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19. If T: H — H is any bounded linear operator on the Hilbert space H, show that
T*T and TT* are self-adjoint.

20. Show that if T is normal, then A] — T is normal for all complex numbers A.

21. Let L = ,lim L, and L, be bounded linear operators on a Hilbert space H.
(a) Show that if L, is self-adjoint for all n, then L is seif-adjoint. {Hint: Study

Theorem 5.23.4.]
(b) Show that if L, is normal for all », then L is normal. [Hint: Study Theorem

5.23.12.]
22. Do the relationships 4 < B or A < B define a partial ordering (refer to Appen-
dix C) on the collection of all self-adjointed operators on a Hilbert space H?

Is it ever a total ordering?
23, Let ¢ be a random variable with range in a Hilbert space H and such that
E(|l€]» < 0. Define the covariance operator A by
E((x,)(,) = (4x.),
where x, y € H. Show that 4 is a bounded, positive, self-adjoint linear operator.
24. Calculate | A}, where

® A= 2 ;],

a d f
(b)A=[d b e],
e ¢

when the entries are all real.
25. Let A be a self-adjoint operator on a Hilbert space H, and let
_ A v @4y
U=e ,.;o g
(a) Show that U is a unitary operator.
(b) Show that U" = ¢™ for every integer n.
26.12 Let A be a bounded self-adjoint operator on a Hilbert space H and let
® (itA)"
U=¢é“=Y (i) .

n=0 n!

(a) Show that for each real number ¢, U, is a unitary operator.

(b) Show that U, U, = U,.,,.

(c) Show that the mapping ¢ — U, is continuous, where the space of operators
has the usual operator norm.

(d) Discuss the meaning of the equality
~1
Wl Yty
dt ;=0 =0

in terms of topologies on the space of operators. (See Section 8.)

9In this exercise, one constructs a continuous group U, of unitary operators in terms of a given
self-adjoint operator 4. It is possible to turn this around, that is, given the continuous group U, of
-unitary operators one can construct the “infinitesimal generator” 4 by means of dU,/dt =iAU,, and
show that U, = e", see Dunford and Schwartz [1].
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27. (Scattering operators.) Let 4 and B be two bounded linear self-adjoint opera-
tors on a separable Hilbert space H. Define U, and ¥, by U, =e™ "4 and
V, = e~ "B, Assume that the limits
lim V*U,x=x_=Q_x

t—+
and
lim V*U,x=x, =Q.x
t——w
exist for each x € H. Let R, denote the range of Q, and assume that R, = R_.
The scattering operators are defined by

S=0Q_*Q,
and

T=0,Q._%*
(Compare with Jauch [1].) The object here is to show that S is a unitary
operator.

(a) Show that |Q; x| = ||x|| and that |Q.*x| = |x| for all x e H. (Explain
why this fact alone does not show that S and T are unitary.)

(b) Show that Q. *Q, =Tand Q_*Q_ =1,

(c) Show that Q. Q,*=Q_Q_* = P, where P is the orthogonal projection
ontoR, =R_.

(d) Show that SS* = §*S=1.

(e) Show that TT* =T*T=P.

. 28. Let y = Kx be a positive self-adjoint operator on L,[a,b] that is given by

¥(#) = [ k(t,7)x(7) dr, where k(z,7) is real-valued and continuous.

(a) Show that k(t,f) >0fora<:<b.

(b) Show that the converse need not be true. That is, construct a kernel
k(t,7) that satisfies k(z,t) 2 0 for @ < t < b such that the corresponding
operator X is self-adjoint but not positive.

24. COMPACT OPERATORS

The compact operators form another important class of linear operators. As
we shall see below they are operators with finite- or, in a meaningful sense, almost
finite-dimensional ranges. They are neither included in nor include the class of
normal operators or, for that matter, the class of self-adjoint operators. The situa-
tion (for infinite-dimensional spaces) is illustrated in Figure 5.24.1. As we shall see
in the next chapter, operators that are both normal and compact yield about the
closest thing to a finite-dimensional structure that one can have on an infinite-
dimensional space.

Since the elementary properties of compact operators are not dependent on the
presence of an inner product, we shall abandon Hilbert space structure for this
section and return to Banach spaces.?°

20 Compact operators can be defined on normed linear spaces, but many results require complete-
ness, so we just assume it at the outset,

o f o DT L
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5.24. COMPACT OPERATORS 381

5.24.4 THEOREM. Let L: X — Y be a compact linear transformation, where
X and Y are Banach spaces. Then given any ¢ > 0, there exists a finite-dimensional
subspace M of B(L) such that

inf{llLx —m| . me M} < ¢|x|.

In other words, the finite-dimensional subspace M comes within ¢ (in the above
sense) of being the range of L. Presumably, the smaller ¢ is, the larger the dimension
of M must be.

Proof: Lete > 0 be given. Since L(D) is contained in a compact set, where D
is the closed unit ball in X, there is an e-net in Z(L) N L(D). Let M be the linear
subspace of Y generated by this e-net. It follows that M is finite dimensional.
Moreover, dist(Lz,M) < ¢ for all z e D. Then if x is any point in X it follows that

5.24.1 DeFINITION. Let X and Y be two Banach spacesandletL: X — Ybea
linear transformation. L is said to be compact>! if L(D) lies in a compact subset of
Y, where D = {xe X |x|| < 1}.

The following theorem states that a compact operator is continuous; however,
there are plenty of continuous operators that are not compact. For example, con-
sider the identity mapping I on any infinite-dimensional space.

5.24.2 THEOREM. Let L: X— Y be a compact linear transformation of a
Banach space X into a Banach space Y. Then L is continuous.

Proof: The validity of this theorem follows almost immediately from Defini-
tion 5.24.1. Since L(D) lies in a compact set, it is totally bounded, hence bounded
(Lemma 3.16.3). That is, there exists an M < oo such that sup{||x|: x e L(D)} < M.
It follows that [|Lx|| < M| x| for all x € X; therefore, L is bounded (that is, con-
tinuous). |

An important example of a compact operator is described in the next theorem.

5.24.3 THEOREM. Let L: X — Y be a linear operator where the range R(L) is
finite-dimensional. Then L is compact.

Proof: By Theorem 5.10.7 we see that the unit ball in #(L) is compact.
Therefore a ball of any radius is compact, from which it is easily seen that L is
compact (Compare with Example 3, Section 10.) |

As we said, any compact operator comes close to having a finite-dimensional
range.

21 Some authors use the phrase “‘ completely continuous ** instead.

inf{”L——m”:meM}Se

so
inf{||Lx —m'|}: m e M} < g|x||,

where m' = | x|im. |}

The following theorem presents a number of equivalent formulations for com-
pactness of an operator.

5.24.5 THEOREM. Let L: X+ Y be a linear operator, where X and Y are
Banach spaces. Then the following statements are equivalent:

(a) L is compact.

(b) If B is any bounded set in X, then L(B) lies in a compact subset of Y.

(c) If B is any bounded set in X, then L(B) lies in a sequentially compact subset
of Y.

(d) If {x,} is any bounded sequence in X, then {Lx,} contains a convergent
subsequence in Y.

(e) If B is any bounded set in X, then L(B) is a totally bounded set in Y.

Proof: Since the equivalence of (b), (¢), (d), and (e) follows from the charac-
terization of compactness in Section 3.17, we shall prove only that (a) < (b).
It is obvious that (b)=>(a). Let us show that (a) = (b). Let B be any bounded
set in X. Then there is a real number k& > 0 such that

lx =0 = |x] <k, for all x e B.
Let D= {xe X: ||x]| < 1}. Then B < kD, where
kD={kxe X: x| <1} ={xe X: |x| <k}

Since L(B) < L(k.D) = kL(D) and since L(kD) = kL(D), it follows that L(kD) lies
in a compact set in Y. Hence, L(B) lies in a compact setin ¥. |
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Let us now consider some examples of compact and noncompact operators.
ExampLE 1. Let @y, ..., ¢,, ¥, ..., ¥, be elements of L,(I) and let
n
k(t,s) = izlo‘i ¢LOY(s),
where the «,’s are scalars. Define y = Kx by

(o) = fI k(t,5)x(s) ds.

Since every point y in #(K) is given by
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If fis not continuous, then for some integer # the set
1
A= {61501 25

has positive measure. For this z, let « = 1/nand let J be a subset of 4, with measure
B > 0. One can then repeat the above argument and show that Fis not compact. ||

ExaMPLE4, Let H = /,, and let K denote the linear transformation of H into
itself defined by

d*&‘i I TR

Yn = Oy Xy, n=1323 3:-'-’ - ‘

-3 where y = Kx, x = {X,X3,X3,.-.}» ¥ = {J1,¥2 Y3, - -}, and the a,’s are §qalars.

)= i;ﬁ' 0, We claim that K is compact if and only if the «,’s satisfy the condition ‘

where §; = a; j, W (8)x(s) ds, we see that 2(K) has dimension less than or equal to . lim || = O.  (5.24.2) J;B
n-+o0 E

Hence X iscompact.

ExAMPLE 2. Every linear operator defined on a finite-dimensional normed
linear space is compact. |

ExAMPLE 3. Consider the multiplication operator

F: x(t) > f(O)x(t)

on L,(I), where f is a bounded measurable function. We have seen elsewhere
(Example 2, Section 7) that F is a bounded linear operator and |F| < ||/ [l - We
will now show that Fis compact if and only if f(¢) = 0 almost everywhere, that is,
I/l = £ = 0.

It is clear that | f||, = O implies that F is the zero operator and, therefore,
compact. Going the other way now, assume on the contrary that | f|,, # 0.

If fis continuous, then there are positive numbers «, 8 such that

lfMOlza, tel, (5.24.1)

where J is an interval of length B.
If x e L,(I) and x(t) = O for ¢ ¢ J one has

1Exl5 = [ LFOP %@ de = [ |70 <) dt
I J
> a? x| 7.

Now choose an orthonormal sequence {x,} in L,(I) such that x,(t) =0 for ¢ J.
(Why can we do this?) One then has ||x, — x| =ﬁ for n % m and

1P, — Fx, =4/20, ns#m

by the above. Hence {Fx,} cannot contain a convergent subsequence. Therefore, F
is not compact,

First assume that K is compact and that |a,| > &> 0 for all ». Then, let
€ = {O1m+02ms03ms-++}»
where J;; is the Kronecker function. Then
Ke, = (0615 03 825 - ) = (0,0, . . ;0,0 ),

and form#n
uKem - Ken1|2 = Iamlz + Ianlz = 282'

Hence, {Ke,} does not contain any subsequence that is convergent, and we contra-
dict the fact that K is compact.

If K is compact and (5.24.2) fails, then there is an ¢ >0 and a subsequer}ce
{a,,} with je,, | > . By using the sequence {e,,} and the above argument we arrive
at a similar contradiction. Hence, K compact implies that (5.24.2) holds.

On the other hand, assume that (5.24.2) holds, and then let A = K(D), where
D = {x: |x| < 1}. We shall now show that 4 has compact closure by applying
Exercise 1, Section 3.17. Since | Kx| < {max |o,|}]|x]|, we see that 4 is bounded. If
y €A, then

3 ll® = ¥ lasl?

2]
< max Ia,.lz{ 5 ux,n’}
< n=1

n

< max |e,]? = 0, as N — co.
Nz=n

Hence, ). {iy,1*— 0 uniformly as N— oo, so K is compact. J
n=N
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6.9.13 THEOREM. A bounded linear operator T that is the weighted sum of
projections is normal.

We leave the proof of this theorem to the reader.

This is an important result for it shows that the only operators that we can
hope to express as weighted sums of projections are normal ones.

The bulk of the remainder of this chapter will be concerned with compact
operators. Let us see when weighted sums of projections are compact.

6.9.14 THEOREM. A weighted sum of projections is compact if (i) for every
nonzero A,.the range of P,, R(P,), is finite dimensional and (it) for every real number
o >0 the number of A,’s with |1,| > « is finite.

Proof:  Suppose that T is a weighted sum of projections satisfying (i) and (ii).
We must show that T is compact. Recall that a compact transformation maps
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2. Consider the operator

'S (x,l’xz 3. ) g (¢(1)x1 ’¢(2)x2 90 e )

on I,(0,00).

(a) Show that @ is a weighted sum of projections.

(b) What is the spectrum of &?

(¢) Assume that ¢(n) # 0 for all n. Show that ®~! exists and that @7 !is a
weighted sum of projections. What is the spectrum of ®~17

(d) Assume further that |¢(n)] » o as 7 — co. Show that @1 is compact.

() Assume that ¢(n) — A, as n— oo, where Ao is finite. Show that (® — 1,17) is
compact.

3. (Continuation of Exercise 2.) Let L=T+ ® = S, -+ S; + @. (See Exercises 13
and 14 of Section 6.) Assume that |¢(#)] — -+ 0 as 7 — co. Show that L™ exists
and is compact. [Hint: Use Exercise 10, Section 7 with S = @ + AI, for an
appropriate choice-of A J

bounded sets into compact sets. Let Ty be
N
TN = Z j'n P ns
n=1

where {4;,...,Ay} are all the A’s such that |,| > ¢, where ¢ > 0. By our hypotheses
N is finite and the range of Ty is finite dimensional. Moreover, since

2
I(T ~ Ty)x|* = < sup |4, Y [P, x|? < e*)x|?,
n2N+1 n

Y A4,P,x
n=N+1

one has |7 —Ty| < e. It follows now from Theorems 5.24.3 and 5.24.8 that T is
compact. |

The converse of this theorem is also true. That is, if a weighted sum of projec-
tions is compact, then (i} and (ii) follow. We will not provethis here because we plan
to consider a more general case in a later section.

The rather significant result that we will obtain shortly is that every compact
normal operator is a weighted sum of projections.

EXERCISES

1. Let T =}, A, P, be a continuous weighted sum of projections on a Hilbert space
H. Show that there exists an orthonormal basis of eigenvectors {x,,x,,...} for
H. Let {p;,p5,...} be the corresponding eigenvalues.

(2) How are the ;s related to the A,’s?
(b) Show that

Tx = Z #n(x:xn)xn

for all x e H.
(c) What happens if 7 is not continuous ?

10. SPECTRAL PROPERTIES OF COMPACT, NORMAL, AND
SELF-ADJOINT OPERATORS

In this section we first investigate the spectral properties of compact operators.
Then we investigate the spectral properties of self-adjoint and normal operators. In
the next section we will combine the results of this and the previous section to get
the Spectral Theorem.

A. Compact Operators

The following theorems state the spectral properties of compact linear opera-
tors which we will need later.

6.10.1 THEOREM. Let T be a compact linear transformation of a Hilbert space
H into itself and let ) # 0. Then the null space N (Al — T) is finite dimensional.

Proof: The compact operator T maps 4 (AI - T) into & (Al —T). More-
over, the restriction of T'to A"(1I — T') is AL The restriction of a compact operator
is a compact operator; therefore, Al is compact. It follows from Theorem 5.10.7 (or
Exercise 11, Section 5.24) that 4" (Al — T) is finite dimensional. |

6.10.2 THEOREM. Let T be a compact linear transformation of a Hilbert space
Hinto itself and let ) # 0. Then ). is either an eigenvalue of T or A is in the resolvent
set p(T). [That is 1 # 0 is never in the continuous spectrum Ca(T) or the residual
spectrum Ro(T').]

Progf3: Choose A with A # 0. Suppose A € ¢(T'). First let us show that 1 can-
not be in the continuous spectrum. We shall do this by assuming that (A — T') is

% This proof is long and technical and the reader may wish to skip it on his first reading,
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one-to-one and then show that A7 — T is bounded below, that is, there exists a
constant m > 0 such that ||(A] — T')x|| > m | x|| for all x. [This shows that any time
(AI — T) has an inverse, this inverse is continuous, and the scalar A cannot be in
the continuous spectrum.]

We argue by contradiction. Suppose there is a sequence of unit vectors {x,} such
that [Ax, — Tx,| — 0 as n— . Since T is compact, {T’x,} contains a convergent
subsequence, which we shall also denote by {T'x,}. Let z = lim,_, , T, .

Since

z—ix, =(z—Tx,) + (Tx, — Ix,)
we have

Iz = x| < llz = Tx,ll + ([T, — Ax, ]l

But both sequences on the right converge to zero. Hence

z =lim Ax,,

n—+w

or, using the fact that A # 0, one has

1z-—limx
A —n-’oo "

Since, |[x,]| =1 we have | z|| = |A], thus z # 0. Since T is continuous one has

TG z) =lim T(x,) = z.
In other words, z is an eigenvector of T. But this is a contradiction, for we have
assumed (A — T') is one-to-one. Hence we have shown that there does exist a m > 0
such that (Al — T)x| = m|x| for all x, and (Al —T)~! must be continuous.
[Note: A # 0 was important.]

Next let us show that A is not in the residual spectrum of T. Recall that A is in
the residual spectrum of Tif (Al — T) is one-to-one and the range of (AI — T) is not
dense in H. We will again argue by contradiction. We will suppose that (A — T)is

~one-to-one and ZAI—~T) # H Let Xo=H, X; = (M - T)X,, X, = (A -T)X,,
and X,,; = (Al — T)X,. It can be seen that X; > X; = X, o X3 > +--, The rest of
this proof depends on the fact that X; # X, implies that X, is a proper closed
linear subspace of X, for all n. For the moment let us assume that this has been
shown. It follows, then, that there is an x € X, such that {x,] =1 and x, L X;, by
Corollary 5.14.5. Furthermore, there is an x; € X; such that |x,| = 1 and x, L X,.
In fact, there is an x, € X, such that |x,| =1 and x, L X, ., for all #. It can be
seen that {x,} is an orthonormal sequence. Let n > m, then

. [(u - T - (I - T)x,,]}‘

%(Txm - TX,,) =X+ {_
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But the term

{_ e [(u —T)x, ; (I - T)x,,] }

is a point in X,,,,, call it —x; therefore,

1
7 (Tx,— Tx,) =%, — x.

Since ||x,|| = 1 and x,, 1 X,,.,, one has
“Txm - Txn" = IAI: -

which shows that the sequence {Tx,} cannot contain a convergent subsequence.

This contradicts the assumption that T is compact. Hence, Z(A] — T) = Hand 1 is
not in the residual spectrum of T.

ot finished yet with the proof. We still have to show X; # X implies

that X,,+ . is a proper closed linear subspace of X, for all . First, let us show that
R(A — T) is closed for all 1 # 0.

6.10.3 LEMMA. The range of (Al — T) is a closed linear subspace of H for all
A#0.

Proof: Let {y,} be any convergent sequence in Z(Al —T), and let y, =
lim,_, , y,. We want to show that y, € (Al — T). Since {y,} € #(Al — T}, there is at
least one sequence {x,} in H such that (AI — T)x, = y, for all n. Let us show that th.e
sequence {x,} is bounded. Since A — T is continuous, its nuil space 4" (Al — T) is
closed, Then H = /(M — T) + A#(AI — T)*. With no loss in generality we can
assume that {x,} is in A/ (AI — T)*. (Why?) Now (AI — T) restricted to the closed
subspace A(Lf — T)* is one-to-one. So, repeating the argument used to prove the
first part of Theorem 6.10.2, we know that there exists a constant m > 0 such tha}t
(AL — T)x|| = =|x| for all xe A(AI — T). Since {y,} is convergent, there is
a bound M > 0 such that ||y,| < M for all n. Then M = |(A] — T)x,|| = m|ix,|
or ||x,ll < M/m for all n, showing that {x,} is bounded. Since T is compact, {x,}
contains a subsequence, which we denote by {x,}, such that {Tx,} is convergent.
Then

Axy =y, + Tx,. (6.10.1)

Since {y,} converges to y, , both sequences on theright of (6.10.1) are conyergent and
1 #0, so {x,} is convergent. Let x, = lim,_, , X,. Since (4] — T) is continuous one
has

(AL — T)(lim x,,) = lim (Al — T)x,

or
(ML= T)xo = yo-

Thus yo € #(AI — T) and #(AI — T) is closed. 1
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The above lemma shows that the space X, constructed in Theorem 6.10.2 is
closed. A slight variation on it shows that X, is closed for all #. Thus we do not
have to distinguish between X, and X,,.

We are now ready to finish the proof of Theorem 6.10.2. We want to show that
X, +1 is a proper closed linear subspace of X, for all n. We argue by induction. By
our hypotheses, X; is a proper closed linear subspace of X,. Assume that X,isa
proper closed linear subspace of X;_, for 1 < k < n and we will now show that this
implies that X, is a proper closed linear subspace of X,. In any event, we have
that X,,, = X,. So if X,., is not a proper closed linear subspace of X,, we
have X, ;; = X,. That is, (A — T')X, = X,,. Since (Al — T) is one-to-one, we have
X, = (M —-T)"'X, = X,_, which is a contradiction. Therefore, if X; # X,, then
X,+1 is a proper linear subspace of X,. This completes the proof of Theorem
6.10.2. }

The next theorem shows that 1 =0 is the only possible point of accumulation

6.10. SPECTRAL PROPERTIES 453

As far as the point A = 0 is concerned, we cannot say too much. If T'is compact,
4 = 0 can be in the resolvent set or any part of the spectrum. However, if 1 = 0is in
the resolvent-set, H must be finite dimensional.

B.  Normal and Self-Adjoint Operators

Now let us consider operators that,are normal but not necessarily compact.
Recall that every self-adjoint operator is normal; therefore, anything that is said
about the class of normal operators applies also to self-adjoint operators.

6.10.6 THEOREM. Let T be a normal transformation of a Hilbert space H into
itself. If x € H is an eigenvector of T associated with an eigenvalue 1, then x is an
eigenvector of T'*, the adjoint of T, associated with an eigenvalue 1. Furthermore,

NI =T)=NA—T¥.

Proof: From Theorem 5.23.10 we know that T is normal if and only if

for the spectrum of a compact operator.

6.10.4 THEOREM. Let T be a compact linear transformation of a Hilbert space
into itself, and let o« > 0. Then the number of eigenvalues )\ with |A| > « is finite.

Proof: We argue by contradiction. Suppose that there is an oo > 0 such that
the number of eigenvalues A with || > «, is infinite. It follows (Why?) that the
spectrum of T must contain at least one nonzero point of accumulation, call it 1,.
So there must be a sequence {,} of eigenvalues such that lim,, A4, =2,. Let x,
be an eigenvector associated with A,, n =1, 2,.... The set {x;,x,,...} is linearly
independent (see Exercise 3, Section 5). Let X, be the finite dimensional and, there-
fore, closed linear subspace spanned by {x,,x,,... X,}- We know from the Riesz
Theorem (Theorem 5.5.4) that there is a sequence { Ya} With y, € X, |yl = 1, and
dist(y,,X,-1) =+ (n=2,3,..). If n > m, then

1 Aﬂ'nyn— Tyn ﬂ'mym— Tym

1
STy =Ty =y + =y —
ﬂnyz,,,yy+(y"' R ,zm)

=Vpn— 2,
where ze X,_,. (Why?) Therefore,

1 1 .
“ 7 Tyn - Tym = dISt(yn an—l) = %'

l’l j’m
But we can use the above inequality together with lim,_, , 4, = Ao # 0 to show that
the sequence {7,} does not contain a convergent subsequence. This contradicts the
fact that T"is compact. Hence, the assumption about oo leads to a contradiction. |

The next corollary should be obvious.
6.10.5 CoROLLARY. Let T be a compact operator on a Hilbert space H. Then

the spectrum of T is (at most) countably infinite and A = 0 is the only possible point of
accumulation.

[Tx] = [T*x]j for all x. Moreover, if T is normal, then AI — T is normal. Hence,
(AT — T)x| = 0 if and only if |(A7 ~ T*)x]| =0. {

6.10.7 THEOREM. Let T be a normal operator mapping a Hilbert space H into
itself. Then the null spaces /" (AI — T) and ¥ (uI — T) are orthogonal to one another
whenever A # p.

Proof: Let xe N/ (AI-T) and ye & (ul —T). We want to show that
(%) =0. By using the last theorem and the fact that (Tx,y) = (x,T*p) we get
(Ax,y) = (x,@p) or (A — p)(x,y) = 0. Hence (x,5) =0. | :

Recall (Corollary 5.22.5) that a closed linear subspace M reduces a bounded
linear operator T"if and only if M is invariant under T and T*. We can say more
when T is normal.

6.10.8 THEOREM. Let T be a normal transformation of a Hilbert space H
into itself. Then for each complex number A the closed linear subspace N'(AI — T)
reduces T.

Proof: Let M = A(AI —T). Since (Al — T) is continuous, there is no ques-
tion about M being closed. We have to show that T(M) = M and T(M*) < M ™.
If A is not an eigenvalue of 7, then M = {0} and M+ = H. In this case, then, the
theorem is clearly true. Assume that 2 is an eigenvalue of T. Since M is the eigen-
manifold associated with A, we immediately have that (M) = M. Let x € M and.
ye M*, then (x, Ty) = (T'*x, y). Theorem 6.10.6 assures us that T¥M)<= M,
hence we get (x,7y) =0, for all x € M and y € M*. Continuing further, this shows
that T(M*) « M*. |

6.10.9 CoroLLARY. If {M,} is a family of eigenmanifolds of a normal operator
T, then M = M; + M, + M3 + - reduces T.

Proof: From Theorem 6.10.7 we know that the M,’s are pairwise orthogonal
The rest of the proof should be obvious. |
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6.10.10 THEOREM. The residual spectrum of a normal operator is empty.

Proof: Let T be a normal operator mapping a Hilbert space H into itself. We
have to show that if (A7 — T') is one-to-one, then the range #(AI — T') is dense in
H. Let y be a point in A that is orthogonal to #(AI — T). That is,

(Ax —Tx,y)=0 for all x in H.

Since (x,Ay — T*y) =0 for all x in H, it follows that (A1 —T*y =0, that is
¥y € #(AI — T*). It now follows from Theorem 6.10.6 that y = 0. Therefore, since
R(AI — T)* = {0} we note that R(AI — T)) is dense in H, see Theorem 5.15.4(c). 1

Needless to say, it also follows that the residual spectrum of a self-adjoint
operator is empty.

6.10.11 COROLLARY. A complex number 2 is in the spectrum of a normal

operator T if and only if there exists a sequence {x,}, | x|l =1 for all ha

I(AI — T)x,]l = 0 as n— co. In other words, the operator (Al — T) is not bounded
below.

The proof of this corollary is left to the reader as an easy but not completely
trivial exercise. (Also, see Exercise 1, Section 6.5.)

As anyone familiar with the theory of Hermitian matrices would suspect,the
spectrum of a self-adjoint operator is confined to the real line.

6.10.12 THEOREM. The spectrum of a self-adjoint operator T is a subset of the
real interval [ — \T'|, iT|].

Proof: We can use Corollary 6.10.11. Let us show that if A is not real, then
there exists a constant m > 0 such that [[(A — T)x|| > m|x]j for all x. It will follow
from Corollary 6.10.11 that A is in the resolvent set of 7.

Assume that 4 = p + i, where ¢ # 0. Then a simple calculation gives
(AL = T)xi|? = (Ax — Tx, Ax — T)
= (px — Tx, px — Tx) + (iox,iox)
> |of x|
Hence Al ~ T is bounded below and A is in the resolvent set p(T). Therefore the
spectrum of T'is real. It follows now from Theorem 6.7.4 that 6(T') lies in the interval

L=1T0, 1TH1- N
C. Compact Self-Adjoint Operators

We turn now to a statement about the existence of eigenvalues for compact
self-adjoint operators. Before giving this, though, let us recall that the norm of a
self-adjoint operator T is given by

1T = sup{I(Tx,%)I: {lx|| = 1}. (6.10.2)
(See Theorem 5.23.8.)
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6.10.13 THEOREM. Let T be a compact, self-adjoint operator on a nontrivial
Hilbert space H. Then T has an eigenvalue A with |}| = LTl

Proof: It followsfrom (6.10.2) that there is a sequence {x,} in H with|lx,]| = 1
and [(Tx, ,x,,)] = [[T||. Since T is compact we can find a subsequence of {T,} that
converges in H; furthermore, since the sequence of complex numbers {T=x,,x,)}
lies in a closed bounded set, we can find a subsequence of {(Tx, ,%,)} that converges
in the complex plane. By calling this subsequence {x,}, one then has

(Txy,x) > A and Tx, — X,

where |A| = |T'|| and x € H.
If |T| =0, the conclusion of the theorem is trivial. Assume now that T # 0,
which implies that A # 0. One then has

0 < ITxy = Axal* = |1 Tx, )2 + 1A%, 1> — A(Tx, %) — AT, ,%,)

SATT + AP xall® = AT%, %) — XH(Txy1%,)
= 2[21* — AT, ,%,) — AT, %),
Since the right side tends to 0 as n — oo, we see that
_ — Ax,—0.
Hence Ax, — x, or x, — (1/A)x. Hence ||x| = || # 0. Also

T(—;: x) = T(lim x,) =lim Tx, = x,

orTx=Jlx. |

6.10.14 CorOLLARY. Let T be a compact, self-adjoint operator on a Hilbert
space H. If T has no eigenvalues, then H = {0},

D. Compact Normal Operators

We have just seen that a compact self-adjoint operator on a nontrivial Hilbert
space has at least one eigenvalue. Our object here is to show that the same conclu-
sion is valid for compact normal operators.

Let T'be a normal operator on a Hilbert space H. We know then (by Exercise
13, Section 5.23) that there are commuting self-adjoint operators 4 and B such that

T=A+iB and T*=A4 —iB. (6.10.3)
Furthermore, one has (Exercise 14, Section 5.23)
max(| 4, 1B} < IT| = T*| and |T|*< ||4li* + | B>

We can use the Cartesian decomposition of T in (6.10.3) to determine whether T is
compact.

6.10.15 LEMMA. Let T be a normal operator on a Hilbert space H and let
T'=A + iB be the Cartesian decomposition of T. Then T is compact if and only if
both A and B are compact. Furthermore, T is compact if and only if T* is compact.



456 ANALYSIS OF LINEAR OPERATORS (COMPACT CASE)

Proof: First we note that
I17x])* = | 4x]|* + | Bx|
for all x in H. Indeed, since 4B = BA one has

17x]?> = (4 + iB)x, (4 + iB)x)
= (Ax,Ax) + (Ax,iBx) + (iBx,Ax) + (iBx,iBx)
= || Ax||?* — i(4x,Bx) + i(Bx,4x) + "BX”i
= | 4x|* — i(BAx,x) + i(ABx,x) + || Bx|?
= || 4x|* + || Bx|>.
It follows, then, that a sequence {Tx,} is a Cauchy sequence if and only if both the

sequences {Ax,} and {Bx,} are Cauchy sequences. (Why?) Hence T is compact if
and only if both 4 and B are compact.
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(Theorem 6.4.4). Let {8,8,...,5,} be the entries in this diagonal matrix. Let us
now show that the complex numbers

o+ ify, 00+ ify,. .0+ i,
are eigenvalues for T. Indeed, let e; be a nonzero vector in A (o] — A) that satisfies
Be; = f;e;. Hence
Te; =(A + iB)e; = Ae; + iBe;
= ae; + if;e; = (o + ife;,
forj=12,...,n -
If we had started instead with a nonzero eigenvalue B of B, then one can show
that 4 is a compact self-adjoint operator that maps 4(8I — B) into itself. One can

then construct an orthonormal basis for 4" (81 — B) so that the restriction of 4 to
this subspace can be expressed as a diagonal matrix

Since T* = A — iB, it follows from the above that 7" is compact if and only if
T* is compact. J

Let us now study the relationships between the eigenvalues of 4 and B.

Let A = « + if be an eigenvalue for T. We recall (Theorem 6.10.6) that 1 is then
an eigenvalue of 7*. In addition, one can show that « and § are eigenvalues of 4 and
B, respectively. Indeed, if x satisfies Tx = Ax, then T*x = Ax and

Ax =T + THx = 1A + D)x = ax,
Bx=%(T—— T*)x=§1~l;(l——x)x=/)’x.

This also shows that

NI —T)= NI —-T* < N(ad— A),
and

N —-T) = A - T*) < ¥(BI - B).

In order to get further information concerning the eigenvalues of T we have to
study the relationship between the eigenspaces A4 (e — 4) and A4 (BT — B). For this
purpose let us now assume that 7" is compact and normal and that « is a nonzero
eigenvalue of 4. Let x € /(e — A). Then

(ol — A)Bx = B(al — A)x =0,
which shows that B maps 4 (af — A) into itself. That is,
B: N (ol — A) > N (af — A)

and B is a compact self-adjoint operator on this subspace. Furthermore, it follows
from Theorem 6.10.1 that A4 (al — 4) is finite dimensional. Therefore, we can find
an orthonormal basis of eigenvectors {e,,e,,...,e,} of B in &/ (el — A4) such that
the mapping B can be represented by a diagonal matrix in terms of this basis

diag(o,&5 5.« - ,0p)-
By the same reasoning used above one can then show that the complex numbers
oy +if, oy +if, ..., 0, +iB

are eigenvalues for T. .
It is easy, then, to see that if « is a nonzero eigenvalue of 4, then for some B

A (Al — T) is nonempty, where A = o + iB. (6.10.4)
Moreover, one has
NI —T) = N (al — A) n ¥ (BI - B). (6.10.5)

Similarly if we start with a nonzero eigenvalue § for B, then for some « (6.10.4)
and (6.10.5) are valid. Moreover, (6.10.4) and (6.10.5) are valid for every eigen-
value of T.

6.10.16 THEOREM. Let T be a compact normal operator on a nontrivial Hilbert
space H. Then T has an eigenvalue A with
max(|l4], | Bl) < |Al,
where T = A + iB is the Cartesian decomposition of T, see Figure 6.10.1.

Proof: If T=0, then 4 =B =0 and 1 =0 is an eigenvalue satisfying the
conclusion of the theorem.
Now assume that T'# 0 and say that

41l = max(jl 4], | Bl)) > 0.

Theorem 6.10.13 assures us that there is an eigenvalue o for A with the property that
la] = [|4{. The above discussion leads to the conclusion that there is a § such that
A = a + if is an eigenvalue of T. Finally, we note that || > |«] = max(|l4f, | B]). K
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11. THE SPECTRAL THEOREM
The purpose of this section is to prove the following result:
6.11.1 THEOREM. (SPECTRAL THEOREM. FIRST VERSION.) Let T be a compact

normal operator on a Hilbert space H. Then there is are ] identi
. solution of the identity {P
and a sequence of complex numbers {4} such that v b

T=Y,4,P,, (6.11.1)
where the convergence in (6.11.13) is in terms of the uniform operator norm topology.

The expression (6.11.1) is sometimes called the spectral decomposition of T.

Ifroof : Let {4,4,,...} denote the collection of all eigenvalues of T, This
collection is at most countable by Corollary 6.10.5. Let P, be the orthogonal projec-

© = Eigenvalues of 4 tion onto H (;L I T) Si M LM T
X = Eigenvalues of iB o L w4 — 1 ). Siee M, m 10T n# m, it follows that P. P = 0
o =Ejgenvaluesof 7=4 +iB forn #m. Let e
Figure 6.10.1. Eigenvalues of T= A 4 iB, T is Compact and Normal. Q= Z P,.
n

6.10.17 CorOLLARY. Let T be a compact normal operator on a Hilbert space
H. If T has no eigenvalues then H = {0}.

Theorem 6.10.16, then, assures us of the existence of at least one eigenvalue for
T. If A, is the eigenvalue of T' with maximum modulus, that is,
Aol = max{|A]: A is an cigenvélue for T'},
then one can show that |4, = |T| (see Exercise 3, Section 11.)
And now for the Spectral Theorem.

EXERCISES

1. Prove Corollary 6.10.11.
2. Show that the spectrum of a unitary operator Ulies on the unitcircle {z: |z] = 1}.

3. (a) Construct a compact normal operator T = 4 + iB with the property that
there is at least one eigenvalue A that satisfies || = {|4]|* + ||B||*
(b) Construct a compact normal operator T = 4 + iB with the property that
every eigenvalue 4 satisfies |42 < ||4]|% + || B||?. For your example, compute
the spectral radius r,(7") and the norm T.
(c) Construct a compact normal (nonself-adjoint) operator T'= A + iB with
the property that every eigenvalue A satisfies |4| < max(|| 4}, | Bl).
4, Let A be an observable (that is, a bounded self-adjoint operator) and let p be
a state with associated density operator W. Assume that the spectrum of 4 lies
in the interval [a,b]. Show that E(A), the expected value of 4 with respect to the

state p, satisfies
a<E(A)<b.

Then Q is the orthogonal projection onto
M=M +M,+---.

We want to show that Q = I, or equivalent! L=

! y that M~ = 0. It follows from Corol-
lary 6i10'9 tlllat T(M *.) < M*. Let S denote the restriction of T to M L, that is
S :IM ;» I{MH Then § is compact and normal, and any eigenvalue of Sis an eigen:
value of 7. However, S has no eigenvalues. Therefore, it foll
§10.17 that ats ows from Corollary
. \ge ;1:2'0 shown that {P,} is a resolution of the identity. Let us now show that

= 2/ P,. For this it will be convenient to order the ei envalu
] es

A=A =+, Let : o that

N
SN = Z l" I),l .
n=1
Since {P,} is a resolution of the identity, one has
H=M + M+,
As.a consequence of the Orthogonal Structure Theorem, every vector x € H can be
written uniquely as
X=X+ X4+ =) x,,
n
where x, € M,, and [|x||? = Y, | x,|2 It follows that
Tx=Ax,+ XX+ =Y Lx,,
and '
(T=Sy)x= Y Ax,.
N

n=N+1
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Hence
00

ICT ~Swxl? = ¥ 1A Il

n=N+1

o 2 2 2
S yaal® X 1xal1% < Ay P20
n=N+1

Therefore |77 — Syl < |Ay+1] — 0 by Theorem 6.10.4. |

Actually some other versions of the Spectral Theorem are more practica} in
applications. Probably the most useful is the eigenvalue-eigenvector representation.

6.11.2 THEOREM. (SPECTRAL THEOREM. SECOND VERSION.) Let Thea com'pact
normal operator on a Hilbert space H. Then there exists a (orthonormal) basis of
eigenvectors {e,} and corresponding eigenvalues {p,} such that if x =3, (x.e)e, is
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is a unitary mapping. The operator T is then transformed into an operator A on I,
by the equation

! T=U"AU or A=UTU"}, (6.11.4)

see Figure 6.11.1. Also A is the diagonal matrix A = diag(us,45.,. . ). This repre-
sentation A is sometimes called the *transfer function” of T.

In summary, then, every compact normal operator is a compact weighted sum
of projections in disguise. Moreover, this fact can be used to view or represent
compact normal operators in (at least) three ways: weighted sums of projections,
eigenvalue-eigenvector representation, unitary equivalence to operation with a
diagonal matrix or multiplication by a transfer function. -

i
H——>H

u

the Fourier expansion for x, then
Tx =Y m(x.e,)e,. 6.11.2)

Proof: We use the notation of the last theorem. With M, = ¥/ (A, I — T), let
{£:™} be an orthonormal basis® for M, . Then

AW = 1, £,®. (6.11.3)

Let {f} denote the union of all these { 4,™}. Renumber th(? coll?ction {f} to- get the
family {e,,e,,...} and let {u,u,,...} be the corresponfhng eigenvalues given by
(6.11.3). The only thing we have to prove is that the family {f}, or {e;,e,,...} is a
is, that is, a maximal orthonormal set, in H. o
- First this family is orthonormal. That is, if » is fixed, then fif") 1 i for i # j,
by construction. Also, if # # m, then £ L £, for any i and j, since M, L M,,.
Since each vector £,™ is a unit vector we see that {e,,e,,...} is an orthonormal set.
Next we claim that this family is maximal. Indeed if x L e, for all n, then

x L £,® for all » and k. That is, x L M, for all n, or x L H. Hence x = 0.
The proof of (6.11.2) is a simple adaptation of the argument of the last

theorem. J

The last theorem admits another interpretation which can be viewed as the
third version of the Spectral Theorem. For this we shall assume that the Hilbert
space H is separable.” This means that the mapping U: H — I, given by

U:x— ((x:el)a(x’e2)a- . )

i ite di i =0i i lue, then the
¢ The subspace M, is, of course, finite dimensional when A # 0.IFA 0is an eigenvalue,
correspondl:i)ng nuﬁ space A (T) may be infinite dimensional. In fact, if H is not separab_le, then
A = 0 is necessarily an eigenvalue and .4 (7) must have an .uncountable orthonormal basis,

7 Separability is not really necessary. It just makes things simpler.

l IT”-I
h——px >4

Figure 6.11.1.

Now one point must be made. The Spectral Theorem presented here is not the
most general one possible. This should not be surprising at all, for even the weighted
sums of projections discussed in Section 9 can be used to represent some noncom-
pact normal operators. In fact, if we generalized from weighted sums of projections
to “weighted integrals of projections,” we would be able to represent @/l normal
operators. Likewise, the “ transfer function” representation can be very successfully
generalized (for example, Fourier transform and z-transform methods). However, a
few mathematical difficulties arise here and there. On the other hand, the Eigen-
value-Eigenvector representation really cannot be developed much further. All this,
however, is another story, beyond the scope of this book. The only generalization
we will present (Section 14) concerns nonnormal compact operators.

EXAMPLE 1. (THE RAYLEIGH-RITZ MEeTHOD.) The Rayleigh-Ritz Method,
which we now describe, is a technique for finding the eigenvalues of a compact
normal operator T In this example we will assume that T'is actually self-adjoint and
positive, in addition to being compact. The extension of the method to arbitrary
compact self-adjoint operators, or compact normal operators, is discussed in the
exercises.

Sothenlet T: H— Hbea compact, self-adjoint, positive operator on a Hilbert
space H. Recall that the positivity means that

Tx,x) 20, forall xe H. (6.11.5)

We see then that if u is an eigenvalue of T, then {u| < |T'| and Equation (6.11.5)
implies that 4 > 0. Now Theorem 6.10.13 tells us that

u =T
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is an eigenvalue of 7. Let e, be an eigenvector of T associated with u; and also let
M, = V(e,) be the one-dimensional linear space spanned by e;. Then M, reduces T,
therefore T maps M, * into M,*. Let T, denote the restriction of T'to M,*. T is, of
course, compact and self-adjoint. So if we apply Theorem 6.10.13 again we see that

#2 = [Tl

is an eigenvalue of both T, and T. This process now continues. Let e, be an eigen-
vector associated with p, and let M, = V(e;,e,). Then T maps M,* into M,
Therefore, if we let T3 denote the restriction of T'to M,*, then

Ha = [|T5l

is another eigenvalue of T..

It can easily be seen that if we continue in this way we can then find all the
eigenvalues of 7. With these preliminaries behind us, we are now prepared to give
the Rayleigh-Ritz Formula for the eigenvalues, which is merely successive applica-

— —tions-of Theorem5.23:8; or Equation (6:10:2).— - — -

First we note that

py = sup (Tx,x). (6.11.6)
(x,x)=1
Next we have
pz= sup (Txx). (6.11.7)
&R

Indeed, the condition (x,e;) = 0 in Equation (6.11.7) is precisely the condition that
restricts T to the closed linear subspace M;*. Hence Equation (6.11.7) also can be
written as
pe = sup {(Tx,x):xeMi}=|T;].
(x,x)=1
In general, if the eigenvalues yy, u, ..., i, are known with corresponding eigen-
vectors e;, €5, ..., €,, then p, ., is given by

Ups1 = sup (T'x,x). (6.11.8)
(x,x)=1
(x,e1) =< =(x,en)=0

This formula can easily be proved by a direct application of mathematical induction.
Before the reader becomes too enamoured with this method a somewhat subtle
limitation should be noted. Equation (6.11.8) does require that we know the eigen-
vectors ey, .. ., €,, but the Rayleigh Ritz Method does not give any clue for deter-
mining these eigenvectors.
It is possible to circumvent this deficiency by using certain approximation
techniques. We refer the reader to the work of Aronszajn [1] for more details. ||

ExAMPLE 2. (FREDHOLM ALTERNATIVES.) Let T be a compact normal operator
on a Hilbert space H. Let y be given in H and we now seek a solution of the equation

x=Tx+ y. (6.11.9)
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Adder —> X

Figure 6.11.2.

This can be viewed as a black-box problem, as shown in Figure 6.11.2.

The Fredholm alternatives tell us precisely when it is possible to solve this
problem. |

— —— (@) If Visnot aneigenvalue of T, then there is Dprecisely one solution x for every

Y in H. The solution is of course given by
x=U-T)"1y,

(See Exercise 25 for more details.)
(b) If 1 is an eigenvalue of T, then there is a solution of (6.11.9) if and only if

Y L A (I —T). In this case, if x* is any solution of (6:11.9), then every other solution
is of the form

x=x*+ce + - +c,e,, (6.11.10)

where {e,,...,e,} is an orthonormal basis Jor (I~ T).

Thf: ﬁ:rst alternative (a) follows from the fact that if 1 is not an eigenvalue of T,
then 1 is in the resolvent set of T,

The second alternative (b) follows from the fact that Equation (6.11.9) has a
solution if and only if y is in the range of / — T. Since B(I — T') = #'(I — T)* we
see that Equation (6.11.9) has a solution if and onlyify L #(I—-T).

The proof of Equation (6.11.10) is left as an exercise. 1

EXERCISES

1. Let K: L,(I) » L,(I) be an integral operator y = Kx, where
y(t) = f k(t,5)x(s)ds.
I

Assume that I is compact and k(z,5) is continuous. Show that X is compact.
Show that the eigenfunctions corresponding to nonzero eigenvalues can be

cposen to be continuous. What happens to eigenfunctions corresponding to the
eigenvalue A =07

2. Use Mathematical Induction to prove Equation (6.11.8).
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3. Let T be a compact normal operator on a Hilbert space H.
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9. Complete the proof of the Fredholm alternative (b) by verifying Equation

(a) Show that there is an eigenvalue A, that satisfies (6.11.10).
|Ao} = max{|A|: 4 is an eigenvalue of T'}. 10. Extend the Fredholm alternatives to compact nonnormal operators by proving
the following:
(b) Show that iéoi(;l)lfln.ld or this T (2) If'l is not an eigenvalue of 7, then there is precisely one solution x of
(c) Show that (6. -2) holds for this 1. . ishi X —Tx =y for every y in H.
(d) Let H be a two-d}mensmnal complex Hilbert space. Show that 4, satisfies (b) If 1 is an eigenvalue of T, then x — Tx = » has a solution if and only if
one of the following: y Ll &I -1%.
[Re 4| = |4l or [|Im 4| = |iBI. 11. Let k(#,5) € L,(I  I) and define y = Kx by
What happens if H has dimension > 3? _
. . y() = | k(t,5)x(s) ds.
4, Let T = A + iB be a compact normal operator. When is it true that @ f[ (t.5)x(s)
T2 = 142 + |1B)?? A;sume that k(z,5) = k(s,1).
) (2) Show that X is a compact self-adjoint operator on L,(I) and then show
5. Let T be a compact self-adjoint operator on a Hilbert space H and als:h}et that | X|| < [k]|,. —
- :Wfbe*he%%ﬁmm%mmmw@mofgmy t.es (D) Let {e,(f)} be an orthonormal basis of eigenvectors for K with associated
{A,} can be partitioned into two sets A, and A_, the positive and the negative eigenvalues {u,}. Assume that [u,| > |p,] > -+ -. Show that
eigenvalues. The operators k(2,8) = Y w, el(De(s), (6.11.11)
L= T_ = = A P n . "
T, A";Afn Py, lng\_ " where the convergence above is in L,(I x I ).
are called the positive and negative parts of T. (c) Show that s
Show that T=T, —T._. . k =( k(t, zdtds) = Ak
Eg Show that (7', x,;) >0 and (T_x,x) >0 for all x in H. Ikl Lf,-' (t5)] z,.: il
(c) Show that T,T_ =T_T, =0. (d) Show that K[| = |uy].
(d) Let |T| =T, +7-.Showthat T<|T|and —T < |T|. (e) Characterize those operators X for which one has IK] = l&],.
6. Let T be a compact self-adjoint operator on a Hilbert space H. 12. (Continuation of Exercise 11.) Assume that I is closed and bounded and that

(a) Show that the positive eigenvalues of T can be found by Equations (6.11.6),

(6.11.7), and (6.11.8). .
(b) Show that the negative eigenvalues of T can be found by replacing “ sup

by “inf” in these three equations. .
7. Use the results of Exercise 6 and Section 6.10D to discuss a method for finding
the eigenvalues of a compact normal operator.
8. Let L be a compact normal operator on a Hilbert space H and let

L=Y P,

13

be the decomposition of L as a weighted sum of projef;tiops. Assume that
A, # 0 for all n. Show that the polar decomposition of L is given by L = RU,

where B
R =Y |AlP, and U=Y 4] 'P,.
n n
What happensif 2 =0 is an eigenvalue of L? Show that the Cartesian decompo-
sition of L is given by L = 4 + iB when

A=Y Re(A)P, and B=) Im(4)P,.

k(t,5) is continuous in ¢ and s. In this exercise we will show that the series in
Equation (6.11.11) converges to k(t,s) uniformly in # and s provided the opera-
tor K is positive and k(z,s) is real-valued.
(a) Show that if u, is a nonzero ecigenvalue, then the associated eigenfunction
€,(?) can be chosen to be continuous and real-valued.
(b) Let ky(t,s) =YX\ pe)e,(s) and hy(t,s) = k(t,5) — ky(,5). Show that
hy(t,t) > 0 for all 1.
(c) Show that there is a M such that
k@) <k(t) <M
for all # and all N,
(d) Show that

n 2 n

2 me(Dels)) <M 2 ety >0

i=m i=m
as m, n — o0, uniformly in s for each fixed z. [That is, the convergence in
Equation (6.11.11) is uniform in each variable separately.]

(e) Show that the convergence in Equation (6.11.11) is pointwise.

(f) Show that the convergence in Equation (6.11.11) is uniform in both 7 and s.
[Hint: Use Dini’s Theorem, from Section D.4.]
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13. Let T: H - H be a compact self-adjoint operator on a Hilbert space H and let
T =Y, ,P, be the spectral decomposition of 7. For A € (— c0,00) let

Q.= Z P,,
AnsA

thatis, Q,x =), <, P,xforall xe H.
(a) Show that for each A, Q, is an orthogonal projection.

(b) Show that 0, < Q,if A< p.
(¢) Show that
0=, lim Q,,

A= —©
(Q, is sometimes referred to as a spectral family.)
14. Let L be a self-adjoint operator on a Hilbert space H. Let {¢),} be an orthonor-
mal collection of eigenvectors of L and let M denote the closed linear subspace
of H generated by {¢,}. Assume that every eigenvector of L lies in M.
—(a) Show that if M = H (thatis, {¢,} is-an orthonormal basis for ), then L
is a weighted sum of projections. Show that o(L) is the closure of Po(L).
(b) Show that if the continuous spectrum of L contains a nontrivial interval,
then M # H, that is, {¢,} is not a basis for H.
15. Consider L = S, + S; + ® on 1,(0,00), where S, and S, are the right and left

shift operators, ® is the Coulomb perturbation

I=s lim Ql'
A=+

1 1
D(X1,X5 5+« s Xpsees) = 2b(x1,§x2 e Xyseo .),

where b >0.
(a) Show that the eigenvalues of L are

b21/2
et (17 kv

(b) Let {¢,} be the associated eigenvector with ||¢,ll, = 1. Show that {¢,} is not

a basis for 1,(0,00). [Hint: Use Exercise 14 and Exercise 14 of Section 6.]

16. Let W be a density operator, that is, W is self-adjoint with 0 < W2 < W and
trW=1.

{a) Show that W is compact.
(b) Show that one can write W =13, A, W,, where W, are density operators

representing pure states and 3, 4, = L.
(c) Let e, be a unit vector in #(W,), and let 4 be an observable, that is, self-

adjoint operator. Show that the expected value of Ais E(4) = ), A,(4e, ,e,)-

17. Let L and M be two compact normal operators on a Hilbert space H that
commute, that is, LM = ML. Show that there is a resolution of the identity

{P,} such that

L-Y 4P, M=ZuP,

for appropriate choice of {4,} and {u,}.
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18. i
Let {L,,. --»L;} be a collection of compact normal operators on a Hilbert

19.

20.

space H that satisfy L,L, = L., f; , J. i
tho idontity (0 St thg ; 7L for all 4, j. Show that there is a resolution of

/ Li=Y %P, i=1,..,k

where {1,?} depends on L, .

Let {U} be a family of unitary operators on a Hilbert space of finite dimensi

n. Assume that {U} is a commutative family, that is, if & and ¥ belong to {U(') }n
then UV = VU. Show that there is an orthonormal basis of common ej ’
vectors. [Hint: Use Mathematical Induction on the dimension 7.] s

((f:‘ont.inuation of Exercise 19.) Let U,, —co < r < 00, be a commutative family
of unitary operators on a finite-dimensional Hilbert space H that satisfy:

Uy=1, U, U=U,,,, and Ux->Ux as s—ot

for every x e H. Let {¢1,...,¢,} be an orthonormal basis of eigenvectors and

let p,(1) satisfy
U, ¢ = o)y, k=1...,n
(a) Show that py() = exp(iw, t) for appropriate choice of w,.

" () Show ! e o )
©) that in terms of this basis U, is the matrix operator U, = "4, where

21.

22,

23.

24,

25.

4 = diag{w,,...,w,}.

Skgov_v the.xt the. conclu§ions of Example 1, Section 4 can be extended to an
21- nite-dimensional Hll})ert space H provided one assumed that the operator
1s a compact self-adjoint strictly positive operator. What happens if one onl
assumes L to be compact self-adjoint and positive ? o

»V hat COHCIUSIOII Could one draw n Exal‘nple l SeCtIOIl 4 lf one assumes L tO [
3 b

tft ;1 be a} ctc))empact self-adjoint positive operator on a Hilbert space H and let
138250 - an enumeration of the ei i i iplici
Shonze ) be an e genvalues of 4, including multiplicity.

Find the eigenvectors and eigenvalues for y(z) = I ket 0)x(0) dt, where
k(t,1) = ). [a, cos nt + b, sin nt],
=0

where 3’2 (|a,|2 + [5,]?) < oo.

f;n?der the equation (17 — T)x'= ¥, where T is a compact normal operator.

. €.} be an orthonormal basis of eigenvectors for 7' with correspondin

cigenvalues {4,}. Assume that 1 s 0. ’

(a) Show the}t if Ais npt an eigenvalue of T, then for every y in the Hilbert space
H there is a solution x of (AT -T)x=yanditis given by

X = Z (y’e")e
n=14— Hy

"
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(b) Show that if Ais an eigenvalue of T, then (] — T)x = y has a solution if and
onlyif y L A (Al — T).Showthatify L A(AI — T), then a solutionis given
by

We also know from Lemma 6.9.11 that

* = i (v-ex) e, » . It follows, then, that if
n=1 A« - #n n
where the terms involving eigenvectors in A(AI —T) drop out since p(z,2) =, ;106.-; z'z/

(y,e,) = 0 for these. What is the general solution of (A — T)x = y when 4

is an eigenvalue of T'? is a polynomial in the variables z and z, then

9 (T, T*) =3 p(4,, )P,

12. FUNCTIONS OF OPERATORS (OPERATIONAL CALCULUS) ’ where
. LetTbea compac? normal operator on a Hilbert space H and express T as a { p(T,T*) = . Z" - TiT*
weighted sum of projections . i, 721 :

S - T=Y4xwP,

as indicated in the Spectral Theorem. The operator T2 is also a compact operator
and, furthermore, one has

if 4, # 0 for all n. In this case 7! is defined on the range Z(T) and by Lemma
6.9.10 one has

T 1= SAtp, (x € #(T)). (6.12.1)
T?=Y 4,2P,. '
-~ Furthermore one has

To see this we note that
T?x = T(Tx) = T(Z AP, x) =Y An Pm(z AP, x)

=Y ApdyPnP,x

T ¥=%2""P, (xe®(T"),

where N is a positive integer. In general, if p(z) is a polynomial in z with no zeros
on the spectrum of 7, then one has

()™t = Z p(3)"'P,.

As a consequence of these observations one can easily prove the following
theorem.

=Y A2P,x

since P, P, = 0 when m # n and P, P, = P,.

Similarly one has
. N . 6.12.1 THEOREM. Let T be a compact normal operator on a Hilbert space H
™ =3 ANP,, and let

n

where N is any positive integer. In fact if T=Y 4P,
n

N
@)=Y o7 be the decomposition of T as a weighted sum of projections.
i=0

(a) If p(2) and q(z) are two polynomials in Z, where q(z) has no zeros on the
spectrum o(T'), and r(z) = p(2) - q(2)*, then
p(Mg(T)™! =3, r(A,)P,.

is any polynomial in z, then
p(T) =Y p(A,)P,,

(b) If p(z,2) and q(z,Z) are two polynomials in z and Z, where q(z,Z) has no
zeros on o(T) x o(T™), and r =pq ™", then

T, T*) =Y (A, ,1,)P,.

where

N
pT)=Y T and T°=I
<o

— Wealso know front Lemma 6.9.7 that the operator T is one-to-one if and only
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This operational calculus can be extended to discuss continuous (even dis-
continuous) functions of z. That is, if f(z) is a continuous function defined on the
spectrum o(7), then

AT)= Z":f (AP, .

The main problem here is defining /(7). The reader who is interested in pursuing
this further is referred to Dunford and Schwartz [1; Section 7.3], Simmons [1], and
Taylor [1].

There is one more point we would like to bring up here and that is the question
of the square root of a positive compact self-adjoint operator T. In this case the
eigenvalues A, are all real and nonnegative, and therefore, the positive square root

/4, is well-defined. It should be clear that in this case one has
TV =Y ./2,P,. (6.12.2)
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ExAMPLE 1. (MATCHED FILTER.) Suppose that we wish to select a linear filter
L so that a certain signal-to-noise ratio is maximized. In particular, let us assume
that L is to be selected from among those linear filters that can be modeled
mathematically in the form y = Lx, or
}

T
Y= [gxt-vdr, e[0T,
where x is the input, y is the output, and the weighting function g is in L,[0,T7]. We

assume that we are given an input signal S(z) and a noise random process N(w,t)
(see Figure 6.13.1)._ At the final time ¢ = T, the output is the sum of

* Linear
S System -——> Output
+ L

EXERCISES

1. Let 4 be any bounded linear operator on a Hilbert space H.
(a) Show that the series

A? o A"
A=l+A++ =) =
2!
converges absolutely and represents a bounded linear operator.
(b) Show that e* commutes with A.

2. Let 4 =Y, 4, P, be the spectral decomposition of a compact normal operator.
Show that e* =Y, e*P,. What is sin 4, cos 4? Is it true that

e =cos A+isin 4?
3. Prove Equation (6.12.2).

4. Let'A4 be a bounded linear operator on a Hilbert space H and assume that o(4)
lies in'the left half of the complex plane.
(a) Show that |lexp At]| -0 as ¢t — + o0.
(b) Use this to show that if u is a solution of

& du, (6.12.3)

then [lu(®)}l =0 as z— co. (Show that u(¢) = (exp Af)u, is a solution of
(6.12.3) that satisfies u(0) = u.)

13. APPLICATIONS OF THE SPECTRAL THEOREM

In this section we shall present a number of applications of the Spectral
Theorem.

Figure 6.13.1.

T
5= f 9@S(T — 1) dr
(1]

and the random variable
T
n(w) = fo g()N(0,T ~ 1) d1.

Our problem is to pick g so as to maximize the signal-to-noise ratio

_sP_

E{[n*}’
where E denotes the mathematical expectation. Therefore, we assume that
S €L,[0,T]. Then s can be viewed as the inner product between the points g(z)

and Sg(t) = S(T — 7) in the Hilbert space L,[0,T]. F urthermore, let us assume that
the noise N(w, t) satisfies

(][ [ ooV T oo, T — ) iy )

T T
= fo fog(ﬁ)g(rz)E{N(a),T —~ 1)N(®,T — 1,)} dr, dr,,
and that the function

W(Tl,TZ) = E{N(w’T_ tZ)N(w:T - 1:1)}

satisfies the condition

T .T
fo fo [W(z1,t)|? dr, d1, < 0.
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We then obtain
E{n|*} = (Wg, 9),
where W is the linear transformation of L,{0,7'] into itself defined by

T
W) = [ Weeir)g(ey) dey.

The transformation W is, of course, by assumption, known.
We then have

|S|2 |(g’SR)I2
= 6.13.1
i}~ (Wa.0) (€130
and we now have the problem stated entirely in terms of the Hilbert space L,[0,T].

Moreover, W is a compact, positive self-adjoint transformation. Therefore it has a
unique positive self-adjoint square root, say that ¥ = A2. We then have

(Wgag) = (Azguq) = (Ag’Ag) = (¢:¢)9
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If any of the eigenvalues {A,} are zero, then the last equation still is valid pro-
vided the corresponding coefficient (Sg,w,) vanishes, or equivalently, provided
§‘R L H#(W). However, since we have assumed Sy to belong to the range of 4 (and
ipso facto to be the range of W) we see that Sg L A (W). (Why?) |

ExampLE 2. (KARHUNEN-LOEVE EXPANSION.) Let [a,b] be a finite interval.
For t € [a,b] let X(¢) denote a random process with

E{X(®}=0, E{X()*} <o, (6.13.2)
and where the covariance function
r(t,5) = E{X ()X (s)} (6.13.3)

is continuous (see Example 1, Section E.6).
Let fbe a complex-valued function defined on [4,b]. We shall define the random

Pyl

where ¢ = Ag. Let us now assume that there is a function ® in L,[0,77] with the
property that S; = A®, that is, Si lies in the range of 4. One then has

s> _ I(g,AD)N* _ (6, D)
E{n’} ~ (9.9) (¢.4)

Then using Schwarz’s Inequality we have

GO
B~ (6p) ~ @

Moreover, the equality will be taken on if and only if ¢ = k®, where k is a nonzero
scalar. Thus a function g that maximizes the signal-to-noise ratio exists and is given
by k® = Ag or equivalently kSg = Wyg. We can make this more explicit by using the

Spectral Theorem.
Since W is a compact positive self-adjoint transformation, there exists an

orthonormal system {w;,w;,ws,...} and a sequence of nonnegative real numbers
 {A3A4%,...} with 4,2 - 0 as n — oo such that

W = ill,,z(x,w,,)w,,.
Furthermore, the square root 4 is given by
Ax = il/l,,(x,w,,)w,,.
The solution of the problem kSi = Wy is then given by
k i (Sr.WIW, = i 22 (g wIwW, s
or equivalently "~ "

9= 2 (@W)W, =k, A *(Sg W)W,
n=1 n=1

variable 7= {; f(1)X (t)dt as follows: Let Pra=t,<f, < <f,=b be a parti-

tion of [a,b] (see Section D.2) and let | P| = max |z, — t;-3|. Let I(P) be the random
variable given by

1) = 3 [EX(ENE = -

If it happens that E {|I(P) — I|*} - 0 as |P| - 0, then we shall define I as

b
I= f F(OX() dt.

In the exercises the reader is asked to show that if £(¢) is continuous and if the co-
variance function r(7,s) is continuous, then the integral {5 () X (¢)dt exists and that

E{ f bf(t)X(t) dt} =0. (6.13.4)

Furthermore, if g is also continuous, then one can show that
b b bob -
2| 10x0) & [ TOXG as| = [ [ FOGOEKOTD ds ds

= f ’ f ’ F(g()r(z,s) dt ds (6.13.5)

and

E{ f bf(t)X(t) dt - E(?)} = f bf(t)r(t,s) dt. (6.13.6)

. 6.13.1 THEOREM. Let X () be a random process defined on a finite interval [a,5]
satisfying (6.13.2). Assume that the covariance function r(t, s) given by (6.13.3) is
continuous. Then one can write

X)) = "21)’;,¢,,(t), a<t<bh, (6.13.7)
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where {¢,} is an orthonormal family of eigenfunctions of the integral operator R
given by

y(1) = f "r(t,5)%(s) ds (6.13.8)

and moreover {¢,} forms a basis for #'(R)*. The random variables Y, in (6.13.7) are
given by Y, = [ o)X (¢) dt and satisfy E{Y,} =0 and E{Y, Y,) = 6, A,, where
Am is the eigenvalue associated with ¢,,. Finally the series in (6.13.7) converges in the
mean square sense to X(t), that is,

£ x0 - £ %40 ] -0

as N — oo for all t in [a,b].

Proof: We note that the integral operator R given by (6.13.8) is compact since
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Let {X,:n=1,2,...} be a discrete random process with
E{X,}=0 and E{|X,)*} < . (6.13.9)
Define the covariance matrix I" = (y,,) by
Yaom =E{X,X,}, nm=12...,

and assume that
3 [Puml® < 0. (6.13.10)

6.13.2 THEOREM. Let {X,:n =1,2,...} be a discrete random process satisfying
(6.13.9) and assume that the covariance matrix T satisfies (6.13.10). Then one can
write

X={X1,X;,...}= kZIquSk, (6.13.11)

1 2 > . .
where ¢ = {2, 2),. Yis-an element of 1y and the collection-of {¢} is-amortho———

r(t,5) 1s continuous, see Example 6, Section 5.24. Also r(t,s) = r(s,t), so R is self-
adjoint. Let {¢,} be an orthonormal collection of eigenfunctions of R associated
with the nonzero eigenvalues {4,}. Then ¢,(¢) is continuous and real-valued (see

Exercise 12, Section 11) and the random variable ¥, = jmt)X(t)dt exists and
by (6.13.4) ore has E{Y,} = 0. Furthermore, (6.13.5) implies that

b b
E(Y, Y} = [ [ 606u(s)r(t,s) ds dt

= J;bm'lm Gu(t) dt = Ay Oy -

Next let Sy(2) =Y 2, Y,¢,(f). Then by a straightforward application of (6.13.5)
and (6.13.6), together with the fact that the eigenvalues of R are real, we get

E{1X(£) — Sy()I*} = E{(X(9) — Sy(0)X(®) — Sx(0)}
=1t = 3 14080,

It is shown in Exercise 12, Section 11 that

ML) = lim 3 408,

therefore, we conclude that

E{|X(t) — Sy()I*} -0
asN—-0. |

ExampLE 3. (THE KARHUNEN-LOEVE EXPANSION FOR DISCRETE RANDOM PRrO-
cesses.) The expansion described in the last example is also valid when the interval
[a,b] is replaced by a discrete countable set say ¢ = 1, 2, ... In this case, a somewhat
different notation is customarily employed.

normal family of eigenvectors for the matrix operator T given by y = T'x, and, more-
over, {¢y} forms a basis for /(T)*. Furthermore the random variables Y, win(6.13.11)
are given by Y, = Y| ¢ X, and satisfy E{Y,} = 0 and E{Y, Y;} = 5, Ay, where
A Is the eigenvalue associated with ¢,. Finally, the series in (6.13.11) converges to

- X ={X1,X,,...} in the mean-square sense, that is,

K
X,— Y Y™
k=1

g

asK—oo,foralln=12,....

2
|-

The proof of this theorem, which we shall leave as an exercise, follows the
argument used in Theorem 6.13.1. The only noteworthy difference is to show that
the series

]
Y;c = Zl ¢k(n)X n

converges to a random variable Y. |

EXERCISES

1. This exercise will lead to a proof that the integral [% (£) X(¢) dt is defined when
Jand X are continuous. We use the notation of Example 2.
(@ LetP=a=ty <ty < - <t,=band P =a=t, <t <+ <t, =bbe
two partitions of [a,5]. Show that

EU(P)I(P)) = LSS DR = 1)t ~ £-y)

- fb f bf (OSIR(L, ) dt dt’
as |P|, [P/| - 0.
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(b) Show that E(|I(P) — I(P)|?) -0 as |P|, | P’} - O.
(c) Use the completeness of L,(Q,#,P), where (Q,%,P) is the underlying
probability space, to conclude that I(P) has a limit in L, as |P|— 0.

2. Using the notation of Example 2, show that if E(X(¢)) =0 for all #, then
E(f5 f(1)X(r) dt) = 0, when f and X are continuous.

3. Using the notation of Example 2, show that if f; g, and X are continuous, then
b b b b
E( [ roxw at [ gXG) ds) = " [ Ag)r(e,s) dr ds

E( j:f(t)X(t) dt- m) - f: F(D)r(t,s) dt.

4. Prove Theorem 6.13.2,
5. Let ¥(f) be a random process defined on a finite interval [a,b] with E{] Y({)*} < oo,

where E(¥(t)) and E(Y(£) ¥(s)) are continuous functions. Show that

Y0 = EY0) + 3 Y, 100,

where Y, and ¢, have structure similar to that defined in Theorem 6.13.1.
6. Let x(w,f) be a complex-valued function defined for w € [0,W] and ¢t € [a,b]
and satisfying: .
f:”x(m,t) dow =0, fo”|x(m,t)|2 do < oo,

for all ¢ € [a,b]. Also assume that
K(t,5) = |  x(@,1) x(@,5) doo

is continuous. Show that one can express x in the form

x(@0 = ¥, ¥.(@) 6,0,
where
b —
Y,@) = [ x(@.t) §,0) ar.

7. Use Exercises 5 and 6 to study the function x(w,f) = exp (iwt).

14. NONNORMAL OPERATORS

So far we have been concentrating on compact normal operators. But
suppose we have a compact operator that is not normal. What can we do ? Clearly
we cannot expect to express it as a weighted sum of projections, for all weighted
sums of (orthogonal) projections are normal. Equivalently, we cannot expect the
eigenvectors to form an orthonormal set. As a matter of fact, all linear operators on
finite-dimensional spaces are compact and it is well known that even there, the
ones that are not normal can lead to difficulties. (The reader may be familiar with
the Jordan canonical form.) Not too surprisingly, things can be more difficult in
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the case of infinite-dimensional spaces. For example, one may be able to show that a
nonnormal compact operator is similar to the operation of multiplication by a
(transfer) function, but it is impossible for it to be unitarily equivalent to such an
operator, for then it would be normal. In any event, we shall avoid all of these
difficulties by taking a slightly different approach. The two main advantages of this
approach are that (1) it is applicable to all compact operators, normal or not, and
(2) it involves only orthonormal sets of vectors. In fact, we shall show in this section
the every compact operator T can be represented in the form

o0
Tx = Zlﬂn(x’xn).})n ’ -
n= .

where the p,’s are nonnegative real numbers and {x,} and {y,} are orthonormal sets.

6.14.1. THEOREM. Let T be compact transformation of a Hilbert space H into
itself. Then there exist two orthonormal systems {x,} and {,} and a sequence of

nonnegative real numbers {p,u, 1 ,...} such that

TX = i(X,%,)Y, (6.14.1)

where convergence is in terms of the uniform topology, that is, 1T — Sx|l = 0asN— o,
where

N
Syx = Zlu..(x,xn)y,.- (6.14.2)

Proof: Whether T is normal or not, the operator T'*T is compact (Theorem
5.24.7) and self-adjoint. Moreover, T*T is nonnegative, that is

x,T*Tx) = (Tx,Tx) = 0

for all x € H. Therefore, it follows that the eigenvalues of T*T are real and non-
negative. Let {u;%,4,%...} denote these eigenvalues, where u, > O for all #n. For
convenience we assume that g, > y, > py > +++. Then, using the eigenvalue-eigen-
vector representation for T7*7, we have

©
T*Tx = Y 1, (x,%,)%,
n=1

where a given eigenvalue is repeated according to its multiplicity and {x,} is an
orthonormal basis of eigenvectors. This operator T*7 has a unique nonnegative
square root R given by

0
Rx =Y u(x,x)x,.
n=1

For p, #0, let

1
Yo=—Tx,.

n



