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1 A perturbation result

Start with the Schrödinger equation with a potential V compactly supported in-
side (a, b), and replace the equation outside the (a, b) with appropriate boundary
conditions:

(H − λ2)ψ = 0 for x ∈ (a, b) (1)
(∂x − iλ)ψ = 0 at x = b (2)
(∂x + iλ)ψ = 0 at x = a. (3)

Values of λ in the upper half plane correspond to eigenvalues of the original
problem; values in the lower half plane correspond to resonances.

Now suppose δV is a perturbing potential supported inside (a, b). Taking
variations, we have

(H − λ2)δψ + (δV − 2λδλ)ψ = 0 for x ∈ (a, b) (4)
(∂x − iλ)δψ − iδλψ = 0 at x = b (5)
(∂x + iλ)δψ + iδλψ = 0 at x = a. (6)

Integrating by parts, we have∫ b

a

ψ(H − λ2)δψ = [−ψ∂xδψ + ∂xψδψ]ba +
∫ b

a

δψ(H − λ2)ψ (7)

= [−ψ∂xδψ + ∂xψδψ]ba . (8)

Using the boundary conditions, we now have that

[−ψ∂xδψ + ∂xψδψ]ba . = [−ψ(±iλδψ ± iδλψ) + (±iλψδψ)]ba (9)

=
[
∓iδλψ2

]b
a

(10)

= −iδλ(ψ(a)2 + ψ(b)2). (11)

Therefore when we integrate the domain variational equation against ψ, we have

0 =
∫ b

a

{
ψ(H − λ2)δψ + ψ(δV − 2λδλ)ψ

}
(12)

= −iδλ(ψ(a)2 + ψ(b)2) +
∫ b

a

δV ψ2 − 2λδλ
∫ b

a

ψ2. (13)
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so that

δλ =

∫ b

a
δV ψ2

2λ
∫ b

a
ψ2 + i(ψ2(a) + ψ2(b))

. (14)

2 Application to potential cutoff

Now consider the denominator in (14). If the support of V is contained in (a, b)
and the support of our perturbation is contained in a larger interval (A,B),
then we know that

ψ(x) =

{
c+e

iλx for b < x

c−e
−iλx for x < a

(15)

Therefore, we can write∫ B

A

ψ2 =
∫ a

A

c2−e
−2iλx +

∫ B

b

c2+e
2iλx +

∫ b

a

ψ2 (16)

=
1

2iλ
(
c2+e

2iλB + c2−e
−2iλA

)
(17)

− 1
2iλ

(
c2+e

2iλb + c2−e
−2iλa

)
+
∫ b

a

ψ2 (18)

=
−i
2λ
(
ψ(B)2 + ψ(A)2

)
+

i

2λ
(
ψ(b)2 + ψ(a)2

)
+
∫ b

a

ψ2. (19)

Therefore we have(
2λ
∫ B

A

ψ2

)
+ i(ψ(B)2 + ψ(A)2)

=

(
2λ
∫ b

a

ψ2 − i(ψ(B)2 + ψ(A)2) + i(ψ(a)2 + ψ(b)2)

)
+i(ψ(B)2 + ψ(A)2)

= 2λ
∫ a

a

ψ2 + i(ψ(b)2 + ψ(a)2)

Thus the denominator in the perturbation bound is independent of the interval
(A,B) supporting δV ; it depends only on the interval (a, b). So for a support
on a larger interval (A,B), we have

δλ =

∫ B

A
δV ψ2

2λ
∫ b

a
ψ2 + i(ψ2(a) + ψ2(b))

. (20)

Now suppose we take the limiting case where the perturbation δV is sup-
ported on the entire real line. For example, we might be interested in what
happens when we compute resonances by applying a cutoff to the potential, so
that the perturbation corresponds to everything that we have cut off. Then the
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Figure 1: Computed resonances for an Eckart potential. Because the potential
is truncated to a finite interval, only resonances above the line =(λ) = −1 need
correspond to true resonances for the original potential supported on all of R.

above bound says, roughly, that we can only treat the truncated potential as
“close to” the true potential when the true potential decays sufficiently faster
than e2=(λ)|x| as |x| → ∞.

As a concrete case, let us consider an Eckart barrier

VE(x) = cosh(x)−2. (21)

In order to compute resonances for the potential VE , we write VE = V + δV ,
where V = VE on some bounded interval (a, b) and V = 0 outside that interval.
We would now like to claim that δV is a small perturbation, so that computing
resonances from the truncated potential V gives us an approximation to reso-
nances of the original potential VE . But the integral expression for δλ above
(with A = −∞ and B = ∞) can only converge when =(λ) > −1. Indeed, when
computing resonances for the Eckart potential by truncating to a compactly
supported potential, we are only able to resolve the resonances above the line
=(λ) = −1; around =(λ) = −1, the truncated potential has many spurious
resonances which effectively mask the behavior of any resonances for VE which
might live deeper in the complex plane (Figure 1).
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3 Numerical sensitivity analysis

Now suppose that we have computed an approximate resonant state (ψ̂, λ) by
a pseudospectral collocation discretization of (1)-(3). Then ψ̂ exactly satisfies

(Ĥ − λ2)ψ = 0 for x ∈ (a, b) (22)
(∂x − iλ)ψ = 0 at x = b (23)
(∂x + iλ)ψ = 0 at x = a. (24)

where Ĥ = H + δV = H − ψ̂−1R with R := (H − λ2)ψ the residual. Assuming
δV is small and λ is reasonably isolated, the error in the computed λ will be
approximately

δλ =

∫ b

a
ψ̂R

2λ
∫ b

a
ψ̂2 + i(ψ̂2(a) + ψ̂2(b))

. (25)

We can approximate this formula directly by numerical integration; we need
only to be sure that R is sampled with adequate density, since by definition R
is zero at the points associated with the original collocation grid.

4 Perturbation in higher dimensions

Now consider the more general case of a Schrödinger equation in Rn with a
potential inside some finite domain Ω with appropriate Dirichlet-to-Neumann
boundary conditions

(H − λ2)ψ = 0 for x ∈ Ω (26)
∂ψ

∂n
−B(λ)ψ = 0 for x ∈ Γ = ∂Ω. (27)

As before, suppose δV is a perturbing potential supported inside Ω; then taking
variations, we have

(H − λ2)δψ + (δV − 2λδλ) = 0 for x ∈ Ω (28)
∂δψ

∂n
−B(λ)δψ +B′(λ)ψδλ = 0 for x ∈ Γ = ∂Ω. (29)

As before, we will multiply the domain equation by ψ and integrate by parts.
The key term is∫

Ω

ψ(H − λ2)δψ = −
∫

Γ

(
ψ
∂δψ

∂n
− δψ∂ψ

∂n

)
+
∫

Ω

δψ(H − λ2)ψ (30)

= −
∫

Γ

(ψB(λ)δψ + ψB′(λ)ψδλ− δψB(λ)ψ) (31)

= −
∫

Γ

ψB′(λ)ψδλ. (32)

4



Therefore when we integrate the domain variational equation against ψ, we have

0 =
∫

Ω

ψ(H − λ2)δψ + ψ(δV − 2λδλ)ψ (33)

= −
∫

Γ

ψB′(λ)ψδλ+
∫

Ω

ψ(δV − 2λδλ)ψ, (34)

which we can rearrange to obtain

δλ =

∫
Ω
δV ψ2

2λ
∫
Ω
ψ2 +

∫
Γ
ψB′(λ)ψ

. (35)

If we were to also allow a perturbation in the DtN map (e.g. in order to analyze
the effects of approximate absorbing boundary conditions), we would have

δλ =

∫
Ω
δV ψ2 +

∫
Γ
ψδBψ

2λ
∫
Ω
ψ2 +

∫
Γ
ψB′(λ)ψ

. (36)

5 Domain independence of the denominator

Now suppose that φ(x, λ) is the solution to a Dirichlet problem(
∆ + λ2

)
φ = 0 on Ω (37)
φ = f on Γ = ∂Ω (38)

∂φ

∂n
= B(λ)f on Γ (39)

where B(λ) is an appropriate Dirichlet-to-Neumann map. Taking variations
with respect to λ gives us the problem

(∆ + λ2)δφ+ 2λδλφ = 0 on Ω (40)
δφ = 0 on Γ (41)

∂δφ

∂n
= B(λ)δφ+B′(λ)fδλ (42)

= B′(λ)fδλ (43)
= B′(λ)φδλ on Γ. (44)

Integrating the domain equation against φ now gives∫
Ω

φ(∆ + λ2)δφ+ 2λδλ
∫

Ω

φ2 = 0. (45)
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If we integrate the first term by parts twice, we have∫
Ω

φ(∆ + λ2)δφ

=
∫

Γ

(
φ
∂δφ

∂n
− δφ∂φ

∂n

)
+
∫

Ω

δφ(∆ + λ2)φ

=
∫

Γ

φ
∂δφ

∂n

= δλ

∫
Γ

φB′(λ)φ.

Therefore
2λ
∫

Ω

φ2 +
∫

Γ

φB′(λ)φ = 0. (46)

Because the wave function ψ from the previous section will satisfy a Helmholtz
equation outside the support of V , equation (46) implies that the denominator
of (36) is independent of the integration domain Ω, beyond the fact that said
integration domain should contain the support of V .
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