
∑
(Λ)

χ
(
Λ1τ (Λ2) · · · τm−1 (Λm)

)
.

We note that this is only defined for m divisible by the order of τ . We will write
ν̃m(χ) instead of νm(χ, τ) when this does not cause confusion.

If τ = Id, this formula coincides with the definition of Linchenko and Mont-
gomery [LM00]. Moreover, suppose H = k[G] for a finite group G. In this case,
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Λ =
1

|G|
∑
g∈G g, and we recover Bump and Ginzburg’s twisted Frobenius–Schur

indicators for groups [BG04].

3. A trace formula

In this section, we realize ν̃m(χ) as the trace of an endomorphism of order m and
use this fact to show that the twisted Frobenius–Schur indicators are cyclotomic
integers.

We begin by introducing a twisting functor Fτ : Rep(H) → Rep(H). Given
an H-module V , we set Fτ (V ) = V as vector spaces with H-action defined by
h · v = τ(h)v. Furthermore, if f : V → W is a morphism of H-modules, then
f : Fτ (V ) → Fτ (W ) is also an H-map; we set Fτ (f) = f . The functor Fτ
preserves the trivial module, tensor products, and duals:

(3.1) Fτ (k) = k,Fτ (V ⊗W ) = Fτ (V )⊗Fτ (W ), and Fτ (V ∗) = Fτ (V )∗

for all V,W ∈ Rep(H). In other words, Fτ is a strict, rigid, k-linear endomorphism
of Rep(H). Moreover, if σ is another automorphism of H, then Fστ = FτFσ, so
Fτ is in fact an automorphism.

Let Autsr(Rep(H)) denote the group of strict, rigid, k-linear automorphisms of
Rep(H). Summing up, we obtain

Proposition 3.1. The map τ 7→ Fτ is an anti-homomorphism Aut(H) → Autsr(Rep(H)).
In particular, if τm = Id, then Fm

τ = Id.

Let (Ṽ ⊗m, ρ̃m) be the H-module

(3.2) Ṽ ⊗m = V ⊗Fτ (V )⊗ (Fτ (V ))
2 ⊗ · · · ⊗ (Fτ (V ))

m−1
.

To be explicit, Ṽ ⊗m has underlying vector space V ⊗m and action given by

ρ̃m (h) (v1 ⊗ v2 ⊗ · · · ⊗ vm) =
∑
(h)

ρ (h1) v1 ⊗ ρ (τ (h2)) v2 ⊗ · · · ⊗ ρ
(
τm−1 (hm)

)
vm.

Let α : V ⊗m → V ⊗m be the linear map defined by

α (v1 ⊗ v2 ⊗ · · · ⊗ vm) = v2 ⊗ · · · ⊗ vm ⊗ v1.

Lemma 3.2.

ν̃m(χ) = trV ⊗m

(
α ◦ ρ̃m (Λ)

)
.

Proof.

ν̃m(χ) =
∑
(Λ)

χ
(
Λ1τ (Λ2) · · · τm−1 (Λm)

)
=

∑
(Λ)

trV
(
ρ (Λ1) ρ (τ (Λ2)) · · · ρ

(
τm−1 (Λm)

))
= trV ⊗m

(
α ◦

(
ρ⊗ ρτ ⊗ · · · ⊗ ρ

(
τm−1

))
Λ
)

= trV ⊗m

(
α ◦ ρ̃m (Λ)

)
.

The third equality uses [KSZ02, Lemma 2.3]. �
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It is well known that the integral Λ in H is cocommutative, i.e.,

∆ (Λ) =
∑
(Λ)

Λ1 ⊗ Λ2 =
∑
(Λ)

Λ2 ⊗ Λ1.

More generally, ∆m(Λ) is invariant under cyclic permutations:

(3.3) ∆m (Λ) =
∑
(Λ)

Λ1 ⊗ Λ2 ⊗ · · · ⊗ Λm+1 =
∑
(Λ)

Λ2 ⊗ · · · ⊗ Λm ⊗ Λm+1 ⊗ Λ1.

Note that if σ is an automorphism of H, then σ(Λ) = Λ.

Lemma 3.3.∑
(Λ)

Λ1 ⊗ τ (Λ2)⊗ · · · ⊗ τm−1 (Λm) =
∑
(Λ)

τ (Λ2)⊗ · · · ⊗ τm−1 (Λm)⊗ Λ1.

Proof. By the previous corollary, ∆m−1 (Λ) = ∆m−1
(
τm−1(Λ)

)
. Since τm−1 is a

coalgebra morphism, we get∑
(Λ)

Λ1 ⊗ · · · ⊗ Λm =
∑
(Λ)

τ−1(Λ)1 ⊗ · · · ⊗ τ−1(Λ)m

=
∑
(Λ)

τ−1(Λ1)⊗ · · · ⊗ τ−1(Λm).

Combining this equation with (3.3) gives

∑
(Λ)

Λ2 ⊗ Λ3 ⊗ · · · ⊗ Λm ⊗ Λ1 =
∑
(Λ)

τ−1(Λ1)⊗ τ−1(Λ2)⊗ · · · ⊗ τ−1(Λm).

Applying
(
τ ⊗ τ2 ⊗ · · · ⊗ τm

)
, we obtain

∑
(Λ)

τ (Λ2)⊗ · · · ⊗ τm−1 (Λm)⊗ Λ1 =
∑
(Λ)

Λ1 ⊗ τ(Λ2) · · · ⊗ τm−1(Λm),

as desired. �

It is well-known that the action of Λ on an H-module W gives a projection onto

its invariants. Let π : Ṽ ⊗m →
(
Ṽ ⊗m

)H
defined by π(w) = Λ ·w be this projection

for W = Ṽ ⊗m.

Proposition 3.4. The linear automorphism α restricts to an automorphism of(
Ṽ ⊗m

)H
.

Proof. It is enough to show that (π ◦ α) (w) = (α ◦ π) (w) for w = v1 ⊗ · · · ⊗ vm.
Computing gives

(π ◦ α) (w) = (π ◦ α)(v1 ⊗ · · · ⊗ vm)

= π (v2 ⊗ · · · ⊗ vm ⊗ v1)

=
∑
(Λ)

ρ (Λ1) v2 ⊗ ρ (τ(Λ2)) v3 ⊗ · · · ⊗ ρ
(
τm−1(Λm)

)
v1,

and
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(α ◦ π) (v) = α (Λ · (v1 ⊗ · · · ⊗ vm))

= α

∑
(Λ)

ρ(Λ1)v1 ⊗ ρ(τ(Λ2))v2 ⊗ · · · ⊗ ρ(τm−1(Λm))vm


=

∑
(Λ)

ρ(τ(Λ2))v2 ⊗ · · · ⊗ ρ(τm−1(Λm))vm ⊗ ρ(Λ1)v1.

By Lemma 3.3, these two expressions are equal. �

Theorem 3.5. For any V ∈ Rep(H) with character χ, the m-th twisted Frobenius–
Schur indicator satisfies

ν̃m (χ) = tr

(
α|(

Ṽ ⊗m
)H

)
.

Proof. By Proposition 3.4, the image of α is contained in
(
Ṽ ⊗m

)H
. Moreover, its

restriction to
(
Ṽ ⊗m

)H
coincides with the restriction of α. The result now follows

by Lemma 3.2. �

Corollary 3.6. Let ζm be a primitive m-th root of 1, then

ν̃m (χ) ∈ Z [ζm] .

Proof. The operator α is of order m, so its eigenvalues are m-th roots of unity.
It is now immediate from the theorem that the twisted indicators are cyclotomic
integers. �

As we will see below, when m = 2, the twisted Frobenius–Schur indicators are
actually in Z.

4. Twisted second Frobenius–Schur indicators

In this section, we will show that the second twisted Frobenius–Schur indicator
gives rise to a partition of the irreducible H-modules into three classes, depending
on the relationship between the module and its twisted dual. We also compute the
indicators for all automorphisms of H8–the smallest semisimple Hopf algebra that
is neither commutative nor cocommutative.

4.1. Twisted duals and the partition of the simple modules. Let τ be an
automorphism such that τ2 = Id. We will let T = τS denote the corresponding
anti-involution. Note that TS = ST . Let (V, ρ) be a finite-dimensional H-module
with character χ. Using (2.1) for m = 2, we have

ν̃2(χ) =
∑
(Λ)

χ (Λ1TS(Λ2)) .

Definition 4.1. The twisted duality functor (−)† : Rep(H) → Rep(H) is the
composition of Fτ and the duality functor.
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In other words, V † is the dual space V ∗ equipped with the H-module structure
given by

(h · f)(v) = f(T (h) · v),
for all h ∈ H, f ∈ V ∗ and v ∈ V . If f : V → W is an H-map, then f† : W † → V †

is just the usual dual map.

Lemma 4.2. There is an equality of functors (−)†† = (−)∗∗. In particular, (−)†

is an involutory auto-equivalence of Rep(H).

Proof. Equation (3.1) implies

V †† = Fτ ((Fτ (V ∗))∗) = F2
τ (V

∗∗) = V ∗∗

for any module V . It is immediate that f†† = f∗∗ for any H-map f . �

The lemma shows that the usual evaluation map Ψ : V → V †† given by Ψ(v)(f) =
f(v) is a canonical isomorphism of H-modules. We now define the transpose endo-
morphism on Hom(V †, V ) via f 7→ Ψ−1 ◦ f†. (Since Hom(V †, V ) and Hom(V ∗, V )
share the same underlying vector space, this is just the usual transpose.) In gen-
eral, transposition is not H-linear. However, it is immediate that it restricts to give
an endomorphism of HomH(V †, V ). In particular, we can consider symmetric and
skew-symmetric H-maps V † → V :

SymH(V †, V ) =
{
f ∈ HomH(V †, V )|f t = f

}
and

AltH(V †, V ) =
{
f ∈ HomH(V †, V )|f t = −f

}
.

We can now state the main theorem of this section.

Theorem 4.3. Let V be an irreducible representation with character χ. Then the
following properties hold:

(1) ν̃2(χ) = 0, 1, or −1,∀χ ∈ Irr(H).
(2) ν̃2(χ) 6= 0 if and only if V ∼= V †. Moreover, ν̃2(χ) = 1 (resp. −1) if and

only if there is a symmetric (resp. skew-symmetric) nonzero intertwining
map V → V †.

Remark 4.4. This result is well-known in two special cases. If we let T = S (i.e., τ =
Id), then we recover Theorem 3.1 in [LM00]. On the other hand, when H is a group
algebra, this is a theorem of Sharp [Sha60] and Kawanaka and Matsuyama [KM90].
See also [KS08].

We will provide some preliminary results before proving the theorem.

There is a canonical H-isomorphism Q : Ṽ ⊗2 → Hom(V †, V ) given by

Ṽ ⊗2 = V ⊗Fτ (V )

∼= V ⊗Fτ (V )∗∗

∼= Hom(Fτ (V )∗, V )

= Hom(V †, V ).

As a linear map, Q is just the usual isomorphism V ⊗ V → Hom(V ∗, V ) with
Q(v ⊗ w)(φ) = φ(w)v for v, w ∈ V and φ ∈ V ∗. Thus, Q ◦ α = (−)t ◦ Q. Taking
H-invariants and applying Proposition 3.4, we obtain the following lemma.
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Lemma 4.5. There is a commutative diagram of H-maps

HomH(V †, V ) HomH(V †, V )

(Ṽ ⊗2)H (Ṽ ⊗2)H

-(−)t

6
Q

-α

6
Q

Let β be the restriction of the transpose map to HomH(V †, V ). The lemma says
that β is a conjugate of α|(

Ṽ ⊗m
)H . Since β2 = Id, the eigenspace decomposition of

β gives

(4.1) HomH(V †, V ) = SymH(V †, V )⊕AltH(V †, V ).

Proposition 4.6. Let V be an H-module. Then,

ν̃2 (χ) = dimSymH(V †, V )− dimAltH(V †, V ).

Proof. By (4.1), the right side of this equation is tr(β). The assertion follows since
ν̃2 (χ) = tr(β) by Theorem 3.5 and Lemma 4.5. �

Remark 4.7. The standard decomposition of Hom(V †, V ) into symmetric and skew-
symmetric linear maps is not necessarily an H-decomposition. In fact, even when
τ = Id, one need not get an H-decomposition unless H is cocommutative.

Proof of Theorem 4.3. Since V is simple, it follows from Lemma 4.2 that V † is also
simple. By Schur’s lemma, dimHomH(V †, V ) ≤ 1. If V † � V , then dimHomH(V †, V ) =

0, so ν̃2 (χ) = 0 by Proposition 4.6. Otherwise, V † ∼= V , and Proposition 4.6 shows
that ν̃2 (χ) equals 1 or −1 depending on the parity of any such isomorphism. �

Remark 4.8. One can also prove Theorem 4.3 using the orthogonality relations
for irreducible characters instead of Theorem 3.5. Recall that if the irreducible
characters of H are given by χ1, . . . , χn, then∑

(Λ)

χi (Λ1)χj (S (Λ2)) = δij .

(This is the dual statement of Theorem 7.5.6 in [DNR00].) Given a module (V, ρ),
the twisted dual (V †, ρ̃) satisfies ρ̃(h) = ρ(T (h))t. Using this, one computes

ν̃2 (χ) =
∑
m,m′

∑
(Λ)

ρ(Λ1)mm′ ρ̃(S(Λ2))mm′ .

Now, assume that V is simple. If V 6∼= V †, then this expression is 0 by the orthog-
onality relations. Otherwise, there exists a nonzero intertwiner ϕ ∈ HomH(V †, V ),
so that ρ̃(h) = ϕ−1ρ(h)ϕ; moreover, ϕ is symmetric or skew-symmetric. A calcu-
lation using the orthogonality relations for matrix elements given in [Lar71] shows
that the above expression reduces to the parity of ϕ.

4.2. The second twisted Frobenius–Schur indicators for H8. The smallest
semisimple Hopf algebra which is neither commutative nor cocommutative has di-
mension 8. We denote it by H8. As an algebra, H8 is generated by elements x, y
and z, with relations:

x2 = y2 = 1, z2 =
1

2
(1 + x+ y − xy) , xy = yx, xz = zy, and yz = zx.
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1 x y xy z xz yz xyz

χ1 1 1 1 1 1 1 1 1
χ2 1 1 1 1 −1 −1 −1 −1
χ3 1 −1 −1 1 i −i −i i
χ4 1 −1 −1 1 −i i i −i
χ5 2 0 0 −2 0 0 0 0

Table 1. Characters for the irreducible representations of H8

1 x y z

τ1 = Id 1 x y z
τ2 1 x y xyz
τ3 1 y x 1

2 (z + xz + yz − xyz)
τ4 1 y x 1

2 (−z + xz + yz + xyz)

Table 2. Automorphisms of H8

The coalgebra structure of H8 is given by the following:

∆(x) = x⊗ x, ε(x) = 1, and S(x) = x,

∆(y) = y ⊗ y, ε(y) = 1, and S(y) = y,

∆(z) =
1

2
(1⊗ 1 + 1⊗ x+ y ⊗ 1− y ⊗ x) (z ⊗ z) ,

ε(z) = 1, and S(z) = z.

The normalized integral is given by

Λ =
1

8
(1 + x+ y + xy + z + xz + yz + xyz) .

This Hopf algebra was first introduced by Kac and Paljutkin [KP66] and revisited
later by Masuoka [Mas95].

The Hopf algebra H8 has 4 one-dimensional representations and a single two-
dimensional simple module. The characters for the irreducible representations of
H8 are listed in Table 1.

The automorphism group of H8 is the Klein four-group. These automorphisms
are given in Table 2.

All four automorphisms satisfy τ2 = Id, so the second twisted Frobenius–Schur
indicator is defined for all of them. These indicators are given in Table 3.
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χ1 χ2 χ3 χ4 χ5

ν2 (χ, τ1) = ν2(χ) 1 1 1 1 1
ν2 (χ, τ2) 1 1 1 1 1
ν2 (χ, τ3) 1 1 0 0 1
ν2 (χ, τ4) 1 1 0 0 −1

Table 3. Twisted Frobenius–Schur indicators for H8

5. The regular representation

We now return to the general case. In this section, we realize the twisted
Frobenius–Schur indicators of the regular representation as the trace of an ex-
plicit linear endomorphism of H. Let χR denote the character of the left regular
representation.

Let Ωτm : H → H be the linear map defined by

Ωτm(h) =
∑
(h)

S
(
τm−1(h1)τ

m−2(h2) · · · τ2(hm−2)τ(hm−1)
)
.

Theorem 5.1. The m-th twisted Frobenius–Schur indicator of the regular repre-
sentation satisfies

ν̃m(χR) = tr(Ωτm).

We will need two lemmas.

Lemma 5.2. For any h1, . . . , hm−1 ∈ H,∑
(Λ)

Λ1h
1 ⊗ τ (Λ2)h

2 ⊗ · · · ⊗ τm−2(Λm−1)h
m−1 ⊗ τm−1(Λm)

=
∑
(Λ)

Λ1 ⊗ τ(Λ2S(h
1
m−1))h

2 ⊗ · · · ⊗ τm−2(Λm−1S(h
1
2))h

m−1 ⊗ τm−1(ΛmS(h
1
1)).

Proof. By [LR88, Lemma 1.2(b)], we have∑
(Λ)

Λ1h
1 ⊗ Λ2 =

∑
(Λ)

Λ1 ⊗ Λ2S(h
1).

Applying Id⊗∆m−1 to both sides, we get∑
(Λ)

Λ1h
1 ⊗ Λ2 ⊗ · · · ⊗ Λm−1 ⊗ Λm

=
∑
(Λ)

Λ1 ⊗ Λ2S(h
1
m−1)⊗ Λ2S(h

1
m−2)⊗ · · · ⊗ Λm−1S(h

1
2)⊗ ΛmS(h

1
1).

We then apply Id⊗τ ⊗ τ2 ⊗ · · · ⊗ τm−1 to get∑
(Λ)

Λ1h
1 ⊗ τ(Λ2)⊗ · · · τm−2(Λm−1)⊗ τm−1(Λm)

=
∑
(Λ)

Λ1 ⊗ τ(Λ2S(h
1
m−1))⊗ · · · ⊗ τm−2(Λm−1S(h

1
2))⊗ τm−1(ΛmS(h

1
1)).

The lemma follows by right multiplying this equation by h1⊗h2⊗· · ·⊗hm−1⊗1. �
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Next, define a linear map ψ : H̃⊗(m−1) → H̃⊗(m−1) by

ψ
(
h1 ⊗ h2 ⊗ · · · ⊗ hm−1

)
=

∑
(h1)

τ(S(h1m−1))h
2 ⊗ τ2(S(h1m−2))h

3 ⊗ · · · ⊗ τm−2(S(h12))h
m−1 ⊗ τm−1(S(h11)).

Lemma 5.3.

tr(ψ) = tr

(
α|(

Ṽ ⊗m
)H

)
.

Proof. To prove the lemma, it suffices to find a linear isomorphism

ϕ : H̃⊗(m−1) →
(
H ⊗ H̃⊗(m−1)

)H
making the diagram

H̃⊗(m−1) H̃⊗(m−1)

(
H ⊗ H̃⊗(m−1)

)H (
H ⊗ H̃⊗(m−1)

)H?

ϕ

-ψ

?

ϕ

-
α

commute. Recall that for any H-module W , there is a linear isomorphism W →
(H ⊗W )H given by w 7→

∑
(Λ) Λ1 ⊗ Λ2w. Let ϕ be this isomorphism for W =

H̃⊗(m−1).
Calculating gives

(α ◦ ϕ)
(
h1 ⊗ h2 ⊗ · · · ⊗ hm−1

)
=

∑
(Λ)

τ(Λ2)h
1 ⊗ τ2(Λ3)h

2 · · · ⊗ τm−1(Λm)hm−1 ⊗ Λ1

=
∑
(Λ)

Λ1h
1 ⊗ τ(Λ2)h

2 · · · ⊗ τm−2(Λm−1)h
m−1 ⊗ τm−1(Λm)

=
∑
(Λ)

Λ1 ⊗ τ(Λ2S(h
1
m−1))h

2 ⊗ · · · ⊗ τm−2(Λm−1S(h
1
2))h

m−1 ⊗ τm−1(ΛmS(h
1
1))

=
∑
(Λ)

Λ1 ⊗ τ(Λ2)τ(S(h
1
m−1))h

2 ⊗ · · ·⊗

τm−2(Λm−1)τ
m−2(S(h12))h

m−1 ⊗ τm−1(Λm)τm−1(S(h11))

= (ϕ ◦ ψ)
(
h1 ⊗ h2 ⊗ · · · ⊗ hm−1

)
.

Here, the second and third equalities use Lemmas 3.3 and 5.2 respectively. �

Proof of Theorem 5.1. By the previous lemma, we need only show that tr(ψ) =
tr(Ωτm). Choose a basis b1, · · · bn ∈ H with dual basis b∗1, · · · b∗n ∈ H∗. Writing out
tr(ψ) in terms of the induced basis on H⊗m, we obtain
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Ωτ12 Ωτ22 Ωτ32 Ωτ42
1 1 1 1 1
x x x y y
y y y x x
xy xy xy xy xy
z z xyz 1

2 (z + xz + yz − xyz) 1
2 (−z + xz + yz + xyz)

xz yz xz 1
2 (z + xz − yz + xyz) 1

2 (z − xz + yz + xyz)
yz xz yz 1

2 (z − xz + yz + xyz) 1
2 (z + xz − yz + xyz)

xyz xyz z 1
2 (−z + xz + yz + xyz) 1

2 (z + xz + yz − xyz)

Table 4. The linear maps Ωτ2 for H8

tr (ψ) =
n∑

i1,··· ,im−1=1

〈
b∗i1 ⊗ · · · ⊗ b∗im−1

, ψ
(
bi1 ⊗ · · · ⊗ bim−1

)〉
=

n∑
i1,··· ,im−1=1

b∗i1(τ(S(b
i1
m−1))b

i2)b∗i2(τ
2(S(bi1m−2))b

i3) · · ·

b∗im−2
(τm−2(S(bi12 ))bim−1)b∗im−1(τ

m−1(S(bi11 )))

=
n∑

i1,··· ,im−2=1

b∗i1(τ(S(b
i1
m−1))b

i2)b∗i2(τ
2(S(bi1m−2))b

i3) · · ·

b∗im−2

(
τm−2(S(bi12 ))τm−1(S(bi11 ))

)
= · · · =

n∑
i1=1

b∗i1
(
τ(S(bi1m−1))τ

2(S(bi1m−2)) · · · τm−2(S(bi12 ))τm−1(S(bi11 ))
)

=
n∑
i=1

b∗i
(
τ(S(bim−1))τ

2(S(bim−2)) · · · τm−2(S(bi2))τ
m−1(S(bi1))

)
=

n∑
i=1

b∗i
(
S(τ(bim−1))S(τ

2(bim−2)) · · ·S(τm−2(bi2))S(τ
m−1(bi1))

)
=

n∑
i=1

b∗i
(
S(τm−1(bi1)τ

m−2(bi2)) · · · τ2(bim−2)τ(b
i
m−1)

)
= tr (Ωτm) ,

as desired. �

Example 5.4. We revisit the Hopf algebra H8 described in Section 4.2. The
linear maps Ωτ2 from Theorem 5.1 are given in Table 4. Computing the traces,
one obtains the twisted Frobenius–Schur indicators for the regular representation:
ν2(χR, τ1) = 6, ν2(χR, τ2) = 6, ν2(χR, τ3) = 4, and ν2(χR, τ4) = 0. These can, of
course, also be calculated from the information in Table 3.
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