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1 Introduction

For electromagnetic waves propagating in vacuum (absence of material media,
free currents and free charges), the relationship between the wave-length A and
the frequency f of the wave, or, equivalently, between the wave-vector k = 27/
and the angular frequency w = 27 f, is w = ck. This relationship between k
and w is called the dispersion relation and it specifies the frequency for a given
wave-vector. When one looks dispersion relations of non-homogeneous material
media, expressions as simple as w = ck are usually not what is found. Instead,
one obtains some complicated expression which says that, for some choices of
w, k is a real number and, for others, it is a complex number. Values of w with
a complex k are prohibited frequencies. This is because insertion of k = o + i3
into the wave form solution A(z)e!**=“Y makes the wave decay with e=%% as
it attempts to travel through the medium. By determining all the allowed and
prohibited frequencies, one obtains the passbands and stopbands of the material.
In this write-up we calculate the stopbands and passbands for a layered medium
supporting a polarized H-field.

2 The Maxwell Equations and Interface Condi-
tions

Following Born and Wolf, we write the Maxwell equations as
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where D = ¢E and B = pH. The two parmeters € and p are the electrical per-
mittivity and magnetic permeability of the medium. They specify its electrical
and magnetic properties. In the absence of free currents and free charges and
assuming all fields are time-harmonic, e.g., E = e "“!'E(x,y, 2), we obtain
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where ko = w/c. These equations are complemented by the following transmis-
sion conditions across any interface boundaries
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where njs is the unit normal vector pointing from the region containing material
1 to the region containing material 2 and B(?) —B(1) E®) —E® etc, represent
the difference between the field values at the material 2 side and the material
1 side of the interface boundary. These equations and transmission conditions
are valid no matter what the geometry and physical properties of the material
medium. We now specialize to a non-magnetic layered material with a polarized
magnetic field H = (0,0, H).

3 Layered Medium

If we assume that H = (0,0, H(z)), then the full Maxwell system reduces to
dE/dx = ikouH (3)
dH/dx = ikoeE (4)
where E = (0, E(x),0).
Mathematically, the layered geometry enters via specification of the normal
n in the jump conditions. Thus, insering n = (1,0,0), B = H = (0,0, H),
E=(0,E,0) and D = (0,€eF,0) in the jump conditions, we get
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Thus, the jump conditions specify that £ and H must be continuous across the
layer interfaces.

4 Floquet Theory

Using the second equation of (3), we can rewrite this continuity condition as H
and "' H continuous. Moreover, we can eliminate E in (3) to obtain

H" + k}epH = 0. (5)



This then completely specifies our problem: determine a function H(z) satisfy-
ing (5) on —oo < z < 0o, such that H and e ! H are continuous, where
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Since the coefficient ek? is periodic with period d, we should expect that

H(z) = p(z)e™, (6)

for some k € C, where ¢ is periodic with period d (this can be proved math-
ematically and is known as Floquet’s theorem). On the other hand, we must
have
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for complex constants A, B, C and D, where n; = /€1 and ny = |/e3.

Putting these two differnt ways of writing the solution H together shall give
us two algebraic equations for A, B, C' and D. Indeed, from (6), we see that H
is quasi-peiodic, namely H(x + d) = e***H(x), so that H(02d) = e***H(—0,d)
and H'(6>d) = e***H'(—01d). Combined with (?), this gives
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The continuity of H; and ¢ !H] across the interface z = 0 gives two more
conditions

Ei: A+B = C+D
Ej: M(A-B) = ™2(C-D)

so that we have a homogeneous system of four equations in the four unknowns
A, B, C and D (we went System of PDE’s — ODE — Algebraic System). In
order that this sytem have non-trivial solutions, its determinant must equal zero
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Computing this determinant we obtain a quadratic in e**?
e2hd _ gthd (90 co — [ = + =2 ) 5189 | +1 =0. (7)
) ny
where ¢; = cos(n161kod), ca = cos(nzb2kod), s1 = sin(n161kod) and sy =

sin(ngfskod). The independent coefficient of this quadratic is 1, so that its



roots are reciprocals whose product equals 1, namely e**¢ and e~ **¢. We can

also write (7) as
1
cos(kd) = c1eq — = <nl + 712) 5152. (8)
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Equation (8) gives in implicit form the dispersion relation w = w(k) for the
function E;. Note the resemblance of (8) to the formula cos(a+b) = cosa cosb—
sin a sin b.

5 The Homogenized Dispersion Relation

In the dispersion relation (8), as kod — 0 the right-hand side goes to 1, so that,
for a sufficiently small neighborhood of kgd = 0, we can expand both the right-
and left-hand sides in second-order Taylor series as follows
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Disregrading the term in (kod)* we obtain the “homogenized” dispersion relation
k’2 = (0161 + 9262)]{53

or, writing w = cky,
2 2/ —1 1.2
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where e.p5 = 01€1 + 0262 is the weighted arithmetic mean of €; and es.

6 Plot of the Case n; =1, ny =1y

Below is a contour-plot of the dispersion relation (8) when n; = 1, ny = iy,
1 = 0> = 0.5 and d = 27. The horizontal axis is ky and the vertical axis is .
For pairs (ko,y) in the black region cos k > 1 and in the white region cosk < —1,
so that k is not pure real and there is no propagation in these regions. For (kq, y)
in the gray region | cosk| < 1, so that this is the region of propagation.



