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1 Green’s Identity

We start with the divergence theorem in R. Let Ω0 be a bounded domain
with piecewise smooth boundary ∂Ω0 and n, the unit outward vector normal
to ∂Ω0. For a smooth field w ∈ C1(Ω̄0),

∫

Ω0

∇ · wdr =

∫

∂Ω0

w · nds

Let w = v∇u, then

∇w = v∆u + ∇v · ∇u.

By the divergence theorem,
∫

Ω0

∇wdr =

∫

Ω0

(v∆u + ∇v · ∇u)dr =

∫

Ω0

v
∂u

∂n
ds

Interchanging v and u, we have
∫

Ω0

(u∆v + ∇u · ∇v)dr =

∫

Ω0

u
∂v

∂n
ds

Thus we obtain the following Green’s Identity by subtracting the above
two identities:

∫

Ω0

(u∆v − v∆u)dr =

∫

Ω0

(u
∂v

∂n
− v

∂u

∂n
)ds

∗This document is for VIR Sp 2009 use only, and cannot be used for general distribution.

Materials in this document are from the listed references.

1



2 Boundary Integral Representation Using Green’s

Identity

In order to introducing Green functions, we first give an idea of the delta
function δ(x), which satisfies

δ(x) =

{

0 , if x 6= 0
∞ , if x = 0

and
∫

Rn

δ(x) = 1. (unit point mass)

The delta function has the following properties:
∫

Rn

δ(x)φ(x)dx = φ(0)

and
∫

Rn

δ(x − x0)φ(x)dx = φ(x0)

The second identity follows from y = x − x0 and hence
∫

Rn

δ(x − x0)φ(x)dx =

∫

Rn

δ(y)φ(y + x0)dy = φ(x0).

In the equation for the spatial factor of a time-harmonic acoustic wave

∇ · τ∇u + ω2ρu = 0.

If τ is a constant in a domain Ω, we can write

τ∇ · ∇u + ω2ρu = 0,

or

∆u + k2u = 0, where k2 =
ω2ρ

τ

This is a Helmholtz equation. The Helmholtz equation in R
3 admits a

fundamental solution (Green function)

Φ(r̂ − r) =
1

4π

eik|r̂−r|

|r̂ − r|
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i.e.
∆Φ + k2Φ = δ(r̂ − r)

In R
2, it has a fundamental solution

Φ(r̂ − r) = − i

4
H1

0 (k0|r̂ − r|),

where H1
0 (z) is a Hankel function and H1

0 (z) ∼
√

2
πz

ei(z−π
4
) as z → ∞.

Suppose we have the Green function Φ. From the Green’s identity, we
have

∫

Ω

(u∆v − v∆u)dr =

∫

Ω

(u∆v + k2uv − v∆u − k2uv)dr

=

∫

Ω

(u
∂v

∂n
− v

∂u

∂n
)ds

r̂

Figure 1: Case 1: r̂ is in the interior.

Fix r̂ ∈ Ω and let v = Φ(r̂ − r), u = u(r), then

∫

Ω

u(r)δ(r̂ − r)dr =

∫

Ω

[

u(r)
∂Φ(r̂ − r)

∂n(r)
− Φ(r̂ − r)

∂u(r)

∂n(r)

]

ds(r)

i.e.

u(r̂) =

∫

Ω

[

u(r)
∂Φ(r̂ − r)

∂n(r)
− Φ(r̂ − r)

∂u(r)

∂n(r)

]

ds(r)

However, if r̂ ∈ R
3 \ Ω̄, we cannot take the same domain Ω to obtain

similar expression, because ∆Φ(r̂ − r) + k2Φ = 0, i.e., the Green function
does not have a singular point in Ω.
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r
r̂

Figure 2: Case 2: r̂ is in the exterior.

We fix this problem by taking an exterior domain BR \ Ω̄ , where BR is
a ball centered at r̂ with radius R large enough, and so

u(r̂) =

∫

∂Ω

[

−u(r)
∂Φ(r̂ − r)

∂n(r) + Φ(r̂ − r)∂u(r)
∂n(r)

]

ds(r) +

∫

∂BR

[

u
∂Φ

∂n
− Φ

∂u

∂n

]

ds(r)

The second integral vanishes if we assume the radiation conditions. One
radiation condition is the Sommerfeld radiation condition:

(

r

|r| ,∇u(r)

)

− iku(r) = o

(

1

|r|

)

, as |r| → ∞.

The following theorem can be proved

Theorem 1 Let u ∈ R
n\Ω̄ be a solution of the Helmholtz equation, Φ(r̂, r) a

fundamental solution. Assume they both satisfying the Sommerfeld radiation

condition uniformly for all directions n. Then
∫

∂Ω

[

u(r)
Φ(r̂, r)

∂n(r)
− ∂u(r)

∂n(r)
Φ(r̂, r)

]

ds(r) = u(r̂), r̂ ∈ R \ Ω̄

3 Periodic Structures and Associated Green

Functions

Let us discuss the integral representation for photonic crystals. The structure
we are interested in is a periodic media consisting of an array of rods with

4



the same constant coefficients τ = τ1, ρ = ρ1 lying in a material with other
same constant coefficients τ = τ0, ρ = ρ0. The spatial factor satisfies two
equations

∆u + k2
1u = 0, in D (1)

∆u + k2
0u = 0, in S \ D̄ (2)

where k2
1 = ρ1

τ1
ω2, k2

0 = ρ0

τ0
ω2.

.

θ = arcsin(m+β

k
), β ∈ (−1

2
, 1

2
]

Figure 3: Periodic Structures and Incidental Waves.

The following matching conditions at the interfaces should be met

uint = uext (3)

τ1∇uint = τ0∇uext, (4)
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or
∇uint =

τ0

τ1

∇uext = ν∇uext.

Suppose an incident field is produced at an angle of θ to the x−axis, and
has the form

uinc = ei
√

k2−(m+β)2x+i(mβ)y.

It satisfies the Helmholtz equation and the pseudoperiodicity u(x, y + 2π) =
u(x, y)eiβ2π.

We now consider a pseudoperiodic scattered field usc that satisfies a ra-
diation condition at x = ±∞.

We assume k2−(m+β)2 6= 0. Let µm be defined by µ2
m−(m+β)2+k2 = 0,

(or µ2
m = (m + β)2 − k2). The series Φ(r) = − 1

4π

∑∞
m=−∞

1
iµm

eiµm|x|+i(m+β)y

converges and

∆Φ + k2Φ = −
∞

∑

m=−∞

δ(x, y − 2πn)e2πniβ .

This function is pseudoperiodic

Φ(x, y + 2π) = Φ(x, y)ei2πβ .

In order to ensure the radiation condition, we make the following sign
determination:

• If µ2
m < 0,

√

|µm|2 = ηm, then we take µm = ηmi.

• If µ2
m > 0, ηm = |µm|, then we take µm > 0.

The first case corresponds to exponentially decaying harmonics; the sec-
ond gives outwardly propagating harmonics.

Notice that for our choices of Green functions in this section, there is a
negative sign besides δ in contrast to the previous section. So the Green’s
identity implies that, for a bounded domain and a Helmholtz field u,

u(r̂) +

∫

∂Ω

[

∂Φ(r̂ − r)

∂n(r)
u(r) − Φ(r̂ − r)

∂u(r)

∂n(r)

]

ds(r) = 0.
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4 Boundary Integral Representations for Pe-

riodic Structures

Now we compute u in terms of the boundary integrals for both interior and
exteriors.

Figure 4: In the interior, let h → 0

For r̂ ∈ ∂D and h > 0,

uint(r̂−hn(r̂))+

∫

∂Ω

[

∂Φ(r̂ − hn(r̂) − r)

∂n(r)
uint(r) − Φ(r̂ − hn(r̂) − r)

∂uint(r)

∂n(r)

]

ds(r) = 0.

(5)
Let h → 0, then the term ∂Φ

∂n
produces a singular contribution

lim
h→0

∫

∂D

∂Φ(r̂ − hn(r̂) − r)

∂n(r)
uint(r)ds(r) = −1

2
uint(r̂)+

∫

∂D

∂Φ(r̂ − r)

∂n(r)
uint(r)ds(r), r̂ ∈ ∂D.

So for r̂ ∈ ∂D, uint(r̂) satisfies the integral equation

1

2
uint(r̂) +

∫

∂D

[

∂Φ(r̂ − r)

∂n(r)
uint(r) − Φ(r̂ − r)

∂uint

∂n(r)
(r)

]

ds(r) = 0.

By the matching conditions, we obtain

1

2
uext(r̂) +

∫

∂D

[

∂Φ

∂n
uext − Φ

∂uext

∂n

]

ds = 0 (6)

The exterior is a bit more complicated. For r̂ + hn(r̂) ∈ S \ D̄,

uext(r̂+hn(r̂))+

∫

Γ\∂D

[

∂Φ(r̂ + hn(r̂) − r)

∂n(r)
uext(r) − Φ(r̂ + hn(r̂) − r)

∂uext(r)

∂n(r)

]

ds(r) = 0

(7)
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.

r̂

Figure 5: In the exterior, let h → 0

By the radiation condition of usc, we know
∫

Γ

[

∂Φ

∂n
usc − Φ

∂usc

∂n

]

ds = 0.

So the integral of uext on Γ,
∫

Γ

[

∂Φ

∂n
uext − Φ

∂uext

∂n

]

ds =

∫

Γ

[

∂Φ

∂n
uinc − Φ

∂uinc

∂n

]

+

∫

Γ

[

∂Φ

∂n
usc − Φ

∂usc

∂n

]

=

∫

Γ

[

∂Φ

∂n
uinc − Φ

∂uinc

∂n

]

ds

= −uint(r̂ + hn(r̂)).

Substitute it into (6), then we get

uext(r̂ + hn(r̂)) +

∫

∂D

[

−∂Φ(r̂ + hn(r̂) − r)

∂n(r)
uext(r)

+Φ(r̂ + hn(r̂) − r)
∂uext(r)

∂n(r)

]

ds(r + hn(r̂))

= uinc(r̂ + hn(r̂)).

(8)

Let h → 0 from the exterior, the since the term ∂Φ
∂n

produces a singular
contribution

lim
h→0

∫

∂D

−∂Φ(r̂ + hn(r̂) − r)

∂n(r)
uext(r)ds(r) = −1

2
uext(r̂)+

∫

∂D

−∂Φ(r̂)

∂n(r)
uext(r)ds(r), r̂ ∈ ∂D.

we have

1

2
uext(r̂) +

∫

∂D

[

−∂Φ(r̂ − r)

∂n(r)
uext(r) + Φ(r̂ − r)

∂uext(r)

∂n(r)

]

ds(r) = uinc(r̂).

(9)
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The two equations (6) (9) form a system of uext(r̂) and ∂uext

∂n
(r̂).

5 Numerical Computation

To solve the system numerically, we choose a finite number of sample points
{r̂j}N

j=1 on ∂D and approximate all the functions in the system by their linear
interpolations at these sample points, and we also apprimate the integrals by
the integral of the linear interpolations. Or equivalently, in the language of
function spaces, we approximate uext(r̂) and ∂uext

∂n
(r̂) by a linear combination

of linearly independent basis functions {hi}N
i=1 on C(∂D):

uext(r̂) =

N
∑

i=1

aihi(r̂), r̂ ∈ ∂D (10)

∂uext

∂n
(r̂) =

N
∑

i=1

bihi(r̂) (11)

Denote

L1(u,
∂u

∂n
)(r̂) =

1

2
u(r̂) +

∫

∂D

[

−∂Φ(r̂ − r)

∂n(r)
uext(r) + Φ(r̂ − r)

∂uext(r)

∂n(r)

]

ds(r)

L2(u,
∂u

∂n
)(r̂) =

1

2
u(r̂) +

∫

∂D

[

∂Φ(r̂ − r)

∂n(r)
uext(r) − νΦ(r̂ − r)

∂uext(r)

∂n(r)

]

ds(r)

We get an approximating finite-dimensional linear system

L1(
∑

aihi,
∑

bihi)(r̂j) = uinc(r̂j), j = 1, . . . , N

L2(
∑

aihi,
∑

bihi)(r̂j) = 0, j = 1, . . . , N

This is a 2N × 2N linear system for {ai, bi}N
j=1.

The values of u in D and in S \ D̄ can be obtained by (5) and (8) using
similar discretization.

6 Further Readings

The proof of the Theorem can be found in Theorem 3.3 in [1]. The singular
contribution of the double-layer potential is calculated in Theorem 2.13 in
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[1]. A general definition of the integral representations is given in [3]. In [2],
some numerical computations are implemented for a system related to the
system mentioned here.
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