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1 Introduction

For electromagnetic waves propagating in vacuum (absence of material media,
free currents and free charges), the relationship between the wave-length λ and
the frequency f of the wave, or, equivalently, between the wave-vector k = 2π/λ
and the angular frequency ω = 2πf , is ω = ck. This relationship between k
and ω is called the dispersion relation and it specifies the frequency for a given
wave-vector. When one looks dispersion relations of non-homogeneous material
media, expressions as simple as ω = ck are usually not what is found. Instead,
one obtains some complicated expression which says that, for some choices of
ω, k is a real number and, for others, it is a complex number. Values of ω with
a complex k are prohibited frequencies. This is because insertion of k = α + iβ
into the wave form solution A(x)ei(kx−ωt), makes the wave decay with e−βx as
it attempts to travel through the medium. By determining all the allowed and
prohibited frequencies, one obtains the passbands and stopbands of the material.
In this write-up we calculate the stopbands and passbands for a layered medium
supporting a polarized H-field.

2 The Maxwell Equations and Interface Condi-
tions

Following Born and Wolf, we write the Maxwell equations as

∇ ·D = 4πρ ∇ ·B = 0

∇×E +
1
c

∂B
∂t

= 0 ∇×H− 1
c
∂D
∂t = 4π

c J, (1)

where D = εE and B = µH. The two parmeters ε and µ are the electrical per-
mittivity and magnetic permeability of the medium. They specify its electrical
and magnetic properties. In the absence of free currents and free charges and
assuming all fields are time-harmonic, e.g., E = e−iωtE(x, y, z), we obtain
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∇ ·D = 0 ∇ ·B = 0
∇×E− ik0B = 0 ∇×H + ik0D = 0, (2)

where k0 = ω/c. These equations are complemented by the following transmis-
sion conditions across any interface boundaries

n12 · (B(2) −B(1)) = 0
n12 · (D(2) −D(1)) = 0
n12 × (E(2) −E(1)) = 0
n12 × (H(2) −H(1)) = 0

where n12 is the unit normal vector pointing from the region containing material
1 to the region containing material 2 and B(2)−B(1), E(2)−E(1) etc, represent
the difference between the field values at the material 2 side and the material
1 side of the interface boundary. These equations and transmission conditions
are valid no matter what the geometry and physical properties of the material
medium. We now specialize to a non-magnetic layered material with a polarized
magnetic field H = (0, 0, H).

3 Layered Medium

If we assume that H = (0, 0, H(x)), then the full Maxwell system reduces to

dE/dx = ik0µH (3)
dH/dx = ik0εE (4)

where E = (0, E(x), 0).
Mathematically, the layered geometry enters via specification of the normal

n in the jump conditions. Thus, insering n = (1, 0, 0), B = H = (0, 0, H),
E = (0, E, 0) and D = (0, εE, 0) in the jump conditions, we get

(1, 0, 0) · (0, 0, B(2) −B(1)) = 0
(1, 0, 0) · (0, εE(2) − εE(1), 0) = 0
(1, 0, 0)× (0, E(2) − E(1), 0) = 0
(1, 0, 0)× (0, 0, H(2) −H(1)) = 0

Thus, the jump conditions specify that E and H must be continuous across the
layer interfaces.

4 Floquet Theory

Using the second equation of (3), we can rewrite this continuity condition as H
and ε−1H continuous. Moreover, we can eliminate E in (3) to obtain

H ′′ + k2
0εµH = 0. (5)
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This then completely specifies our problem: determine a function H(x) satisfy-
ing (5) on −∞ < x <∞, such that H and ε−1H are continuous, where

ε(x) =
{
ε1, −θ1d < x < 0
ε2, 0 < x < θ2d.

an µ = 1.
Since the coefficient εk2

0 is periodic with period d, we should expect that

H(x) = φ(x)eikx, (6)

for some k ∈ C, where φ is periodic with period d (this can be proved math-
ematically and is known as Floquet’s theorem). On the other hand, we must
have

H(x) =
{
Aeik0n1x +Be−ik0n1x, inside layer n1

Ceik0n2x +De−ik0n2x, inside layer n2

for complex constants A, B, C and D, where n1 =
√
ε1 and n2 =

√
ε2.

Putting these two differnt ways of writing the solution H together shall give
us two algebraic equations for A, B, C and D. Indeed, from (6), we see that H
is quasi-peiodic, namely H(x + d) = eikdH(x), so that H(θ2d) = eikdH(−θ1d)
and H ′(θ2d) = eikdH ′(−θ1d). Combined with (?), this gives

{
H1 : Ceik0n2l2 +De−ik0n2l2 = eikd(Ae−ik0n1l1 +Beik0n1l1)
H ′1 : n2Ce

ik0n2l2 − n2De
−ik0n2l2 = eikd(n1e

−ik0n1l1 − n1Be
ik0n1l1).

The continuity of H1 and ε−1H ′1 across the interface x = 0 gives two more
conditions {

E1 : A+B = C +D
E′1 : n1

ε1
(A−B) = n2

ε2
(C −D)

so that we have a homogeneous system of four equations in the four unknowns
A, B, C and D (we went System of PDE’s → ODE → Algebraic System). In
order that this sytem have non-trivial solutions, its determinant must equal zero

0 =

∣∣∣∣∣∣∣∣
eikde−ik0n1l1 eikdeik0n1l1 −eik0n2l2 −e−ik0n2l2

n1e
ikde−ik0n1l1 −n1e

ikdeik0n1l1 −n2e
ik0n2l2 n2e

−ik0n2l2

1 1 −1 −1
n1
ε1

−n1
ε1

−n2
ε2

n2
ε2

∣∣∣∣∣∣∣∣ .
Computing this determinant we obtain a quadratic in eikd

e2ikd − eikd
(

2c1c2 −
(
n1

n2
+
n2

n1

)
s1s2

)
+ 1 = 0. (7)

where c1 = cos(n1θ1k0d), c2 = cos(n2θ2k0d), s1 = sin(n1θ1k0d) and s2 =
sin(n2θ2k0d). The independent coefficient of this quadratic is 1, so that its
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roots are reciprocals whose product equals 1, namely eikd and e−ikd. We can
also write (7) as

cos(kd) = c1c2 −
1
2

(
n1

n2
+
n2

n1

)
s1s2. (8)

Equation (8) gives in implicit form the dispersion relation ω = ω(k) for the
function E1. Note the resemblance of (8) to the formula cos(a+b) = cos a cos b−
sin a sin b.

5 The Homogenized Dispersion Relation

In the dispersion relation (8), as k0d→ 0 the right-hand side goes to 1, so that,
for a sufficiently small neighborhood of k0d = 0, we can expand both the right-
and left-hand sides in second-order Taylor series as follows

1−k
2d2

2
=

(
1− (n1θ1k0d)2

2

) (
1− (n2θ2k0d)2

2

)
−1

2

(
n1

n2
+
n2

n1

)
(n1θ1k0d)(n2θ2k0d).

Disregrading the term in (k0d)4 we obtain the “homogenized” dispersion relation

k2 = (θ1ε1 + θ2ε2)k2
0

or, writing ω = ck0,
ω2 = c2(ε−1

effk
2),

where εeff = θ1ε1 + θ2ε2 is the weighted arithmetic mean of ε1 and ε2.

6 Plot of the Case n1 = 1, n2 = iy

Below is a contour-plot of the dispersion relation (8) when n1 = 1, n2 = iy,
θ1 = θ2 = 0.5 and d = 2π. The horizontal axis is k0 and the vertical axis is y.
For pairs (k0, y) in the black region cos k > 1 and in the white region cos k < −1,
so that k is not pure real and there is no propagation in these regions. For (k0, y)
in the gray region | cos k| < 1, so that this is the region of propagation.
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