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Preface

These notes are an attempt to organize lectures (as they progress)
given at Université de Paris-Nord in the Spring of 2011. The author is
grateful for the support through his Chair d’Excellence at the Labora-
toire Analyse, Géométrie et Applications there.
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1. Introduction

1.1 Resonances in scattering theory
1.2 Semiclassical study of resonances
1.3 Some examples from mathematics and physics
1.4 Overview

1.1. RESONANCES IN SCATTERING THEORY.
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Figure 1. Resonances corresponding to different dy-
namical phenomena

Scattering resonances are the replacement of discrete spectral data
for problems on non-compact domains.

1.2. SEMICLASSICAL STUDY OF RESONANCES.

Figure 1 shows some of the principles in dimension one.
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Figure 2. An STM spectrum is a plot of dI/dV (I
being the current) as a function of bias voltage V . Ac-
cording to the basic theory of STM, this reflects the sam-
ple density of states as a function of energy with respect
to the Fermi energy (at V = 0). This spectrum shows
the series of surface state electron resonances in the cen-
ter of a circular quantum corral on Cu(111). The bulk
bands contribute to a gradually varying background in
this spectrum. The setpoint was V0 = 1V and I0 = 10nA
and the modulation voltage was Vrms = 4mV. Inset: a
low-bias topograph of the corral studied (17 × 17nm2 ,
V = 10mV, I = 1nA). The corral is made from 84 CO
molecules adsorbed to Cu(111) and has an average ra-
dius of 69.28 Å. The large amplitude in the center of the
topograph is a re ection of the sharp peak seen in the
spectrum at V = 0.

1.3. SOME EXAMPLES.

Although these lecture notes are intended for mathematical audience
and concentrate on rigorous presentation, a physical motivation plays
an essential rôle in the study of scattering resonances. We present here
a few recent examples.
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Figure 3. The experimental set-up of the Marburg
quantum chaos group

http://www.physik.uni-marburg.de

for the five disc, symmetry reduced, system. The hard
walls correspond to the Dirichlet boundary condition,
that is to odd solutions (by reflection) of the full prob-
lem. The absorbing barrier, which produces negligible
reflection at the considered range of frequencies, models
escape to infinity.

Figure 2 shows resonance peaks for a scanning tunneling microscope
experiment where a circular quantum corral of CO molecules is con-
structed – see [1] and references given there. Figure 3 shows an exper-
imental set-up for studying resonances in microwave scattering.

Figure 4 shows a MEMS resonator. The numerical calculations in
that case are based on the complex scaling technique adapted to the
finite element methods, and known as the method of perfectly matched
layers.
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Figure 4. A MEMS device on top has resonances in-
vestigated using the complex scaling/perfectly matched
layer methods [Bi-Go]. A numerically constructed reso-
nant mode is shown on the right.

1.4. OVERVIEW. Chapter 1 covers basic theory of resonances in di-
mension one. The basic concepts such as the definition of outgoing
solutions, meromorphic continuation of the resolvent, the relation of
resonances to the scattering matrix, trace formulæ, and resonant ex-
pansions of waves.
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2. Scattering resonances in dimension one

2.1 Meromorphic continuation
2.2 Expansions of scattered waves
2.3 Scattering matrix
2.4 Asymptotics for the counting function
2.5 Trace formulæ
2.6 Complex scaling in one dimension

In the simplest and almost explicit setting of one dimensional scatter-
ing we can already see many of the features of the theory. In particular,
various notions can be explained in a very intuitive setting. Techni-
cally, there are also many advantages: we are dealing with ordinary
differential equations, methods of complex analysis apply particularly
well, trace class properties hold nicely.

We consider the following class of operators:

PV = D2
x + V (x) , Dx :=

1

i
∂x , V ∈ L∞comp(R) .

The stationary Schrödinger equation then is

(2.1) (PV − z)u = f , z ∈ C , f ∈ L∞comp(R) ,

while the dynamical equation is given by

(2.2) (i∂t − PV )v = F , v|t=0 = v0 .

A solution to the stationary equation (2.1) produces solution to (2.2)
corresponding to the evolution of the state u:

(2.3) v(t, x) := e−iztu(x) , v0(x) = u(x) , F (x, t) = −e−iztf(x) .

Outside the support of V and f , say for |x| ≥ R, the solutions of
(2.2) are given by

u(x) = A±e
i
√
zt +B±e

−i
√
zt , ±x ≥ R .

To consider the dependence on z we have to choose a branch of
√
z.

We consider
√
z defined on C \ [0,∞) with

± lim
ε→0+

√
z ± iε =: ±

√
z ± i0 > 0 , z ∈ (0,∞) .

When considering z ∈ (0,∞) we write
√
z =
√
z + i0.
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Figure 5. Schematic representation of the outgoing
(left) and incoming (right) solutions to (2.3).

Outgoing and incoming solutions. A solution to (2.1) with z > 0
is called outgoing if

(2.4) u(x) = B−e
−i
√
zx , x < −R , u(x) = A+e

i
√
zx , x > R .

This corresponds to v given by (2.3) moving away from the support of
V (x) – see Figure 5. We also note that using our convention

Imz > 0 =⇒ u(x) ∈ L2(R) .

Similarly, the solution to (2.1) is callled incoming if

u(x) = A−e
i
√
zx , x < −R , u(x) = B+e

−i
√
zx , x > R .

Although the physical motivation illustrated in Figure 5 disappears
when z /∈ (0,∞) we will still use the notions of outgoing and incoming
solutions as defined above, paying attention to our

√
z convention,

In Section 2.1 we will address the problem of constructing outgoing
(or incoming solutions) to (2.1). That will need to a natural definition
of resonances.

So far we have provided motivation in terms of the Schrödinger equa-
tion. We can also consider the wave equation:

(2.5) (−∂2
t − PV )v = F , v|t=0 = v0 , ∂tv|t=0 = v1 .
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In that case the stationary equation, formally obtained by taking the
Fourier transform in t, is given by

(2.6) (PV − λ2)u = 0 , λ ∈ C .

In this case the convention regarding the sign of λ in the definition of
outgoing and incoming solutions is arbitrary. We choose a convention
consistent with the choice of

√
z above:

λ2 = z , λ =
√
z .

In particular,

λ > 0 =⇒
√

(±λ+ i0 +)2 = ±λ ,

and the outgoing solution to (2.6) is supposed to satisfy

(2.7) u(x) = B−e
−iλx , x < −R , u(x) = A+e

iλx , x > R .

We now have

Imλ > 0 =⇒ u(x) ∈ L2(R) .

The solutions to (2.6) with f = 0 are the eigenfunctions of PV corre-
sponding to eigenvalues λ2.

We will use the λ convention in this chapter. In Section 2.2 the
connection with the wave equation will be made precise and rigorous.

2.1. Meromorphic continuation.

In this section we will consider solving (2.6) for λ ∈ C, with u out-
going, that is satisfying (2.7).

First we consider the case of V = 0. In that case u(x) is given by an
explicit formula:

u(x) =
i

2λ

∫
R
eiλ|x−y|f(y)dy .

For Imλ > 0 this gives the integral kernel of the free resolvent:

(D2
x − λ2)−1(x, y) =

i

2λ
eiλ|x−y| ,

(D2
x − λ2)−1 : L2(R) −→ L2(R) , Imλ > 0 .

We should stress that for Imλ < 0

(D2
x − λ2)−1(x, y) = − i

2λ
e−iλ|x−y| ,

(D2
x − λ2)−1 : L2(R) −→ L2(R) , Imλ < 0 .
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We write

R0(λ) := (D2
x − λ2)−1 , Imλ > 0 ,

R0(λ)(x, y) =
i

2λ
eiλ|x−y| .

(2.8)

From this expression we see that R0(λ)(x, y) is a meromorphic function
of λ ∈ C defining an operator C∞c (R)→ C∞(R) which is not bounded
on L2 for Imλ ≤ 0.

We summarize these in

THEOREM 2.1 (Meromorphic continuation of the resolvent
0). The operator R0(λ) defined by (2.8) for Imλ > 0 extends to a
meromorphic family of operators for λ ∈ C:

R0 := L2
comp −→ L2

loc .

We have

‖R0(λ)‖L2→L2 =
1

d(λ2,R+)
≤ 1

|λ|Imλ
, Imλ > 0 ,

and for ρ ∈ C∞c (R), suppρ ⊂ [−L,L]

(2.9) ‖ρR0(λ)ρ‖L2(Rn)→Hj(Rn) ≤ CLe
2L(Imλ)−|λ|j−1 ,

where x− = 0 for x ≥ 0 and x− = −x for x < 0.

For V 6= 0 we have a result which shows that the resolvent of PV =
D2
x + V (x) also has a meromorphic continuation.

THEOREM 2.2 (Meromorphic continuation of the resolvent
I). Suppose that V ∈ L∞comp(R;C). Then the

RV := (D2
x + V − λ2)−1 : L2 −→ L2 , Imλ > 0 ,

is a meromorphic family of operators with singularities contained in
D(0, RV ) for some V .

It extends to a meromorphic family of operators for λ ∈ C:

RV := L2
comp −→ L2

loc .

If λ0 is a singularity of λ 7→ RV (λ) then there exists a unique (up a
multiplicative constant) outgoing solution u to (PV − λ2

0)u = 0.
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Proof. 1. We first construct RV (λ) for Imλ� 1. If the inverse RV (λ) =
(PV − λ2)−1 existed then

RV (λ)−R0(λ) = −RV (λ)V R0(λ)

and hence
RV (λ)(I + V R0(λ)) = R0(λ) .

For Imλ � 1, ‖V R0(λ)‖L2→L2 ≤ ‖V ‖∞(Imλ)−2 ≤ 1/2, and hence
I + V R0(λ0 is invertible. That means that

(2.10) RV (λ) := R0(λ)(I + V R0(λ))−1

is the desired inverse. For Imλ > 0 the operator V R0(λ) is compact and
hence we can apply Theorem C.4 to see that RV (λ) : L2(R)→ L2(R)
is a meromorphic family of operators in Imλ > 0.

2. To obtain continuation of C, choose ρ ∈ C∞c which is equal to 1 on
suppV . In particular, ρV = V . We define the following meromorphic
family of operators in C:

(2.11) K(λ) := V R0(λ) .

The only pole of K(λ) is at λ = 0. Since (1− ρ)K(λ) = 0 we have

(I +K(λ)(1− ρ))−1 = (I −K(λ)(1− ρ))

(I +K(λ))−1 = ((I +K(λ)(1− ρ))(I +K(λ)ρ))−1

= (I +K(λ)ρ)−1(I −K(λ)(1− ρ)) ,

where the second identity holds when I +K(λ)ρ is invertible which we
know already for Imλ� 0 by a Neumann series argument.

3. We conclude that for Imλ > 0

(2.12) RV (λ) = R0(λ)(I + V R0(λ)ρ)−1(I − V R0(λ)(1− ρ)) .

The operator V R0(λ)ρ is compact on L2 since

V R0(λ)ρ = V (ρR0(λ)ρ) and ρR0(λ)ρ : L2 → H2(suppρ) .

Hence, Therem C.4 gives the global meromorphic continuation of (I +
V R0(λ)ρ)−1. We also observe that

I + V R0(λ)(1− ρ) : L2
comp(R)→ L2

comp(R) ,

and

(I + V R0(λ)ρ)−1 : L2
comp(R)→ L2

comp(R) .

The last property can be checked for Imλ � 1 using the Neumann
series argument: if χρ = ρ, χ̃χ = χ then

(1− χ̃)(I + V R0(λ)ρ)−1χ = 0 , Imλ� 0 ,
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and this remains true for all λ by analytic continuation.

Combining these facts with the expression for RV given in (2.12) we
obtain the meromorphy of RV (λ) for λ ∈ C as a family of operators
L2

com → L2
loc.

4. We finally prove that a pole of RV (λ) at λ0 gives an outgoing solution
to (P − λ2

0)u = 0. From (2.12) we see that having a pole of RV (λ)
implies that I + V R0(λ)ρ is not invertible. Since V R0(λ)ρ is compact,
I + V R0(λ)ρ is a Fredholm operator of index zero (see Section C.2).
That means that there exists v ∈ L2 such that v = −V R0(λ0)ρv . Since
ρV = V we see that ρv = v and hence v ∈ L2

com and v = −V R0(λ0)v.
Putting u := R0(λ0)v we see that u is outgoing and that

(P − λ2
0)u = (D2 − λ2

0)R0(λ0)v + V R0(λ)v = v + V R0v = 0 .

Since we are dealing with an ordinary differential equation the solution
equal to aeiλ0x for x > R is unique up to a multiplicative constant. �

DEFINITION. We call the poles of RV (λ) scattering resonances
or simply resonances. The multiplicity of a resonance at λ is defined
as follows:

(2.13) mR(λ) := rank

∮
λ

R(ζ)dζ ,

where the integral is over a small circle containing no other poles of
RV .

When λ is not a resonance we put mR(λ) = 0 which is of course
consistent with the above definition. In Section 2.6 we will investigate
the structure of the singular part of RV (λ) in more detail.

REMARKS.

1. When V ∈ L∞comp(R,R) then the operator PV is self-adjoint and the

existence of RV (λ), Imλ > 0, as a meromorphic operator on L2 follows

from the spectral theorem. The poles occur at i
√
−Ej where Ej are

the negative eigenvalues of PV – see Figure 1.

2. We also have the following basic fact valid for real valued poten-
tials:

(2.14) V ∈ L∞comp(R;R) =⇒ mR(λ) = 0 , λ ∈ R \ {0} .

Proof of 2.14: We need to show that there are no outgoing solutions
to (PV − λ2)u = 0 for λ real and non-zero (at λ = 0 the example of
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V = 0 shows that a pole is possible and the outgoing solution is given
by u = 1). Since V is real ū is also a solution. Using the notation of
(2.7) we calculate the Wronskians:

W (u, ū) :=

∣∣∣∣ u ū
ux ūx

∣∣∣∣ =

{
2iλ|B−|2 , x < −R ,
−2iλ|A+|2 , x > R .

But this is impossible for λ 6= 0 and u 6≡ 0. �

3. Reality of V or, equivalently, self-adjointness of PV imply the fol-
lowing symmetry of resonances:

(2.15) V ∈ L∞comp(R;R) =⇒ mR(λ) = mR(−λ̄) , λ ∈ R \ {0} .

In fact, we will check that RV (−λ̄)∗ = RV (λ). Since both sides are
meromorphic in λ we only need to check that RV (−λ)∗ = RV (λ) for
λ ∈ R. Using the correspondence between λ and z that follows from
((PV − z − i0)−1)∗ = (PV − z + i0)−1.

The next result makes the structure of the singular part of RV (λ)
more precise.

THEOREM 2.3 (Singular part of RV (λ) I).

1) Suppose mR(µ) > 0, µ 6= 0. Then, there exist linearly independent
uj ∈ H2

loc(R), j = 1, · · · ,mR(µ), such that u1 is outgoing and

(2.16) (PV − µ)u1 = 0 , (PV − µ2)uj = uj−1 ,

1 < j ≤ mR(µ).

We also have

(2.17) RV (λ) =

mR(µ)∑
k=1

(P − µ2)k−1

(λ2 − µ2)k
Πµ + A(λ, µ) ,

where λ 7→ A(λ, µ) is holomorphic near µ,

Πµ =
1

2πi

∮
µ

RV (λ)2λdλ ,

and

(2.18) (PV − µ2)mR(µ)Πµ = 0 , ImΠµ = span {u1, · · · , umR(µ)} .

2) Suppose that V ∈ L∞comp(R;R) and that mR(0) > 0. Then mR(0) = 1
and

RV (λ) =
Π0

λ
+ A(λ) ,
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where λ 7→ A(λ) is holomorphic near 0, and

(2.19) Π0 = u⊗ u , u = c± 6= 0 , ±x� 0 , PV u = 0 .

REMARKS. 1. The reason for restricting out attention at µ = 0 to
real V ’s, that is to selfadjoint operators PV , lies in the fact that we need
the specifics about the resonance zero only for resonance expansions
and trace formulæ. In both cases we assume selfadjointness of PV so
that we can use the spectral theorem.

2. In Section 2.6 we will find an interpretation of Πµ, µ 6= 0, as a
projection.

Proof. 1. From the general result about meromorphic continuation we
know that, for some K and finite rank operators Ak,

RV (λ) =
K∑
k=1

Ak
(λ2 − µ2)k

+ A(λ, µ) , µ 6= 0 ,

where mR(µ) = rankA1 and

A1 = Πµ :=
1

2πi

∮
µ

RV (λ)2λdλ .

2. We now consider the equation (PV − λ2)RV (λ) = 0 near λ = ν:
modulo terms holomorphic near µ we have

(PV − λ2)RV (λ) ≡
K∑
k=1

(
(PV − µ2)Ak
(λ2 − µ2)k

− Ak
(λ2 − µ2)k−1

)

≡
K∑
k=1

(PV − µ2)Ak − Ak+1

(λ2 − µ2)k
,

where we use the convention that Ak = 0 for k > K.
It follows that Ak+1 = (P − µ2)Ak which shows that (2.17) holds.

3. We now need to show the existence of uj’s satisfying (2.16) and
(2.18). That includes the statement that K = mµ(R).

The operator (PV − µ2) commutes with Πµ and (PV − µ2)KΠµ = 0.
Hence

PV − µ2 : ImΠµ → ImΠµ ,
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is nilpotent and we can put it into a Jordan normal form. That means
that there exists a basis of ImΠµ ⊂ H2

com(R) such that

u`,j , 1 ≤ ` ≤ L , 1 ≤ j ≤ k` ,

L∑
`=1

k` = K ,

(PV − µ2)u`,j = u`,j−1 , 1 ≤ j ≤ k` , u`,0 := 0 .

Arguing as at the end of the proof of Theorem 2.2 we see that u`,1 is
outgoing. But then it is unique up to a multiplicative constant. This
shows that L = 1 and that uj := u1,j satisfy (2.16). Since the dimension
of ImΠµ is equal to mR(µ) be definition we obtain K = mR(µ) and
(2.18).

4. For the study of µ = 0 we assumed that PV is selfadjoint. Hence for
Imλ > 0, |λ| � 1 (so that we avoid possible eigenvalues),

‖RV (λ)‖ =
1

d(λ2,R+)
≤ 1

|λ|Imλ
,

which shows that mR(0) ≤ 2, and

RV (λ) =
A2

λ2
+
A1

λ
+ A(λ) .

Applying (PV − λ2) to both sides and letting λ→ 0 we see that

PVAj = AjPV = 0 , PVA(0) = I + A2 .

This means that A1 = a1u⊗ u, A2 = a2u⊗ u, where u satisfies (2.19).

Also, for ψ ∈ C∞c (R),

‖(A2 + λA1 + λ2A(λ))ψ‖L2 ≤ |λ|2

d(λ2,R+)
‖ψ‖L2 , Imλ > 0 .

Hence, letting λ = it, t→ 0+,

‖A2ψ‖L2 ≤ ‖ψ‖L2 .

Since a2u⊗ u for u satisfying (2.19) is not bounded on L2 if a2 6= 0 we
see that A2 = 0. We can now choose u so that a1 = 1 and this proves
part 2) of the theorem. �

EXAMPLE. We present a natural family of potentials which have
resonances of multiplicity 2 for some values in the family. This is
illustrated in Figure 6.

Consider a potential V ∈ C1c(R;R), suppV ⊂ [−a, a] with the prop-
erty that V (x) < −c < 0 for, say, x ∈ (−b, b), 0 < b < a. We then



SCATTERING RESONANCES 17

2 1.5 1 0.5 0 0.5 1 1.5 2

5

0

5

10
Potential

15 10 5 0 5 10 15
3

2

1

0
Pole locations

0.2 0.1 0 0.1 0.2
0.1

0.08

0.06

0.04

0.02

0

 

 

resonance becoming an eigenvalue

Figure 6. We consider resonances for τV where
V , and its resonances are shown on the left. Taking
1 < τ < 1.12, we see two continuous families of reso-
nances meeting on iR−. Pseudospectral effects due to
the non-normal nature of RV at the point of multiplic-
ity two (see Theorem 2.3) make the motion very rapid
near at the bifurcation. Hence the double resonance is
hard to pinpoint numerically. The specific potential and
it resonances was obtained using

splinepot(3.4*[0,1,-1,2,0],[-2,-1,0,1,2])

see [Bi-Zw].

consider a family of potentials τV , τ ≥ 1, that is we vary the coupling
constant in the Schrödinger operator

Pτ := D2
x + τV (x) .

By applying min-max methods directly (see Theorem B.6) or by using
semiclassical Weyl law (with h2 = 1/

√
τ – see for instance [D-S, The-

orem 9.6]) we see that the number of negative eigevalues of Pτ grows
(proportionally to

√
τ) as τ increases.

The construction of RτV (λ) also shows that for any R, resonances
in D(0, R) are continues as functions of τ – see Chapter 6 for detailed
arguments. This means that eigenvalues, that is resonances on iR+, are
obtained, as τ increases from a continuous family of resonances passing
through zero.

In view of the symmetry of resonances with respect to the real axis
given in (2.15), and of the simplicity of the resonance at λ = 0 given in
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Theorem 2.3, it means that two resonances meet on −iR+ before split-
ting, and one of them moving through 0 to become an eigenvalue. This
provides a simple example of resonances, µ ∈ iR− for which mR(µ) = 2.

The multiplicity of a resonance can also be described using the fol-
lowing determinant:

(2.20) D(λ) := det(I + V R0(λ)ρ) .

where ρ ∈ L∞comp and ρ V = V .

We note that D(λ) is a meromorphic function of λ with a single pole
at λ = 0. The multiplicity of a zero of D(λ) is defined in the usual way
and we have,

(2.21) mD(λ) :=
1

2πi

∮
D′(ζ)

D(ζ)
dζ ,

where the integral is over a positively oriented circle which includes λ
and no other pole or zero of D(λ).

THEOREM 2.4 (Multiplicity of a resonance I). The multiplici-
ties defined by (2.13) and(2.21) are related as follows

mD(λ) = mR(λ) , λ ∈ C \ {0} .(2.22)

When V ∈ L∞(R;R) then

(2.23) mD(0) = mR(0)− 1 .

Proof. The proof is based on the Gohberg-Sigal theory of residues for
meromorphic families of operators, which is reviewed in Section C.4.

1. This time let us start with µ = 0 (in which case we assume that V
is real valued so that part 2) of Theorem 2.3 applies). We have

I + V R0(λ)ρ =
i

2λ
V ⊗ ρ+ A(λ) ,

where A(λ) is holomorphic and compact. Part 2) of Theorem 1 shows
that

(I + V R0(λ)ρ)−1 = I − V RV (λ)ρ =
V u⊗ ρu
λmR(0)

+B(λ) ,

where B(λ) is holomorphic near 0, and V u 6≡ 0, ρu 6≡ 0, if mR(0) 6= 0.
In Theorem C.5 applied to M(λ) = I +V R0(λ)ρ and M(λ)−1 we must
have N = 2, k1 = mR(0) and k2 = −1 – see (C.12). Using (C.14) we
obtain (2.23).
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2. For µ 6= 0, mR(µ) 6= 0, we use (I + V R0(λ)ρ)−1 = I − V RV (λ)ρ
and Theorem 2.3 to obtain

(I + V R0(λ)ρ)−1 =

mR(µ)∑
k=1

V (PV − λ2)k−1Πµρ

(λ2 − µ2)k
+ A(λ) ,

where A(λ) is holomorphic and compact near λ = µ. The arguments
based Section C.4 shows mR(µ) = mD(µ) More details needed here.

�

2.2. Expansions of scattered waves.

A motivation for the study of resonances is the fact that they describe
oscillations and decay of waves for problems on non-compact domains.
In this sense they replace eigenvalues and Fourier series expansions.
Except for Theorem 2.6 we assume in this section that V is real valued.
That is because we want to use methods of spectral theory of self-
adjoint operators.

To explain this consider PV = D2
x + V on [a, b] with Dirichlet (or

Neumann) boundary condition. Then the problem{
(PV −λ2)u = 0 on (a, b)

u(a) = u(b) = 0

has a set of distinct solutions

(i
√
−Ek, vk) , (λj, uj) ,

EN < · · · < E1 < 0 < λ2
0 < λ2

1 < · · · → ∞ ,∫ b

a

|uj|2dx =

∫ b

a

|vk|2dx = 1 .

We then consider the wave equation
(D2

t − PV )w = 0 on R× (a, b)

w(0, x) = w0(x) , ∂tw(0, x) = w1(x) on [a, b]

w(t, a) = w(t, b) = 0 on R .
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It can be solved using the eigenfunction expansion (Fourier series in
the case when V ≡ 0):

w(t, x) =
N∑
k=1

cosh(t
√
−Ek)akvk(x) +

N∑
k=1

sinh(t
√
−Ek)bkvk(x)

+
∞∑
j=0

cos(tλj)cjuj(x) +
∞∑
j=0

sin(tλj)djuj(x)

(2.24)

where

ak =

∫ b

a

w0(x)v̄k(x)dx , bk =

∫ b

a

w1(x)v̄k(x)

cj =

∫ b

a

w0(x)ūj(x)dx , dj =

∫ b

a

w1(x)ūj(x)dx .

We now give the analogue of (2.24) when [a, b] is replaced by R:

THEOREM 2.5 (Resonance expansions of scattering waves I).
Let V ∈ L∞(R;R) and suppose that w(t, x) is the solution of

(2.25)


(D2

t − PV )w(t, x) = 0 ,

w(0, x) = w0(x) ∈ H1
comp(R) ,

∂tw(0, x) = w1(x) ∈ L2
comp(R) .

Let EN < · · · < E1 < 0 be the negative eigenvalues of PV and {λj} ⊂
{Imλ < 0} be the set of its resonances.

Then, for any A > 0,

w(t, x) =
N∑
k=1

cosh(t
√
−Ek)akvk(x) +

N∑
k=1

sinh(t
√
−Ek)bkvk(x)

+
∑

Imλj>−A

mR(λj)−1∑
`=0

λ`je
−iλjtwj,`(x) + EA(t) ,

(2.26)

where the second sum is finite,

mR(λj)−1∑
`=0

λ`je
−iλjtwj,`(x) = Resλ=λj

(
(iRV (λ)w1 + λRV (λ)w0) e−iλt

)
,

(PV − λj)k+1wj,k = 0 ,

(2.27)
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and for any K > 0, such that suppwj ⊂ [−K,K], there exist constants
CK,A and TK,A

‖EA(t)‖H2([−K,K]) ≤ CK,Ae
−tA (‖w0‖H1 + ‖w1‖L2) , t ≥ TK,A .

REMARK. We notice that the error term EA(t) is more regular for
large times. That corresponds to propagation of singularites: when
time is large all singularities leave a compact set. When V ∈ C∞c (R)
then an examination of the proof shows that we have the same bound
with the right hand side replaced by ‖EA(t)‖Hk([−K,K]) for any k.

Before proving Theorem 2.5 we need the existence of a resonance
free region and an estimate for the resolvent:

THEOREM 2.6 (Resonance free regions I). Suppose that

V ∈ L∞comp(R;C) .

Then for any ρ ∈ C∞c (R) constants A′, C, T depending on the support
of ρ such that

(2.28) ‖ρRV (λ)ρ‖L2→Hj ≤ C|λ|j−1 eT |Imλ| , j = 0, 1, 2 ,

for

Imλ ≥ −A− δ log(1 + |λ|) , |λ| > C0 , δ > 1/|chsuppV | .
In particular there are only finitely many resonances in the region

{λ : Imλ ≥ −A− δ log(1 + |λ|)} .
for any A > 0.

Proof. 1. First we recall estimate (2.9) for the free resolvent

(2.29) ‖ρR0(λ)ρ‖L2→Hj ≤ C|λ|j−1eT |Imλ|

for some constant T depending on the support of ρ, Since

ρRV (λ)ρ = ρR0(λ)ρ(I + V R0(λ)ρ1)−1(1− V R0(λ)(1− ρ1)ρ)

where we assumed that ρ = 1 on suppV , and ρ1L
∞
com(R) is any function

satisfying ρ1V = V , in particular

ρ1 = 1lI , I = chsuppV .

We see now that (2.28) holds in the region where, say,

‖V ρ1R0(λ)ρ1‖L2→L2 ≤ 1

2
.



22 M. ZWORSKI

Figure 7. The contour used to obtain the resonance expansion.

For that we use (2.29) with j = 0 and obtain for Imλ > −A− δ log(1 +
|λ|),

‖V ρ1R0(λ)ρ1‖L2→L2 ≤ C‖V ‖L∞e|I||Imλ|/|λ|

≤ C‖V ‖∞eA|I|+δ|I| log(1+|λ|)/|λ|

≤ C ′‖V ‖∞‖|λ|−1+δ|I| ≤ 1/2 ,

a if δ < 1/|I| and |λ| ≥ R. �

The idea for obtaining the expansion (2.26) is to deform the contour
in the representation of the wave propagator based on the spectral
theorem.

Proof of Theorem 2.5. 1. For simplicity, we assume that PV has no
negative eigenvalues as their contribution to (2.26) is clear. For the
moment we also assume that mR(0) = 0.

Also, we will only consider (2.25) with w0 ≡ 0 as the proof below
works in the case w1 ≡ 0 if we replace sin tλ/λ by cos tλ in the formula
for w(t, x).

2. With the above simplications understood, by the spectral theorem,
the solution of (2.25) can be written as

w(t) = U(t)w1 :=

∫ ∞
0

sin tλ

λ
dEλ(w1) .



SCATTERING RESONANCES 23

Using Stone’s Formula to write dEλ in terms of RV (λ), we get

dEλ =
1

πi
(RV (λ)−RV (−λ))λdλ ,

PV =

∫ ∞
0

λ2dEλ , I =

∫ ∞
0

dEλ .

Hence

w(t) =
1

πi

∫ ∞
0

sin tλ(RV (λ)−RV (−λ))w1dλ

=
1

πi

∫ ∞
0

eitλ − e−itλ

2i
(RV (λ)−RV (−λ))w1dλ(2.30)

=
1

2π

∫ ∞
−∞

e−itλ(RV (λ)−RV (−λ))w1dλ ,

where we assumed that there is no resonance at λ = 0. To justify the
convergence of the integral we assume that w1 ∈ H2

comp(R) as explained
in the next step.

3. Now let ρ ∈ C∞c (R) satisfy ρ ≡ 1 on the support of w1. Chooise R
large enough so that all the resonances with Imλ > −A−δ log(1+|Reλ|)
are contained in |λ| ≤ R. We deform the contour of integration in the
above integral using the following curves:

Γ := {λ− i(A+ εδ log(1 + |Reλ|)) : λ ∈ R} ,
ΓR := Γ ∩ {|Reλ| ≤ R} ,

γ±R = {±R− it : 0 ≤ t ≤ A+ ε+ δ log(1 +R)} , γR := γ+
R ∪ γ

−
R ,

γ∞R = (−∞,−R) ∪ (R,∞) .

Here we choose ε and so that there are no resonances on Γ. We also
put

ΩA := {λ : Imλ ≥ −A− ε− δ log(1 + |Reλ|)} .
and define

ΠA(t) := i
∑
λ∈ΩA

Resλ=λj(ρRV (λ)ρ) .

Hence

(2.31) ρU(t)ρ = ΠA(t) + EΓR(t) + EγR(t) + Eγ∞R (t) ,

where (with obvious orientatations)

Eγ(t) :=
1

2π

∫
γ

e−itλ(RV (λ))−RV (−λ))w1dλ .
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4. Let us assume that w1 ∈ H2, suppw1 ⊂ [−K,K], ρ ≡ 1 on [−K,K].
For such w1 we will show that

(2.32) ‖EγR(t)w1‖H1 , ‖Eγ∞R (t)w1‖H1 −→ 0 , R→∞ ,

For that we note that

ρ(RV (λ)−RV (−λ))ρw1 = ρ(RV (λ)−RV (−λ))w1

= ρ(RV (λ)−RV (−λ))(1 + λ2)−1(1 +D2
x + V )w1 ,

since

(RV (λ)−RV (−λ))(D2
x + V ) = λ2(RV (λ)−RV (−λ)) ,

Using (2.28) we thus obtain

‖Eγ∞R (t)w1‖H1 ≤ C

∫ ∞
R

(1 + |λ|2)−1‖w1‖H2 ≤ C

R
‖w1‖H2 ,

and

‖EγR(t)w1‖H1 ≤ C

1 +R2
‖w1‖H2 .

Hence (2.32) holds for w1 ∈ H2.

5. We now return to (2.31) and see that

(2.33) ρU(t)ρw1 = ΠA(t)w1 + EΓ(t)w1 , w1 ∈ H2 . .

We will now show that for t� 1

(2.34) ‖EΓ(t)w1‖H2 ≤ Ce−tA‖w1‖L2 .

For that we again use (2.28) for |λ| > R and the assumption that there
are no poles of RV (λ) near Γ in a compact set. Thus we obtain:

‖EΓ(t)w1‖H2 ≤ Ce−At
∫
R
e−tδ log(1+|λ|e−δT log(1+|λ|)(1 + |λ|)‖w1‖L2

≤ Ce−At
∫
R
(1 + |λ|)−δ(t−T )+1‖w1‖L2dλ

≤ C ′e−At‖w1‖L2 , t > T + 3/δ .

Since H2 is dense in L2 the decomposition (2.33) is valid for w1 ∈ L2

proving theorem. �
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2.3. Scattering matrix in dimension one.

Outside of the support of V , a solution of

(2.35) (PV − λ2)u = 0

can be written as a sum of an outgoing and incoming terms

u(x) = uin(x) + uout(x) , |x| ≥ R .

Following the conventions described in the beginning of this chapter,

uin(x) = bsgn(x)e
−iλ|x| , uout(x) = asgn(x)e

iλ|x| , |x| ≥ R .

In scattering we compare the incoming waves with the outgoing ones
and mathematically that is captured by the scattering matrix which is
defined as follows

(2.36) S :

(
b−
b+

)
7−→

(
a+

a−

)
.

To describe S = S(λ) at frequency λ we need to find solutions to
(2.35) of the following form:

(2.37) u±(x) = e±iλx + v±(x, λ)

where v±(x, λ) is outgoing. It is easily found using the outgoing resol-
vent RV (λ):

v±(x, λ) = −RV (λ)
(
V e±iλx

)
.

This is well defined away from the poles of RV (λ). In the self-adjoint
case that means that u± exist for λ ∈ R \ 0.

To describe S = S(λ) given by (2.36) we want to find epxressions of

v±sgn(x)(λ) := e−iλ|x|v±(x, λ) , |x| > R .

In terms of α± and β± we see that

S(λ) :

(
1
0

)
7−→

(
1 + v+

+(λ)
v+
−(λ)

)
,

S(λ) :

(
0
1

)
7−→

(
v−+(λ)

1 + v−−(λ)

)
,

(2.38)

which means that

(2.39) S(λ) = I + A(λ) , A(λ) =

v+
+(λ) v−+(λ)

v+
−(λ) v−−(λ)

 .
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THEOREM 2.7 (Scattering matrix in terms of the resolvent).
The coefficients of A(λ) are meromorphic functions of λ given by the
following formulæ:

(2.40) vωθ (λ) =
1

2iλ

∫
R
ei(ω−θ)λxV (x)(1− e−iωxλRV (λ)(eiωλ•V )(x))dx ,

where θ, ω ∈ {±}.

Proof. We write

vωθ (λ) = −e−iλθxR0(λ)(I − V RV (λ))(V eiωλ•) , θx > R .

Using the explicit formula for R0(λ) we then notice that for f with
suppf ⊂ [−R,R],

R0(λ)f(x) = − 1

2iλ
eiθλx

∫
R
e−iθλyf(y)dy , θx ≥ R .

Combining the two expressions we obtain (2.40). �

INTERPRETATION.

1. The coefficients vωθ (λ) have important physical interpretations:

T (λ) = 1 + v±±(λ) is the transmission coefficient,

R+(λ) = v−+(λ) is the right reflection coefficient,

R−(λ) = v−+(λ) is the left reflection coefficient.

(2.41)

This can be seen from comparing (2.36) and (2.38). In (2.41) we have
implicitely asserted that v+

+(λ) = v−−(λ). This can be seen by comparing
the Wronskian, which are constant, for λ 6= 0:

W (u+, u−) :=

∣∣∣∣ u+ u−
∂xu+ ∂xu−

∣∣∣∣ =

{
−2iλ(1 + v−−), , x < −R ,
−2iλ(1 + v+

+) , x > R .

The equality of v−− and v+
+ can also be seen from (2.40) where we make

a change x 7→ −x in the integral.

2. When V is real and λ ∈ R\{0} then we can also take Wronskians of
u+ and ū−. The important consequence is the unitarity of the scattering
matrix: S(λ)∗ = S(λ)−1. A meromorphic continuation of this equality
gives

(2.42) V ∈ L∞comp(R;R) =⇒ S(λ̄)∗ = S(λ)−1 , λ ∈ C .
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REMARK. We should think of ± as the element of the “sphere”, S0,
in one dimensional space. As we will see the same formula is valid in
dimension n with θ, ω ∈ Sn−1. The scattering “matrix” is then given
as the sum of the idenity and an operator defined by an integral kernel
(2.40) in Sn−1 × Sn−1. Of course the interpretation of reflected and
transmited waves is then less clear.

The representation given in Theorem 2.7 gives us important esti-
mates for the coefficients of the scattering matrix in the physical half
plane, Imλ ≥ 0:

THEOREM 2.8 (Estimates on the scattering matrix). For

Imλ ≥ 0 , |λ| ≥ C0 ,

we have

(2.43) ‖e∓iλxRV (λ)(V e±iλ•)‖∞ ≤
C1

|λ|
.

Consequently, (2.40) implies that for Imλ ≥ 0, |λ| ≥ C0,

v±±(λ) =
i

2λ

(
V̂ (0) +O(1/|λ|)

)
.(2.44)

Proof. 1. The estimate (2.28) shows that for Imλ ≥ 0, |λ| ≥ C0 (in
fact, under our assumptions, in a large region),

(2.45) λ 7→ f±(x, λ) := e∓iλxRV (λ)(V e±iλ•)(x) ,

is holomorphic. If C0 is large enough (2.9) shows that the Neumann
series of (I + ρR0(λ)V )−1 converges as operator L2 → L2.

Hence

f±(x, λ) :=
(
Rω

0 (λ)ρ(I + V Rω
0 (λ)ρ)−1V

)
(x) ,

Rω
0 (λ)(x, y) := e∓iλxR0(λ)(x, y)e±iλy =

i

2λ
eiλ(|x−y|∓(x−y)) ,

where in the last line we defined, and calculated, the Schwartz kernel
of Rω

0 (λ).

2. We see that for Imλ ≥ 0 we still have

‖V Rω
0 (λ)ρ‖ ≤ C/|λ|

and hence the Neumann series for (I + V Rω
0 (λ)ρ)−1 converges. Simi-

larly,
Rω

0 (λ)ρ = O(1/|λ|) : L2 → L∞ , Imλ ≥ 0 ,
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which concludes the proof. �

REMARK. We should stress that unlike many reasults in this chapter
the statements about the scattering matrix for Imλ ≥ 0 remain valid
for real potential satisfying very weak decay conditions – see [Mel] for
one account of that and for references.

The determinant of the scattering matrix is related to the determi-
nant defined by (2.20):

THEOREM 2.9 (A determinant identity). Suppose that V ∈
L∞comp(R;C). For ρ ∈ L∞comp, ρ V = V , let

D(λ) := det(I + V R0(λ)ρ) .

Then

(2.46)
D(−λ)

D(λ)
= detS(λ) ,

where S(λ) is the scattering matrix.

Proof. 1. We first write

(2.47) ρ(R0(λ)−R0(−λ))ρ =
i

2λ
E(λ̄)∗E(λ) ,

where E(λ) : L2(R) −→ C2,

E(λ)u :=

(∫
R
eiλxu(x)ρ(x)dx,

∫
R
e−iλxu(x)ρ(x)dx

)
.

In other words,

(2.48) E(λ̄)∗E(λ) = ρ(x)eiλx ⊗ ρ(y)e−iλy + ρ(x)e−iλx ⊗ ρ(y)eiλy .

2. Now,

(I + V R0(−λ)ρ) =

(I + V R0(λ)ρ)(I − (I + V R0(λ)ρ)−1(iV E(λ̄)∗E(λ)/2λ)) ,

and we need to show that

(2.49) detC2S(λ) = detL2(I + T (λ)) ,

where T (λ) is the rank two operator appearing in the expression above:

T (λ) :=
1

2iλ
(I + V R0(λ)ρ)−1V E(λ̄)∗E(λ) .
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Since

detL2

(
I +

K∑
`,k=1

ϕk ⊗ ψ`

)
= detCK (ICk + A) ,

Ak` :=

∫
ϕk(x)ψ`(x)dx ,

identity (2.49) follows from calculating ϕk, ψ` 1 ≤ k, ` ≤ 2 for T (λ)
and comparing the answer with (2.40). �

A multiplicity of a pole of S(λ) and S(λ)−1 is defined using the de-
terminant of the scattering matrix. The poles of the scattering matrix
are sometimes called scattering poles. Theorem 2.9 combined with
Theorem 2.4 gives

THEOREM 2.10 (Multiplicities of scattering poles I). The mul-
tiplicity of a scattering pole defined by

(2.50) mS(λ) =
1

2πi
tr

∮
S(ζ)−1∂ζS(ζ)dζ ,

where the integral is over a positively oriented circle which includes λ
and no other pole or zero of detS(λ), is related to the multiplicity of a
scattering resonance (2.13) as follows:

(2.51) mS(λ) = mR(λ)−mR(−λ) .

2.4. Asymptotics for the counting function.

In this section we will prove a Weyl law for the number of scattering
resonances of a compactly supported, bounded, complex valued poten-
tial. In higher dimensions only weaker results are known and for the
existence of resonances we need to assume that the potential is real val-
ued: as we will see in Chapter 3 a complex valued compactly supported
potential in three dimensions may have no resonances at all.

THEOREM 2.11 (Asymptotics for the number of resonances).
Suppose that V ∈ L∞com(R;C). Then

(2.52)
∑
{mR(λ) : |λ| ≤ r ,±Reλ ≥ 0} =

|chsuppV |
π

r(1 + o(1)) ,

as r −→∞. Here chsupp is the convex hull of the support.
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In addition, for any ε > 0,∑
{mR(λ) : |λ| ≤ r , |Imλ| ≥ ε|Reλ|} = o(r) ,

as r −→∞.

Before proving the theorem we need some estimates for the determi-
nant D(λ) = det(I + V R0(λ)ρ). These estimates will also be useful in
the section on trace formulæ.

THEOREM 2.12 (Determinant estimates). The determinant D(λ)
defined by (2.20) satisfies

lim
t→+∞

D(eiθt) = 1 , 0 < θ < π , |D(λ)| ≤ C1(1 + 1/|λ|) , Imλ ≥ 0 ,

|λD(λ)| ≤ C2 exp(τ |λ|) , λ ∈ C , τ := |chsuppV | ,

(2.53)

where chsuppV is the convex hull of the support of V .

We start with the following lemma concerning trace class norms of
the free cut-off resolvent;

LEMMA 2.13. Suppose that ρ ∈ L∞(R) and suppρ ⊂ [−L,L]. Then

‖ρR0(λ)ρ‖L1 ≤
C exp(2L(Imλ)−)

|Imλ|
, Imλ 6= 0 ,

‖ρR0(λ)ρ‖L1 ≤ C +
C

|λ|
, λ ∈ R .

(2.54)

Proof. 1. We start with the case of Imλ > 0. In that case, as operators
on L2,

R0(λ) = (D2
x − λ2)−1 = (Dx − λ)−1(Dx + λ)−1 .

Using the explicit formulae for the Schwartz kernel, n

(Dx ± λ)−1(x, y) = e±iλ(x−y)(x− y)0
± , Imλ > 0 ,

we see that ∫
R

∫
R
|ρ(x)(Dx − λ)−1(x, y)|2dx ≤ 2L‖ρ‖∞

Imλ
,

and similarly for (Dx + λ)−1ρ. Hence

‖ρR0(λ)ρ‖2
L1 ≤ ‖ρ(Dx + λ)−1‖L2‖(Dx − λ)−1ρ‖L2 ≤

C2
ρ

Imλ2
.
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2. To prove the estimate for Imλ ≤ we use (2.47), (2.48) and the fact
that

‖u⊗ v‖L1 = ‖u‖L2‖v‖L2 .

This gives,

‖ρR0(λ)ρ‖L1 ≤ ‖ρR0(−λ)ρ‖L1 +
1

|λ|
‖ρeiλ•‖L2‖ρe−iλ•‖L2

≤ Cρ
|Imλ|

+
Cρe

−2LImλ

|λ|

≤ 2Cρe
2L(Imλ)−

|Imλ|
.

3. The second inequality in (2.54) follows from the bounds on the norm
of

ρR0(λ)ρ : L2 −→ H1 ,

given in Theorem 2.1. �

Proof of Theorem 2.12. 1. To study D(eiθt) we use (B.19) with A =
V R0(λ)ρ and B = 0:

|D(eiθt)− 1| ≤ ‖V ‖∞‖ρR0(λρ‖L1e1+‖V ‖∞‖ρR0(λ)ρ‖L1

The first estimate in (2.54) shows that the right hand side goes to 0 as
t→ +∞ for 0 < θ < π.

2. The same argument using the second estimate in (2.54) gives the
bound

D(λ) = O(1) +O(1/|λ|) , Imλ ≥ 0 .

3. To obtain estimates in Imλ ≤ 0 we use Theorem 2.9:

D(λ) = detS(−λ)D(−λ) .

Hence we need to estimate detS(−λ) for Imλ ≤ 0 and |λ| ≥ 0,

Theorem 2.8 shows that for Imλ ≤ 0, |λ| ≥ C0, we have

(2.55) | detS(−λ)| = 1 + v−+(−λ)v+
−(−λ) +O(1/|λ|) .

The estimate for λD(λ) follows from (2.40) and (2.43) and from esti-
mates established for Imλ ≥ 0. �

Proof of Theorem 2.11. 1. Using Theorem 2.4 we will prove the theorem
by obtaining an asymptotic formula for the number of zeros of the entire
function

f(λ) := λD(λ) ,
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where D(λ) is defined in (2.20). The factor λ removes the pole at
λ = 0 – see the second estimate in (2.53). We note that we do need
any additional information about the multiplicity at λ = 0 for the
asymptotic statement.

2. By rescaling and translation we can assume that

chsuppV = [−1, 1] .

In view of Theorem D.1 it suffices to show that

(2.56)

∫
R

log+ f(x)

1 + x2
dx <∞ , If = [0,−4i] ,

where If is the indicator diagram of f . The first condition in (2.56)
follows immediately from the second inequality in (2.53).

3. In view of (D.10) to establish If = [0,−4i] all we need is to calculate
the precise type of D(λ). The upper bound is already provided in the
last inequality in (2.53).

For Imλ < 0 we use Theorem 2.9 and (2.55) to see that

D(λ) = v−+(−λ)v+
−(−λ) +O(1) , Imλ ≤ 0 , |λ| ≥ C .

The type of D(λ) will be exactly 4 if we show that we cannot have

(2.57) |v∓±(−λ)| ≤ Ce2(1−δ)|λ| , Imλ ≤ 0 , |λ| ≥ C ,

with δ > 0 for either ±.

4. Let us choose β > 0 such that RV (−λ) is holomorphic for Imλ ≤ −β
– that is possible as there are only finitely many poles on RV (−λ) in
Imλ ≤ 0. Hence f(x,−λ) has no poles in Imλ ≤ −β and Theorem 2.8
shows that |f−(x,−λ)| ≤ C/|λ| there.

To show that (2.57) cannot hold for v−+ we use (2.40) and the notation
(2.45) to write

v+
−(−λ− iβ) =

i

2(λ+ β)

∫
R
e2iλxV (x)e−2βx(1− f+(x,−λ− iβ))dx .

Since v+
− is bounded for −β ≤ Imλ ≤ 0, |λ| ≥ C0, (2.57) implies that

(2.58) |v+
−(−λ− iβ)| ≤ Ce2(1−δ)|λ| , Imλ ≤ 0 , |λ| ≥ C ,

with δ > 0, and we need to find a contradiction to these statement. To
simplify notation let us put

V β
ε (x) := 1l[1−ε,1]V (x)e−2βx ,

gβε (x, λ) = 1l[1−ε,1]f+(x,−λ− iβ) .
(2.59)
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5. Take ε < δ, and define

Iε(λ) :=

∫
R
e2iλxV β

ε (x)(1− gβε (x, β))dx .

which holomorphic in Imλ ≤ 0.

Since ε < δ we have |Iε(λ)| ≤ Ce(2−ε)|λ| due to the assumption (2.58)
and the fact that, for Imλ ≤ 0,∫

R
e2iλx1l[−1,1−ε](x)V (x)e−βx(1− f−(x,−λ− iβ))dx = O(e2(1−ε)|λ|) ,

Paley-Wiener theor!em then shows that

Îε(x) = 0 , x > 1− ε ,

that is

V β
ε (x) =

1

2π

∫
R

∫
R
e2iλ(y−x)V β

ε (y)gβε (y, λ)dλdy .

for 1 − ε ≤ x ≤ 1. Plancherel’s theorem and the Cauchy Schwartz
inequality then imply that

‖V β
ε ‖L2 = (2π)−1

∥∥∥∥∫
R
e2iλyV β

ε (y)gβε (y, λ)dy

∥∥∥∥
L2(dλ)

≤ (2π)−1
∥∥‖V β

ε ‖L2‖gβε (y, λ)‖L2(dy)

∥∥
L2(dλ)

= (2π)−1‖V β
ε ‖L2‖gβε ‖L2(dy,dλ)

(2.60)

We recall that gβε ∈ L2(dλ) because of the O(1/|λ|) decay of f+ given
in Theorem 2.8.

Because of the factor 1l[1−ε,1] in the definition of gβε in (2.59), we have

(2π)−1‖gβε ‖L2(dy,dλ) −→ 0 , ε −→ 0 + .

It follows from (2.60) that for ε small enough ‖V β
ε ‖L2 = 0. Recalling

(2.59) this means that

V (x) = 0 for 1− ε < x < 1,

contradicting the assumption that chsupp V = [−1, 1].

6. The same argument applies in the case (2.57) holds for v−+ that

V (x) = 0 for −1 < x < 1− ε,

leading again to contradiction. Hence (2.56) holds and Theorem D.1
gives the asymptotics of resonances. �
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2.5. Trace formulæ.

We will now prove two trace formulas: one involving the scattering
matrix and another relating resonances to the wave group.

THEOREM 2.14 (Birman-Krein formula I). Suppose that V ∈
L∞comp(R;R).

Then for f ∈ S (R) the operator f(PV )− f(P ) is of trace class and

tr (f(PV )− f(P0)) =
1

2πi

∫ ∞
0

f(λ2)tr
(
S(λ)−1∂λS(λ)

)
dλ

+
K∑
k=1

f(Ek) +
1

2
(mR(0)− 1)f(0) ,

(2.61)

where S(λ) is the scattering matrix and EK < · · · < E1 < 0 are the
(negative) eigenvalues of PV .

Theorem 2.14 is a consequence of the determinant identity presented
in Theorem 2.9.

INTERPRETATION. As in the beginning of Section 2.2 we can
compare this result to a result involving eigenvalues. Let us denote
he Dirichlet realization of PV on [a, b] by PD

V . The spectrum of PD
V is

discrete,

EN < EN−1 < · · · < E1 < 0 < λ2
0 < λ2

1 < · · · → ∞ .

For f ∈ S (R), we have

(2.62) tr f(PD
V ) =

∞∑
j=0

f(λ2
j) +

N∑
k=1

f(Ek)

which can be written as

(2.63) tr f(PD
V ) =

∫ ∞
0

f(λ2)
dN(λ)

dλ
dλ+

N∑
k=1

f(Ek)

where

N(λ) = #{λ2
j : λ2

j ≤ λ2}
is the counting function for the positive eigenvalues of PD

V .

Hence we have the following correspondence between confined (dis-
crete spectrum) and open (continuous spectrum/scattering) problems:

N(λ) ←→ 1

2πi
logS(λ) .
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Since S(λ) is unitary for λ ∈ R the right hand side is real. Since only
the derivatives appear in the formula we can choose the branch of log
arbitrarily.

Proof of Theorem 2.14. Still need to sort out the multiplicity at
0 – the proof below works when f(0) = 0. For simplicity we
assume that there are no negative eigenvalues as their contribution is
easy to analyse.

1. Since we assume that V ∈ L∞(R;R), PV is selfadjoint and we can
use Stone’s formula as we did in the proof of Theorem 2.5. That gives

f(PV ) =
1

2πi

∫
R
f(λ2)(RV (λ)−RV (−λ))2λdλ ,

2. Consequently, using

RV (λ)−R0(λ) = −RV (λ)V R0(λ)

= −R0(λ)(I + V R0(λ)ρ)−1V R0(λ) ,

we obtain

f(PV )− f(P0) =
∑
±

1

2πi

∫
R
f(λ2)B(±λ)dλ ,

where

(2.64) B(λ) := 2λR0(λ)(I + V R0(λ)ρ)−1V R0(λ) .

This operator is of trace class for Imλ > 0 and

‖B(λ)‖L1 ≤
C

|Imλ|2
.

We recall from (2.14) that there are no poles on the real axis – except
for the possible pole at λ = 0.

Let g ∈ S (C), suppg ⊂ {|Imλ| ≤ 1}, be an almost analytic extention
of f(λ2):

g(λ) = f(λ2) , λ ∈ R , ∂λ̄g(λ) = O(|Imλ|∞) .

Green’s formula then shows that

f(PV )− f(P0) =
1

2πi
(t+(f) + t−(f)) ,

t±(f) := 2i

∫
±Imλ>0

∂λ̄g(±λ)B(±λ)dL(λ) .
(2.65)
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We conclude that

‖t±(f)‖L1 ≤
∫

0<±Imλ<1

O(|Imλ|∞(1 + |λ|)−∞)|Imλ|−2dL(λ) <∞ .

This proves the claim that

(2.66) f(PV )− f(P0) ∈ L1 .

3. To calculate the trace of f(PV )−f(P0) we are going to use Theorem
2.9. Taking logarithmic derivatives of both sides of (2.46) we obtain

trF (−λ) + trF (λ) = tr ∂λS(λ)S(λ)−1 ,

F (λ) := ∂λ(V R0(λ)ρ)(I + V R0(λ)ρ)−1 .
(2.67)

We claim that for Imλ > 0 we have

(2.68) trF (λ) = trB(λ) ,

where B(λ) was defined by (2.64).

To see (2.68) we use the fact that R0(λ) is bounded on L2 for Imλ > 0
and hence

∂λ(V R0(λ)ρ) = 2λV R0(λ)2ρ .

Using this, the cyclicity of the trace, and ρV = V , we obtain, always
for Imλ > 0,

trF (λ) = 2λtrR0(λ)(I + V R0(λ)ρ)−1V R0(λ) = trB(λ) ,

which is (2.68).

4. We combine (2.65), (2.68) and (2.67) to obtain, under the assump-
tion that there is no discrete spectrum,

tr (f(PV )− f(P0)) =
1

4πi

∫ ∞
0

f(λ2)tr
(
S(λ)−1∂λS(λ)

)
.

Since detS(−λ) = (detS(λ))−1 (see for instance (2.46)) the integrand
is even which gives (2.61). �

As a consequence of Theorem 2.14 we have the following trace for-
mula for resonances:

THEOREM 2.15 (Trace formula for resonances I). Suppose that
V ∈ L∞comp(R;R). Then for ϕ ∈ C∞c (R) the operator∫

R
ϕ(t)

(
cos t
√
P V − cos t

√
P 0

)
dt
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is of trace class, and, in the sense of distributions on R \ {0},

2tr
(

cos t
√
P V − cos t

√
P 0

)
=
∑

Imλ<0

mR(λ)e−iλ|t|

+
K∑
k=1

cosh t
√
−Ek +mR(0)− 1 .

(2.69)

INTERPRETATION. The expansion (2.24) leads directlty to a trace
formula for, say, the Dirichlet realization of PV on [a, b]. As before we
that Dirichlet realization by PD

V . Assuming for simplicity that there
are no non-positive eigenvalues we have

2 tr cos t
√
PD
V =

∑
λ2∈Spec(PDV )

e−iλt .

Hence the expansion (2.69) is an exact analogue of this well known
consequence of the spectral theorem. What is remarkable is the fact
that unlike the resonance wave expansions given in Theorem 2.5 the
trace formula (2.69) is exact.

Proof of Theorem 2.15. We again make the simplifying assumption
that there are no eigenvalues.

1. We observe that both sides of (2.69) are even in t. Hence (2.69) is
equivalent to the following statement: for ϕ ∈ C∞c ((0,∞))

f(PV )− f(P0) =
∑

Imλ<0

ϕ̂(λ)mR(λ) + (mR(0)− 1)ϕ̂(0) ,

f(z) := ϕ̂(
√
z) + ϕ̂(−

√
z) , f ∈ S (R) .

(2.70)

By Theorem2.14, and because

∂λ(log detS(λ)) = ∂λ(log detS(−λ)) ,

we need to show that

1

2πi

∫ ∞
−∞

ϕ̂(λ)∂λ(log detS(λ))dλ =
∑

Imλ<0

ϕ̂(λ)mR(λ) .(2.71)

2. Recall that

detS(λ) =
D(−λ)

D(λ)
,
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and that λD(λ) is an entire function of exponential type. Then using
the Hadamard factorization theorem, we have

D(λ) = λmR(0)−1ea0+a1λP (λ) , P (λ) :=
∏

Imµ<0

E1(λ/µ)mR(µ) ,

where E1(z) := (1− z)ez. We observe that

∂2
λ logP (λ) = −

∑
Imµ<0

mR(µ)

(λ− µ)2
,

and hence, using (2.46), we have

∂2
λ(log detS(λ)) =

∑
Imµ<0

mR(µ)

(λ− µ)2
−
∑

Imµ<0

mR(µ)

(λ+ µ)2
.

3. Define g ∈ S by g′(λ) = ϕ̂(λ). Note that such g exists and is unique
as 0 = ϕ(0) = (2π)−1

∫
ϕ. Then,∫

R
ϕ̂(λ)∂λ(log detS(λ))dλ = −

∫
R
g(λ)∂2

λ(log detS(λ))dλ

=
∑
±

±
∑

Imµ<0

∫
R

mR(µ)

(λ∓ µ)2
g(λ)dλ

= 2πi
∑

Imµ<0

mR(µ)g′(µ)

= 2πi
∑

Imµ<0

mR(µ)ϕ̂(µ) ,

where we deformed the contour in the integral using the fact that

ϕ̂ ∈ C∞c ((0,∞)) =⇒ |g(λ)| = O((1 + |λ|)−∞) , for Imλ ≤ 0,

Since this gives (2.71) the proof is complete. �

In Chapter 4 we will obtain a general version of Theorem 2.15. In
dimension one we have however a more precise version unavailable in
higher dimensions:
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THEOREM 2.16 (Improved trace formula). Suppose that V ∈
L∞com. Then, in the sense of distrubutions on R

2tr
(

cos t
√
P V − cos t

√
P 0

)
= 4|chsuppV |δ0(t) +

1

2
(mR(0)− 1)

+ p.v.
∑

Imλ<0

mR(λ)e−iλt +
K∑
k=1

cosh t
√
−Ek ,

(2.72)

where for ϕ ∈ C∞c (R)〈
p.v.

∑
Imλ<0

mR(λ)e−iλt, ϕ

〉
:= lim

Λ→∞

∑
Imλ<0
|λ|≤Λ

mR(λ)ϕ̂(λ) .

2.6. Complex scaling in one dimension.

In this section we present the simplest case of the method of complex
scaling which produces a natural family of non-selfadjoint operators
whose discrete spectrum consists of resonances.

The idea is to consider D2
x as a restriction of the complex second

derivative D2
z to the real axis thought of as a contour in C. This

contour is then deformed away from the support of V so that P can
be restricted to it. This provides ellipticity at infinity at the price of
losing self-adjointness.

An account of this method in higher dimensions and of its relation
to the method of perfectly matched layers (PML) [Be] will be provided
in Chapter 5. Again, in one dimension we can provide a low-tech self-
contained presentation.

Let Γ ⊂ C be a curve which is a graph over R of a function g : R→ R
satisfying the following conditions:

g ∈ C1(R;R) , g′ ≥ 0 , g([−R,R]) = 0 , where supp(V ) ⊂ (−R,R),

Γ := {x+ ig(x) : x ∈ R} ⊂ C .

We now define differentiation and integration of functions mapping
Γ to C. Let γ(t) be a parametrization R → Γ, and let f ∈ C1(Γ) in
the sense that f ◦ γ ∈ C1(R). We define

∂Γ
z f(z0) = γ′(t0)−1∂t(f ◦ γ)(t0)
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where γ(t0) = z0 (the inverse and the multiplication are in the sense of
complex numbers), and further define

Dz = −i∂Γ
z .

By the chain rule, if f is differentiable in a neighborhood of Γ, this is
independent of parametrization. In fact, if

γ(t) = γ1(t) + iγ2(t) , γj : R −→ R ,

then

γ′(t0)−1∂t(f ◦ γ)(t0) = γ′(t0)−1(∂xf(z0)γ′1(t0) + ∂yf(z0)γ′2(t0))

If α is another parametrization, α(s0) = z0, then

γ′(t0) = c(s0)α′(s0) for some factor c(s0) ∈ R,

as two tangent vectors must be parallel. This factor cancels in the
expression above, guaranteeing independence of parametrization.

Moreover, if f is holomorphic in a neighborhood of Γ, then the
Cauchy-Riemann equation, ∂yf = i∂xf , shows that

∂Γ
z f = ∂xf = ∂zf ,

so in this case ∂Γ
z coincides with the holomorphic differential operator.

To integrate along the curve we can use both the complex contour
measure and the arclength measure, denoted

dz = γ′(t)dt , d|z| = |γ′(t)|dt ,

respectively. The space L2(Γ) is defined using the second measure.

Note that V is a well defined function on Γ, so that putting

PΓ := (DΓ
z )2 + V (z) ,

makes sense.

For the main theorem we introduce two angles as follows. Fix 0 ≤
θ1 ≤ θ2 ≤ π/2 and ε > 0 having the property that for every z ∈ Γ
outside of some compact set, either θ1 + ε ≤ arg z ≤ θ2 − ε or θ1 + ε ≤
arg(−z) ≤ θ2 − ε. In the first case above we may take θ1 = θ − ε and
θ2 = θ + ε. In the second case above we may take θ1 = π/2 − ε and
θ2 = π/2. Fig. 10 illustrates how θ1 and θ2 may be chosen.

THEOREM 2.17. Any λ with −θ1 ≤ arg λ ≤ π − θ2 is an eigen-
value of PΓ of multiplicity m if and only if it is a resonance of P of
multiplicity m.
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Figure 8. Curve Γ used in complex scaling. The curve
is given by a C∞ function g satisfying g(x) = 0 for −R ≤
x ≤ R and g(x) = x tan θ for |x| sufficiently large, where
θ is a given constant.

Figure 9. Curve Γ used in PML computations. A
typical curve is given by a function g satisfying g(x) =
−|x + R|α for x < −R, g(x) = 0 for −R ≤ x ≤ R, and
g(x) = (x−R)α for x > R, where α > 1.
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Figure 10. A more general version of Γ.

Proof. Suppose λ is a resonance of multiplicity m of P . This means
that there is a function ϕ : R→ C satisfying (P − λ2)mϕ(x) = 0 and

(P − λ2)m−1ϕ(x) =

{
Aeiλx x ≥ R
Be−iλx x ≤ −R

This means that ϕ satisfies

ϕ(x) =

{
P (x)eiλx x ≥ R
Q(x)e−iλx x ≤ −R

for suitable polynomials P and Q. We now define ϕ̃ : Γ→ C as follows

ϕ̃(z) =

 P (z)eiλz Re(z) ≥ R
ϕ(z) −R < Re(z) < R
Q(z)e−iλz Re(z) ≤ −R

This ϕ̃ clearly satisfies

(PΓ − λ2)mϕ̃ = 0 , (PΓ − λ2)m−1ϕ̃ 6= 0 .

If now ϕ̃ ∈ L2(Γ) this will imply that PΓ has an eigenvalue of multi-
plicity at least m at λ. We defer the proof of this lemma momentarily.
This means that if λ is a resonance of multiplicity m for P , then it is
an eigenvalue of multiplicity at least m for PΓ. In the same way one
shows that if λ is an eigenvalue of multiplicity m for PΓ, then it is a
resonance of multiplicity m for P . Observe that in this one-dimensional
problem the only possible multiplicities are algebraic. Geometric mul-
tiplicites are ruled out by the rigid form of the eigenfunctions of PΓ for
|Re(z)| ≥ R. �
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To complete the proof we need only the following lemma.

LEMMA 2.18. Any continuous function f : Γ→ C satisfying

f(z) =

{
P (z)eiλz Re(z) ≥ R
Q(z)e−iλz Re(z) ≤ −R

where P (z) and Q(z) are polynomials, is in L2(Γ).

Proof. We must show that∫
Γ

|f(z)|2d|z| <∞

To prove this it is enough to consider the tail of the integral, where
θ1 ≤ arg z ≤ θ2. Suppose this inequality holds for Re(z) ≥ T , and that
T ≥ R, and let

ΓT = Γ ∩ {Re(z) ≥ T} .
Then∫

ΓT

|f(z)|2d|z| =
∫

ΓT

|P (z)||eiλz|2d|z|

=

∫
ΓT

|P (z)|e−2(Im(λ)Re(z)+Re(λ)Im(z))d|z|

=

∫
ΓT

|P (z)|e−2|z||λ| sin(arg λ+arg z)d|z|

≤
∫

ΓT

|P (z)|e−2|z||λ| sin εd|z|

=

∫ ∞
T

|P (t+ ig(t))|e−C
√
t2+g(t)2

√
1 + g′(t)2dt

We now reduce to the case P (z) = 1. For |z| sufficiently large, |P (z)| ≤
A|z|n, and, for a suitable constant C ′, A|z|ne−C|z| ≤ e−C

′z when |z| is
sufficiently large. If now P (z) is not 1, we reduce to this case by
replacing C by C ′ and T by T ′ where T ′ is large enough that this last
inequality holds. We then write

[T,∞) = A ∪B ,

A := {t ≥ T : 1 ≥ g′(t)} , B := {t ≥ T : 1 ≤ g′(t)} .

This allows us to divide our integral into two parts which we bound
separately:∫

A

e−C
√
t2+g(t)2

√
1 + g′(t)2dt ≤

√
2

∫
A

e−Ctdt <∞
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On B we use the fact that g is monotone to effect a change of variables:∫
B

e−C
√
t2+g(t)2

√
1 + g′(t)2dt ≤

√
2

∫ ∞
T

e−Cg(t)g′(t)dt

=
√

2

∫ g(∞)

g(T )

e−Cudu <∞

The proof of convergence of the other side of the integral follows the
same line of reasoning. �

2.7. Sources and further reading. Theorem 2.11 was proved in
some special cases in [Re] and in general (for V ∈ L1

comp(R;R)) in
[Z1]. Different proofs were given in [Fr] and [Si], and we followed [Fr],
where complex valued potentials were allowed, in our presentation.
That paper also treats non-compactly supported potentials.

The presentation of complex scaling in Section 2.6 is based on un-
published notes of Kiril Datchev.
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3. Resonances for potentials in odd dimensions

In this section we will consider the simplest higher dimensional situa-
tion: scattering by compactly supported potentials in odd dimensions.
Many results presented in Chapter 2 are valid in this case with proofs
requiring only small modifications. Other results, such as the asymp-
totics for the number of scattering poles, are not known.

The main advantage of odd dimensions is the strong Huyghens prin-
ciple for the wave equation: if �u = 0 and the support of initial data
lies in |x| < R then support of u(t, •) lies in t − R < |x| < t + R.
The weak Huyghens principle valid in all dimensions says only that the
support of u(t, •) lies in |x| < t+R.

One consequence of the strong Hughens principle is the analytic con-
tinuation of (−∆− λ2)−1 from Imλ > 0 to C.

3.1. Free resolvent in odd dimensions.

We will base our presentation on the properties of the wave equation.
Thus we consider its unique forward fundamental solution:

(3.1) �E+ := (∂2
t −∆)E+ = δ0(x)δ0(t) , suppE+ ⊂ {t ≥ 0} .

For n odd we have a particularly nice expression for the distribution
E+. Its action on ϕ ∈ C∞c (Rt × Rn

x) is given by

〈E+, ϕ〉 =

∫ ∞
0

〈E(t), ϕ(t, •)〉dt ,

〈E(t), ψ〉 =
1

4
π−k

(
d

ds

)k−1

ψ̃|s=t2 , n = 2k + 1 ,

ψ̃(r) :=

∫
|ω|=1

ψ(rω)dω ,

(3.2)

see [H1, Section 6.2].

The crucial fact seen from this expression is the support property of
E(t): for odd n ≥ 3

(3.3) suppE(t) = {(x, t) : |x| = |t|} .
This is known as the strong Huyghens principle:

�u = f , suppf ⊂ BRn+1(0, R) , u|t<−R = 0 =⇒
u(t, x) = 0 , for |x| < t− 2R.

The weak Huyghens principle valid in all dimensions says that u(t, x) =
0 for |x| > t+ 2R.
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Another way to view E(t) is as giving the solution to the initial value
problem:

�u = 0 , u(0, x) = ϕ0(x) , ∂tu(0, x) = ϕ1(x) ,

u(t, x) = E(t) ∗ ϕ1(x) + ∂tE(t) ∗ ϕ0(x) , ϕj ∈ C∞(Rn) .
(3.4)

Here u∗v denotes the convolution of a compactly supported distribution
u with a smooth function v.

The solution of (3.4) can also be given using the spectral decom-
position of −∆ and the functional calculus – this corresponds to the
Fourier transform decomposition:

(3.5) u(t, x) =
sin(t
√
−∆)√
−∆

ϕ1(x) + cos(t
√
−∆)ϕ0(x) .

If we write

U(t) :=
sin(t
√
−∆)√
−∆

,

we see that the Schwartz kernel of U(t) is given by

U(t, x, y) = E(t, x− y) ,

see [H1, Section 6.1] for the details on the pull back (by (x, y) 7→ x− y
here) of distributions.

The strong Huyghens principle (3.3) implies that

(3.6) suppv ⊂ BRn(0, R) =⇒ (U(t)u) (x) = 0 , |x| < t−R .

For future reference we note that the spectral representation imme-
diately gives

(3.7) ∂kU(t) : Hs(Rn) −→ Hs−k+1(Rn) , k ∈ N , s ∈ R .

The outgoing resolvent of the free Laplacian is defined just as in the
case of dimension one:

(3.8) R0(λ) := (−∆− λ2)−1 : L2(Rn) −→ L2(Rn) , Imλ > 0 .

We can write R0(λ) using U(t):

(3.9) R0(λ) =

∫ ∞
0

eiλtU(t)dt .

In fact, since U(t) = sin t
√
−∆/

√
−∆, and

sup
λ∈R
| sin tλ/λ| = |t| ,

we have
‖U(t)‖L2→L2 = O(|t|) .
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If Imλ > 0 the right hand side of (3.9) is then bounded on L2.

This representation gives us the following important result:

THEOREM 3.1 (Free resolvent in odd dimensions). Suppose
that n ≥ 3 is odd. Then the resolvent defined by

R0(λ) = (−∆− λ2)−1 : L2(Rn)→ L2(Rn) ,

for Imλ > 0, continues analytically to an entire family of operators

R0(λ) : L2
comp(Rn) −→ L2

loc(Rn) .

For any ρ ∈ C∞c (Rn) we have the following estimates:

(3.10) ρR0(λ)ρ = O(|λ|j−1eLImλ−) : L2(Rn) −→ Hj(Rn) ,

j = 0, 1, 2, where L > diam (suppρ).

Proof. 1. For the statement about meromorphy It suffices show that
for any ρ ∈ C∞c (Rn),

ρR0(λ)ρ : L2 −→ L2

continues from Imλ > 0 to an entire family of bounded operators.

2. If suppρ ⊂ B(0, R) then (3.6) and (3.9) show that, for Imλ > 0 at
first,

(3.11) ρR0(λ)ρ =

∫ 2R

0

eiλtρU(t)ρdt .

The right hand side is now defined and holomorphic for λ ∈ C.

3. Since U(t) = OL2→H1 = O(t) (see the discussion following (3.9)) we
obtain the bound (3.10) for j = 1 from (3.11). For j = 0 we write

λρR0(λ)ρ =

∫ 2R

0

Dt(e
iλt)ρU(t)ρdt

=

∫ 2R

0

eiλtρDtU(t)ρdt+ iρ2I .

We have

DtU(t) = −i cos t
√
−∆ = OL2→L2(1) ,

and the bound (3.10) for j = 0 follows.

4. Finally, we consider (3.10) for j = 2. Suppose that ρ1 ∈ C∞c (Rn) is
equal to one on the support of ρ, diam( suppρ1), where L is the fixed
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number appearing in (3.10) and greater than diam (suppρ). Then

‖ρR0(λ)ρ‖L2→H2 ≤ ‖∆ρR0(λ)ρ‖L2→L2 + ‖ρR0(λ)ρ‖L2→L2

≤ ‖ρ∆R0(λ)ρ‖L2→L2 + ‖[∆, ρ](ρ1R0(λ)ρ1)ρ‖L2→L2

+ ‖ρR0(λ)ρ‖L2→L2

≤ |λ|2‖ρR0(λ)ρ‖L2→L2 + C‖ρ1R0(λ)ρ1‖L2→H1

+ 2‖ρR0(λ)ρ‖L2→L2 .

Hence (3.10) for j = 2 follows from the estimates for j = 0, 1. �

The next theorem gives asymptotics of R0(λ)f , f ∈ E ′(Rn) as |x| →
∞ for λ 6= 0.

This result does not depend on the parity of the dimension.

THEOREM 3.2 (Outgoing asymptotics). Suppose that n > 1 and
f ∈ E ′(Rn) is a compactly supported distribution (or f ∈ S (Rn)).

Then for λ ∈ R \ 0,

R0(λ)f(|x|θ) =
eiλ|x|

|x|n−1
2

h(|x|, θ) ,

h(x, θ) ∼
∞∑
j=0

|x|−jhj(θ) ,

h0(θ) =
1

2

1

2πi

(
λ

2π

) 1
2

(n−3)

e
1
4
πi(n−1)f̂(λθ) ,

(3.12)

as |x| → ∞.

REMARK. In the case of n = 3 a simple proof of (3.12) follows from
the explicit formula for the Schwartz kernel of R0(λ):

(3.13) R0(λ, x, y) =
eiλ|x−y|

4π|x− y|
.

To see this we use the following expansions,

|x− y| = |x| − 〈x/|x|, y〉+O (1/|x|) ,

|x− y|−1 = |x|−1 (1 +O
(
|x|−1)) .
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0 λ

−λ

γn(λ), n odd

0 λ

−λ

γn(λ), n even

Figure 11. Contour deformation used to define R0(λ)
for λ > 0.

Proof. 1. Our proof is based on the representation using the Fourier
transform:

(3.14) R0(λ, x, y) =
1

(2π)n

∫
ei〈ξ,x−y〉

|ξ|2 − λ2
dξ , Imλ > 0 ,

where the integral is meant in the sense of a Fourier transform of a
tempered distribution:

(3.15) R0(λ, x, y) = lim
δ→0+

1

(2π)n

∫
ei〈ξ,x−y〉−δ|ξ|

|ξ|2 − λ2
dξ , Imλ > 0 ,

2. To obtain an expression valid for λ ∈ R± we deform the contour in
the ξ integration. Let us first assume that f ∈ C∞c (Rn) so that

|∂αf(ξ)| ≤ Cα,N〈ξ〉−N exp(R|Imξ|) , ξ ∈ Cn .

For λ > 0 and ε > 0,

(2π)nR0(λ+ iε)f(x) =∫ ∞
0

∫
Sn−1

eiρ〈ω,x〉(ρ2 − (λ+ iε)2)−1f̂(ρω)ρn−1dωdρ =

1

2

∫
R

∫
Sn−1

eiρ〈ω,x〉(ρ2 − (λ+ iε)2)−1f̂(ρω) sgn(ρ)n−1ρn−1dωdρ =

1

2
λn−2

∫
γn(1)

∫
Sn−1

eiλρ〈ω,x〉(ρ2 − (1 + iε)2)−1f̂(λρω)ρn−1dωdρ ,

(3.16)

where the contours for n even and odd are shown in Fig. 11 – note
the difference of orientation depending on the parity of dimension. It
is clear now that we can take ε = 0 which gives an expression for the
resolvent on the real axis (see also the remark after the proof).
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0

λ

−λ

n odd

Figure 12. Contour deformations used to define
R0(λ) for λ > 0 for n odd. Because of the orientation
R0(e−πiλ) = R0(λ) for λ > 0 and the operator is defined
in C.

3. We now write x = rθ, r ≥ 0, θ ∈ Sn−1, and introduce a partition of
unitity on Sn−1:

ψ0
θ(ω) + ψ+

θ (ω) + ψ−θ (ω) = 1 ,

suppψ±θ ⊂ {ω : ±〈θ, ω〉 > 1/2} .

On the support of ψ0
θ the phase λrρ〈θ, ω

�

REMARK. The contour deformation given in (3.16) gives also an
expression for the analytic continuation of R0(λ)f , f ∈ C∞c (Rn). The
orientation of γn(λ) explains the different behaviour of R0(λ)f for n
even and odd.

3.2. Meromorphic continuation.

Once we have established the properties of the free resolvent in odd
dimensions the properties of

RV (λ) := (−∆ + V − λ2)−1 , Imλ� 0 ,

V ∈ L∞(Rn,C) , n = 2k + 1 , k = 1, 2, · · · ,
follow exactly as in one dimension. The situation is even simpler as we
do not have a resonance at zero for R0(λ).

In particular the proof of the following theorem is exactly the same
as in one dimensional case:
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0

λ

−λ

n even

Figure 13. Contour deformations used to define R0(λ)
for λ > 0 for n even. Now R0(e−πiλ) = R0(λ) can be ex-
pressed using an integral ovegral over the circular contour
which doubles rather than gets absorbed. The resolvent
is defined on the logarithmic plane.

THEOREM 3.3 (Meromorphic continuation of the resolvent
II). Suppose that V ∈ L∞comp(Rn;C) and that n ≥ 3 is odd. Then the

RV := (D2
x + V − λ2)−1 : L2 −→ L2 , Imλ > 0 ,

is a meromorphic family of operators with singularities contained in
D(0, RV ) for some V .

It extends to a meromorphic family of operators for λ ∈ C:

RV := L2
comp −→ L2

loc .

Scattering resonances are the poles of RV (λ and their multiplicities,
mR(λ) are defined by (2.13). The structure of the singular part of the
resolvent at a pole can now be more complicated:

THEOREM 3.4 (Singular part of RV (λ) II).

1) Suppose mR(µ) > 0, µ 6= 0. Then

(3.17) RV (λ) =

mR(µ)∑
k=1

(P − µ2)k−1

(λ2 − µ2)k
Πµ + A(λ, µ) ,

where λ 7→ A(λ, µ) is holomorphic near µ,

Πµ =
1

2πi

∮
µ

RV (λ)2λdλ ,
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and

(3.18) (PV − µ2)mR(µ)Πµ = 0 , ImΠµ = span {u1, · · · , umR(µ)} .

The non-empty range of (PV − µ2)mR(µ)−1Πµ consists of outgoing solu-
tions to (PV − µ2)u = 0.

2) Suppose that V ∈ L∞comp(R;R) and that mR(0) > 0. Then

RV (λ) =
Π0

λ2
+

ΠR
0

λ
+ A(λ) ,

where λ 7→ A(λ) is holomorphic near 0, and Π0 is the orthogonal pro-
jection onto the space of L2 solutions to PV u = 0. The range of ΠR

0

consists of outgoing solutions to PV u = 0 which are not in L2.

3) For n ≥ 5, all outgoing solutions at µ = 0 are in L2. In other words
a pole of RV (λ) at λ = 0 comes the existence of a zero eigenvalue..

Proof. 1. The proof of 1) is the same as the proof of 1) in Theorem
2.3.

2. As in the proof of Theorem 2.3 we see that

RV (λ) =
A2

λ2
+
A1

λ
+ A(λ) ,

where PVAj = AjPV = 0, PVA(0) = I + A2 and A(λ) is holomorphic
near 0. We also have

A2 = − lim
t→0+

t2RV (it) ,

which shows that A2 is bounded on L2 and selfadjoint. more needed
here

3. The outgoing solutions are of the form u = R0(0)f where f ∈ L2
comp.

Hence

u(x) ∼ cn
|x|n−2

∫
f(y)dy , x→∞ ,

more details needed here and about R0(λ). Hence for n ≥ 5,
u ∈ L2. �

The proofs of Theorem 2.6 on resonance free regions and of The-
orem 2.5 apply without any modifications to the case of higher odd
dimensions. Thus we obtain
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THEOREM 3.5 (Resonance free regions II). Suppose that

V ∈ L∞comp(Rn;C) , n ≥ 1 , odd .

Then for any ρ ∈ C∞c (R3) constants A′, C, T depending on the support
of ρ such that

(3.19) ‖ρRV (λ)ρ‖L2→Hj ≤ C|λ|j−1 eT |Imλ| , j = 0, 1, 2 ,

for

Imλ ≥ −A− δ log(1 + |λ|) , |λ| > C0 , δ > 1/|chsuppV | .

In particular there are only finitely many resonances in the region

{λ : Imλ ≥ −A− δ log(1 + |λ|)} .

for any A > 0.

THEOREM 3.6 (Resonance expansions of scattering waves
II). Let V ∈ L∞(Rn;R) for n ≥ 1 odd, and suppose that w(t, x) is the
solution of

(3.20)


(D2

t − PV )w(t, x) = 0 ,

w(0, x) = w0(x) ∈ H1
comp(R) ,

∂tw(0, x) = w1(x) ∈ L2
comp(R) .

Let EN < · · · < E1 < 0 be the negative eigenvalues of PV and {λj} ⊂
{Imλ < 0} be the set of its resonances.

Then, for any A > 0,

w(t, x) =
N∑
k=1

cosh(t
√
−Ek)akvk(x) +

N∑
k=1

sinh(t
√
−Ek)bkvk(x)

+
∑

Imλj>−A

mR(λj)−1∑
`=0

λ`je
−iλjtwj,`(x) + EA(t) ,

(3.21)

where the second sum is finite,

mR(λj)−1∑
`=0

λ`je
−iλjtwj,`(x) = Resλ=λj

(
(iRV (λ)w1 + λRV (λ)w0) e−iλt

)
,

(PV − λj)k+1wj,k = 0 ,

(3.22)
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and for any K > 0, such that suppwj ⊂ [−K,K], there exist constants
CK,A and TK,A

‖EA(t)‖H2([−K,K]) ≤ CK,Ae
−tA (‖w0‖H1 + ‖w1‖L2) , t ≥ TK,A .

3.3. Upper bounds on the number of resonances.

As in the case of dimension one we will estimate the number of
resonances using a suitable determinant. We start with

LEMMA 3.7 (Trace class properties). For V, ρ ∈ L∞comp(Rn;C),
n ≥ 1, odd,

(V R0(λ)ρ)p , p ≥ n+ 1

2
,

is an entire family of trace class operators.

Proof. 1. We first estimate the characteristic values of ρ1R0(λ)ρ1 where
ρ1 ∈ C∞c (Rn). If suppρ1 ⊂ B(0, R) we can consider

(3.23) ρ1R0(λ)ρ1 : L2(TnR) −→ L2(TnR) , TR := Rn/RZn .

2. Then, using (B.13), and then (B.16), we have

sj(ρ1R0(λ)ρ1) ≤ sj((−∆TnR − 1)−`)‖(−∆TnR − 1)`ρ1R0(λ)ρ1‖

≤ Cj−2`/n‖ρ1R0(λ)ρ1‖L2→H2` .

Theorem 3.1 gives

(3.24) sj(ρ1R0(λ)ρ1) ≤ C min(|λ|−1, j−1/n, |λ|j−2/n) exp(CImλ−) .

3. The same estimate holds for V R0(λ)ρ and we can use(B.13) to
see that

sj ((V R0(λ)ρ)p) ≤ C1|λ|pj−2p/n exp(C1Imλ−) .

when p ≥ (n+ 1)/2 ∑
j

sj ((V R0(λ)ρ)p) <∞

which means the operator is of trace class. �
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Since for n ≥ 2, V R0(λ) is no longer of trace class we cannot use the
determinant defined by (2.20).

DEFINITION. Suppose that n ≥ 3 is odd. Using the modified Fred-
hold determinant, see (B.21) in Section B.3, Lemma 3.7 allows us to
define

(3.25) D(λ) := det
p

(I + V R0(λ)ρ) , p =
n+ 1

2
,

where ρ ∈ C∞c (Rn) is equal to one on suppV .

Using Lemma 3.7 the following definition is also justified:

(3.26) H(λ) := det(I − (V R0(λ)ρ)n+1) .

THEOREM 3.8 (Multiplicity of a resonance II). Let the func-
tions D and H be given by (3.25) and (3.26) respectively.

Let mD(λ) and mH(λ) be multiplicities of λ as zeros of D(λ) and
H(λ), respectively.

Then for λ ∈ C,

mR(λ) = mD(λ) ≤ mH(λ) .(3.27)

Proof. 1. Since

RV (λ) = R0(λ)(I + V R0(λ)ρ)−1(I − V R0(λ)(1− ρ)) ,

(I + V R0(λ)ρ)−1 = I − V RV (λ)ρ .
(3.28)

the poles of RV and (I + V R0(λ)ρ)−1 coincide.

Also, as n is odd, I − (V R0(λ)ρ)n+1 =

(I + V R0(λ)ρ)(I − V R0(λ)ρ+ · · · − (V R0(λ)ρ)n) .

2. The study of multiplicities needs to be based on a more careful
argument using the results of Section C.4. �

DISCUSSION. In view of (3.27) the advantage of D(λ) is that it
gives us resonances with their multiplicities. As we will see in Section
3.6 D(λ) grows too fast as Imλ → −∞ (except when n = 3). This
makes estimates on the number of its zeros unyieldy.

The determinant H(λ) is introduced to remedy the growth problem
but we pay by introducing additional zeros. For bounds on the growth
of the number of resonances, which is all we are able to do precisely,
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that of course does not matter. The choice of n + 1 as the power of
V R0(λ)ρ was arbitrary as in view of Lemma 3.7 we could have taken
any p ≥ (n + 1)/2. It turns out convenient in the proof of Theorem
3.10.

The main result of this section is the following upper bound

THEOREM 3.9 (Upper bounds on the number of resonances
I). Suppose that n ≥ 3 is odd and that V ∈ L∞comp(Rn;C). Let mR(λ)
be the multiplicity of a resonance at λ as defined in (2.13).

Then

(3.29)
∑
{mR(λ) : |λ| ≤ r} ≤ CV r

n .

INTERPRETATION. In the case of −∆+V on a bounded domain,
for instance on Tn, the spectrum is discrete and for V ∈ L∞(Tn;R) we
have the asymptotic Weyl law for the number of eigenvalues:

|{λ : λ2 ∈ Spec(−∆Tn + V ) , |λ| ≤ r}| = cnvol (Tn)rn(1 + o(1)) ,

cn = 2vol (BRn(0, 1))/(2π)n ,

where the eigenvalues are included according to their multiplicities.

In the case of −∆ + V on Rn the discrete spectrum is replaced by
the discrete set of resonances. Hence the bound (3.29) is an analogue
of the Weyl law. Except in dimension one (see Theorem 2.11) the issue
of asymptotics or even optimal lower bounds remains unclear at the
time of writing (see Section 3.8 for references).

Jensen’s formula, see (D.1) in Section D, and (3.27) show that The-
orem 3.9 is an immediate consequence of an estimate on H(λ):

THEOREM 3.10 (Determinant bounds I). Let H(λ) be given by
(3.26). Then for some constant A = AV ,

(3.30) |H(λ)| ≤ A exp(A|λ|n) .

Proof. 1. We use the Weyl inequality (B.14) to see that

(3.31) |H(λ)| ≤
∞∏
k=1

(
1 + sk((V R0(λ)ρ)n+1)

)
.
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We then use (B.13) to see that

(3.32) sk((V R0(λ)ρ)n+1) ≤ ‖V ‖n+1
∞
(
s[k/(n+1)](ρR0(λ)ρ)

)n+1
.

Hence we need to estimate sj(ρR0(λ)ρ) for ρ ∈ C∞c (Rn).

2. We start with easier estimates in the physical half-plane Imλ ≥ 0.
We apply (3.24) to obtain

sj(ρR0(λ)ρ) ≤ Cj−1/n .

From (3.32) we obtain

sk((V R0(λ)ρ)n+1) ≤ C1k
−(n+1)/n .

Using this in (3.31) we then get

H(λ) ≤ exp

(
∞∑
k=1

sk((V R0(λ)ρ)n+1)

)

≤ exp

(
C1

∞∑
k=1

k−(n+1)/n

)
≤ C2 ,

that is H(λ) is uniformly bounded for Imλ ≥ 0.

3. To obtain estimates for Imλ < 0 we use the formula

ρ(R0(λ)−R0(−λ))ρ = anλ
n−1Eρ(λ̄)∗Eρ(λ) ,

Eρ(λ)u(ω) :=

∫
Rn
eiλ〈ω,x〉ρ(x)u(x)dx ,

Eρ(λ) : L2(Rn) −→ L2(Sn−1) .

(3.33)

Hence for Imλ < 0 we have

sj(ρR0(λ)ρ) ≤ an|λ|n−2‖Eρ(λ)‖s[j/2](Eρ(λ)) + s[j/2](ρR0(−λ)ρ)

≤ C exp(C|λ|)s[j/2](Eρ(λ)) + Cj−1/n .

(3.34)

4. To estimate sj(Eρ(λ)) we use the Laplacian on the sphere, −∆Sn−1 ,
and (B.13):

sj(Eρ(λ)) ≤ sj((−∆Sn−1 − 1)−`)‖(−∆Sn−1 − 1)`Eρ(λ)‖

≤ C`j−2`/(n−1)‖(−∆Sn−1 − 1)`Eρ(λ)‖

≤ C`
1j
−2`/(n−1) exp(C1|λ|)(2`)! .

(3.35)
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He re we used the fact that for ρ with support in B(0, R),

‖(−∆Sn−1 − 1)`Eρ(λ)‖ ≤ Cρ sup
ω∈Sn−1,|x|≤R

∣∣(−∆ω − 1)`eiλ〈x,ω〉
∣∣ ,

and we estimated sup using, essentially, the Cauchy estimates.

We now optimize the estimate (3.35) in `. This gives

(3.36) sj(Eρ(λ)) ≤ C2 exp
(
C2|λ| − j

1
n−1/C2

)
.

5. Going back to (3.32) and (3.34) we obtain

sk((V R0(λ)ρ)n+1) ≤ C3 exp
(
C3|λ| − k

1
n−1/C3

)
+ C3k

−n+1
n .

In particular,

(3.37) sk((V R0(λ)ρ)n+1) ≤


C4 exp(C4|λ|) , k ≤ C4|λ|n−1

C4k
−n+1

n , k ≥ C4|λ|n−1 .

Returning to (3.31) we use (3.37) as follows

|H(λ)| ≤
∏

k≤Ck|λ|n−1

exp(C4|λ|)

exp
∑

k≥C4|λ|n−1

C4k
−(n+1)/n


≤ exp(C5|λ|n) ,

which completes the proof. �

REMARK. The exponent n in (3.29) is optimal as shown by the case
of radial potentials. When V (x) = v(|x|)(R − |x|)0

+, where v is a C2

even function, and v(R) > 0. Then, see [Z2],

(3.38)
∑
{mR(λ) : |λ| ≤ r} = CRr

n(1 + o(1)) .

The constant CR and its appearance in (3.29) is explained and discussed
in [Ste].
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3.4. Complex valued potentials with no resonances.

As we have seen in Theorem 2.11 one dimensional complex valued
compactly supported non-zero potentials always have infinitely many
resonances satisfying nice asymptotics at infinity. The situation is dra-
matically different in higher dimensions where complex valued poten-
tials may have no resonances at all.

THEOREM 3.11 (Complex valued potentials with no reso-
nances). Let (r, θ, x′) be cylindrical coordinates in Rk+2, where k is
odd:

x = (x1, x2, x
′) , x1 = r cos θ , x2 = r sin θ , x′ ∈ Rk .

Suppose that V ∈ L∞comp(R3;C) is of the following form:

V (x) = eiθmW (r, x′) , W ∈ L∞comp([0,∞)× Rk) .

If m 6= 0 then the resolvent RV (λ) is entire in C, that is the operator
−∆ + V has no resonances.

REMARK. We can easily place conditions on W so that

V ∈ C∞c (R2+k;C) .

Before starting the proof we need two simple lemmas

LEMMA 3.12 (Fourier decomposition of the resolvent). Let Π`

be the projection onto the `’th Fourier mode:

(3.39) Π`u(r, θ, x′) := ei`θ
1

2π

∫ 2π

0

u(r, ϕ, x′)e−i`ϕdϕ .

Then for ρ ∈ C∞c (R2+k), ρ = ρ(r, x′), we have

(3.40) ‖Π`ρR0(λ)ρΠ`‖L2→L2 ≤ C|λ|eCImλ−

1 + `2
, ` ∈ Z .

Proof. 1. Because we chose ρ to be independent of θ, Π` commutes
with ρR0(λ)ρ. Put

u := ρR0(λ)ρΠ`f , f ∈ L2 .

Then (3.10) gives

(3.41) ‖u‖H2 ≤ C|λ|eCImλ−‖f‖L2 .
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2. On the other hand

‖u‖H2 ≥ 〈−∆u, u〉 = 〈D2
r − (i/r)Dr −∆x′ + `2/r2)u, u〉L2

≥ 〈(`2/r2)u, u〉L2 ≥ C`2‖u‖L2 ,

where the last inequality followed from the fact that r is bounded on
the support of u and hence `2/r2 ≥ C`2. Combining this with (3.41)
proves (3.40). �

The next lemma is an elementary statement about sequences:

LEMMA 3.13 (Two sided sequences). Let {aj}∞j=−∞ be a sequence
satisfying

aj −→ 0 , j −→ ±∞ .

Suppose that m ∈ Z \ {0} and that for each j there exists Cj ≥ 0 such
that

(3.42) |aj+m| ≤ Cj|aj| , and Cj ≤ 1 for |j| ≥ J ,

for some J .

Then
aj = 0 for all j ∈ Z.

Proof. Fix j ∈ Z and use (3.42) to obtain

|aj| ≤ Cj−m|aj−m| ≤ · · · ≤
p∏

k=1

Cj−km|aj−mp|

≤ Kj|aj−mp| → 0 , p→∞ , Kj :=
∏

|j−km|<J

Cj−km .

This shows that aj = 0 as claimed. �

Proof of Theorem 3.11. 1. In view of (3.28) of mV (λ) > 0 for for some
λ then (I + V R0ρ)−1 has a pole for any ρ ∈ C∞c (R2+k such that ρ = 1
on suppV . In particular we can take ρ = ρ(r, x′).

Hence there exists u ∈ L2 such that

u = −V R0(λ)ρu = −V ρR0(λ)ρu .

2. We now use the structure of V , V (r, θ, x′) = eimθW (r, x′), to calcu-
late

Πj+mu = Πj+m

(
eimθWρR0(λ)ρu

)
= eimθΠjWρR0(λ)ρ (Πju) .
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Lemma 3.12 now shows that

‖Πj+mu‖L2 ≤ C|λ|eC|λ|

1 + j2
‖Πju‖L2 .

If we put

aj := ‖Πju‖L2 , Cj :=
C|λ|eC|λ|

1 + j2
,

then the assumptions of Lemma 3.13 are satisfied. Thus Πju = 0 for
all j which means that u = 0 and there is no resonance at λ. �

3.5. Scattering matrix in potential scattering.

In this section we will define and describe the scattering matrix for
V ∈ L∞comp(Rn;R), n ≥ 3, odd. Except for the behaviour near λ = 0
and the fact that we use the properties of the resolvent, the parity of
the dimension is not very important here.

In Section 2.3 the scattering matrix mapped incoming to outgoing
components of a solution to the generalized eigenvalue equation

(3.43) (PV − λ2)w = 0 .

A concepturally similar procedure is used in the case of scattering in
higher dimensions with asymptotic formulae such as (3.12) replacing
explicit representations in terms of exp(±iλx). The starting point is
the same as in (2.37): we consider solutions to (3.43) of the form

(3.44) w(x, λ, ω) = eiλ〈x,ω〉 + u(x, λ, ω) ,

where u is outgoing. It is obtained using the resolvent RV (λ), except
at the possible poles:

(3.45) u(x, λ, ω) := −RV (λ)(V eiλ〈•,ω〉) .

The condition of being outgoing can be formulated in the following
equivalent ways

THEOREM 3.14 (Outgoing solutions). Suppose that f ∈ E ′(Rn)
is a compactly supported distribution and suppose that u solves

(3.46) (PV − λ2)u = f , λ ∈ R \ {0} .
Then the following conditions are equivalent:

i) u = R0(λ)g for some g ∈ E ′(Rn),

ii) u(x) = eiλ|x|a(x/|x|)|x|−(n−1)/2 +O(|x|−(n+1)/2), as |x| → ∞,
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iii) (∂/∂r − iλ)u = o(r−(n−1)/2), as r →∞, r = |x|,

iv) u = U(λ) where (PV − µ2)U(µ) = f and U(µ) is meromorphic in
Imµ ≥ 0, U(µ) ∈ L2(Rn) for Imµ > 0.

v) u = RV (λ)f .

INTERPRETATION. The expression in part ii) of the theorem is
interpreted as an outgoing spherical wave with a(x/|x|) giving the in-
tensity at different directions x/|x|.

DEFINITION. A solution to (3.46) satisfying the conditions in the-
orem 3.14 is called outgoing.

In particular we see that u given by (3.45) is outgoing provided that
λ is not a pole of RV (λ):

u(x, λ, ω) = −RV (λ)(V eiλ〈•,ω〉) = R0(λ)f ,

f = −(I + V R0(λ)ρ)−1(V eiλ〈•,ω〉) ∈ E ′(Rn) .

When V is real valued and λ ∈ R\{0} then Rellich’s important result
states that there are no outgoing solutions. In other words, RV (λ) has
no non-zero real poles:

THEOREM 3.15 (Rellich’s uniqueness theorem). Suppose that
V ∈ L∞comp(Rn;R) is real valued. Then for λ ∈ R \ {0} there are no
outgoing solutions to

(PV − λ2)u = 0 .

Equivalently, RV (λ) has no poles for λ ∈ R \ {0}.

Proof. 1. The proof proceeds by contradiction. Having an outgoing
solution to (3.43) means that RV (λ) has a pole at λ need to get a
proper reference earlier in the text, and that in turn implies that
there exists w ∈ L2 for which

(I + ρR0(λ)V )w = 0 ,

and this is true which is equal to 1 on the support of V . Hence w is
defined in L2

locxsy(Rn), w|Rn\B(0,R) ∈ C∞,

(PV − λ2)w = 0 , w = R0(λ)V w .

more discussion needed here
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2. Theorem 3.2 shows that

(3.47) w = R0(λ)(V w)(x) =
eiλ|x|

|x|n−1
2

(
h

(
x

|x|

)
+O

(
1

|x|

))
,

where
h(θ) = cnλ

n−3
2 V̂ w(λθ) .

In particular,

(3.48) (∂r − iλ)w = O(r−
n+1
2 ) .

3. Since λ is real we have

0 =

∫
B(0,R)

(ū(PV − λ2)u− (PV − λ2)ūu)dx

=

∫
B(0,R)

(u∆ū− ū∆u)dx =

∫
∂B(0,R)

(∂ruū− u∂rū)dS

Using (3.47) and (3.48) we obtain

2iλ

∫
∂B(0,R)

|u|2dS = O(R−nvol (∂B(0, R))) = O(R−1) ,

which implies (in the notation of (3.47)) that

0 =

∫
Sn−1

|h(θ)|2dθ = |cn|2|λ|n−3

∫
Sn−1

|V̂ w(λθ)|2dθ .

4. We conclude that

V̂ w(ξ) = 0 , 〈ξ, ξ〉 = λ2 , ξ ∈ Rn .

If we put
Σ := {ξ ∈ Cn : 〈ξ, ξ〉 = λ2} ,

then Σ is a connected complex hypersurface in Cn and the entire func-

tion V̂ w(ξ) vanishes on Σ∩Rn. It follows that V̂ w(ξ) = 0 on Σ. From
that we see that

V̂ w(ξ)

〈ξ, ξ〉 − λ2
is an entire function of ξ ∈ Cn.

Since
(〈ξ, ξ〉 − λ2)ŵ(ξ) = V̂ w(ξ) ,

Paley-Wiener theorem as applied in [H1, Theorem 7.3.2] shows that
w ∈ E ′.

5. We now apply unique continuation results for−∆+V , V ∈ L∞comp(Rn)
to conclude that w ≡ 0. �
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As in dimension one we want to decompose the solution (3.44) into
incoming and outgoing terms. The scattering matrix will then relate
these two terms.

THEOREM 3.16 (Decomposition of free plane waves). We
have, in the sense of distributions in x/|x| ∈ Sn−1

(3.49) eiλ〈x,ω〉 ∼ 1

(λ|x|)n−1
2

(
c−n e

−iλ|x|δ−ω(x/|x|) + c+
n e

iλ|x|δω(x/|x|)
)
,

as |x| → ∞, where

c±n = (2π)
n−1
2 e∓i

π
4

(n−1) .

More precisely for ϕ ∈ C∞(Sn−1),∫
Sn−1

eiλr〈ω,θ〉ϕ(θ)dθ ∼ 1

(λr)
n−1
2

(
c−n e

−iλrϕ(−ω) + c+
n e

iλrϕ(ω)
)
,

r −→∞, with a full expansion in powers of r.

Proof. To prove the results we use the method of stationary phase.

1. We can assume that ω = (1, 0, · · · , 0). Then the function 〈θ, ω〉 = θ1

has two critical points on Sn−1, correspoding to θ1 = ±1. Hence we
can assume that ϕ is supported near the two poles θ1 = ± – the other
contrbutions are O((λr)−∞) as the phase is non-stationary.

2. Near the two poles we can coordinates t ∈ Rn−1, θ = (±
√

1− |t|2, t) ∈
Sn−1. Then, for ϕ supported near θ1 = ± we have∫

Sn−1

eiλr〈ω,θ〈ϕ(θ)dθ) =

∫
BRn−1 (0,1)

e±iλr
√

1−|t|2ϕ(±
√

1− |t|2, t)J(t)dt ,

where J(t) = 1 +O(t2).

3. The Hessian of the phase at t = 0 is given by ∓IRn−1 and hence the
method of stationary phase gives∫

BRn−1 (0,1)

e±iλr
√

1−|t|2ϕ(±
√

1− |t|2, t)J(t)dt

∼
(

2π

rλ

)n−1
2

e∓i
π
4

(n−1)

(
ϕ(±1, 0) +O

(
1

rλ

))
,

with a full assymptotic expansion in powers of (rλ)−1.

4. A general ϕ can be written as a sum of functions which are supported
near θ1 = ±1, and in the non-stationary region. That gives the result.

�
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INTERPRETATION. We consider

λ−
n−1
2 c±n δ±ω(θ)

as leading coefficients of the incoming (−) and outgoing (+) compo-
nents of exp(iλ〈x, ω〉), even though that is valid only in the sense of
distributions. This is an analogue of the decomposition of exp(±iλx),
x ∈ R, into the incoming and outgoing components:

e±iλx = e−iλ|x|(±x)0
− + eiλ|x|(±x)0

+ , x 6= 0 .

Going back to (3.44) we see from ii) in Theorem 3.14 that w is
decomposed into a sum of a plane wave and of an outgoing spherical
wave u given by (3.45). The scattering matrix is defined as the operator
relating the leading incoming and outgoing terms, normalized so that
it is the identity when V = 0.

Using Theorems 3.2 and 3.16 we write the leading terms in w of
(3.44) as follows:

ei
π
4

(n−1)

(
2π

(λ|x|

)n−1
2

×(
e−iλ|x|δ−ω

(
x

|x|

)
+ eiλ|x|i1−n

(
δω

(
x

|x|

)
+ b

(
λ,

x

|x|
, ω

)))
,

b(λ, θ, ω) :=
1

2i

λn−2

(2π)n−1
F(V u(•, λ, ω))(λθ) .

(3.50)

DEFINITION. The absolute scattering matrix maps the incoming
terms to the outgoing terms in (3.50):

Sabs(λ) : δ−ω(θ) 7−→ i1−n (δω(θ) + b(λ, θ, ω)) .

We observe that for V = 0 we have

Sabs(λ)f(θ) = i1−nf(−θ) .

By normalizing by this free absolute scattering matrix we obtain the
scattering matrix:

S(λ) : δω(θ) 7−→ δω(θ) + b(λ, θ,−ω) ,

where ω is given in (3.50).

We note that V ∈ L∞(Rn;C) the scattering matrix is defined away
from the possible real poles of RV (λ) on the real axis.

We have the following following description of S(λ):
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S(λ) = I + A(λ) ,

A(λ) = anλ
n−2Eρ(λ)(I + V R0(λ)ρ)−1V Eρ(λ̄)∗ ,

Eρ : L2(Sn−1)→ L2(Rn) , Eρ(x, ω) := ρ(x)eiλ〈x,ω〉 .

(3.51)

A(λ)(ω, θ) =

anλ
n−2

∫
R
eiλ〈ω−θ,x〉V (x)(1− e−iλ〈ω,x〉RV (λ)(eiλ〈ω,•〉V )(x))dx ,

where θ, ω ∈ Sn−1.

THEOREM 3.17 (Properties of the scattering matrix). For
V ∈ L∞comp(Rn;C) the scattering matrix, S(λ), is meromorphic in C
with poles of finite rank, and it satisfies

(3.52) S(λ)−1 = S(−λ) , λ ∈ C .

There are only finitely many poles in the closed upper half plane and
for Imλ > 0, λ2 ∈ Spec(PV ).

When V ∈ L∞comp(Rn;R) then

(3.53) S(λ)−1 = S(λ̄)∗ , λ ∈ C .

In particular, S(λ) is unitary for λ ∈ R and holomorphic on R.

In the study of resonances the following theorem provides a crucial
connection. The proof will be given in Section 3.6.

THEOREM 3.18 (Multiplicities of scattering poles II). Suppose
that S(λ) is the scattering matrix for V ∈ L∞comp(Rn;C), n ≥ 3, odd.

If we define

(3.54) mS(λ) =
1

2πi
tr

∮
S(ζ)−1∂ζS(ζ)dζ ,

where the integral is over a positively oriented circle which includes λ
and no other pole or zero of detS(λ), then

(3.55) mS(λ) = mR(λ)−mR(−λ) .
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3.6. Trace formulæ.

In this section we will generalize the one dimensional trace formulæ
given in Theorems 2.14 and 2.15 to the case of potential scattering in
odd dimensions.

The Birman-Krein formula (Theorems 2.14 and 3.19) is valid without
much change in all dimensions and for much less restrictive classes of
potentials. That is not the case with the trace formulæ of Theorem
2.15 and 3.20 which cannot hold in even dimensions and are delicate for
more general perturbations. Further generalizations and modifications
will be discussed in Chapter 4.

We first state the main results:

THEOREM 3.19 (Birman-Krein formula II). Suppose that V ∈
L∞comp(Rn;R), where n ≥ 3 is odd.

Then for f ∈ S (R) the operator f(PV )− f(P ) is of trace class and

tr (f(PV )− f(P0)) =
1

2πi

∫ ∞
0

f(λ2)tr
(
S(λ)−1∂λS(λ)

)
dλ

+
K∑
k=1

f(Ek) +
1

2
mR(0)f(0) ,

(3.56)

where S(λ) is the scattering matrix and EK < · · · < E1 < 0 are the
(negative) eigenvalues of PV .

The proof of this theorem will be given in a more general setting in
Chapter 4.

We reiterate the remark made after Theorem 2.14 where the analogy
between the counting function for eigenvalues of operators for closed
systems (for instance PV on the torus Rn/(RZ)n) and the scattering
phase was made:

Counting for eigenvalues ←→ Scattering phase

N(λ) ←→ 1

2πi
logS(λ) .

The next theorem is the odd dimensional analogue of Theorem 2.15
and it connects resonances with the trace of the wave group. We first
observe that for

ϕ ∈ C∞c (R \ {0}) ,
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we can define the distribution

ϕ 7−→
∑

Imλ≤0

mR(λ)

∫
R
ϕ(t)e−iλ|t| .

To see this put

N(r) :=
∑
{mR(λ) : 0 < |λ| ≤ r} ,

so that by Theorem 3.9 we have

N(r) ≤ CV r
n .

If
suppϕ ⊂ [−R,R] \ {0}

then ∣∣∣∣∣ ∑
Imλ≤0

mR(λ)

∫ ∞
0

(ϕ(t) + ϕ(−t))e−iλtdt

∣∣∣∣∣
≤ 2RmR(0) sup |ϕ|+ 2R sup |∂Nϕ|

∑
Imλ<0

mR(λ)|λ|−N

= 2RmR(0) sup |ϕ|+ 2R sup |∂Nϕ|
∫ ∞

0

r−NdN(r)

≤ 2RmR(0) sup |ϕ|+ 2NCVR sup |∂Nϕ|
∫ ∞

1

r−N−1rndr

≤ C ′VR sup
0≤k≤N

|∂kϕ| ,

provided that N > n. For the integration by parts we had to assume
that 0 /∈ suppϕ. However

THEOREM 3.20 (Trace formula for resonances II). Suppose
that V ∈ L∞comp(Rn;R), where n ≥ 3 is odd. Then for k ≥ n

2tktr
(

cos t
√
P V − cos t

√
P 0

)
= tk

∑
Imλ≤0

mR(λ)e−iλ|t|

+
K∑
k=1

cosh t
√
−Ek ,

(3.57)

in the sense of distributions on R.

REMARKS. 1. As explained after Theorem 2.15 this result is an im-
mediate consequence of the spectral theorem for self-adjoint operators
with discrete spectra. It is quite remarkable that the same theorem
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holds (in odd dimensions, and for compactly supported perturbations)
in an exactly the same form for resonances.

2. The factor of tk in (3.57) is needed as there are many possible
extensions of the distribution

∑
Imλ≤0mR(λ) exp(−i|t|λ) from R \ {0}

to R. There is no known analogue of the improved formula given in
Theorem 2.16.

3. The trace formula (3.57) can be considered as an abstract conse-
quence of the Birman-Krein formula and of the Hadamard factorization
the scattering determinant, detS(λ), as a meromorphic function – see
Theorem 4.1 below. In Chapter 4 once we establish the Birman-Krein
formula and the properties of detS(λ) we will simply quote the proof
given later in this section.

The next result is a very useful as it relates the determinant of the
scattering matrix to the determinant of an operator acting on L2(Rn).

THEOREM 3.21 (Trace identities). Suppose that

V ∈ L∞comp(Rn;C) , n ≥ 3 , odd,

and that ρ ∈ C∞c (Rn) is equal to one on suppV .

Let

T (λ) := (I − V R0(λ)ρ)−1(V (R0(λ)−R0(−λ))ρ) .

Then T (λ) is a strace class operator and

(3.58) detS(λ) = det(I − T (λ)) .

Proof. 1. The operator T (λ) is of trace class since

ρR0(λ)−R0(−λ)ρ : L2(Rn) −→ Hk([−R,R]) ,

for any k, provided that ρ ∈ C∞(Rn), suppρ ⊂ B(0, R).

2. We will prove the formula for λ ∈ R. For that we first write
S(λ) = I − A(λ) where, using (3.28),

A(λ) = cnλ
n−2Eρ(λ)(I − V RV (λ)ρ)V Eρ(λ)∗

= cnλ
n−2Eρ(λ)(I + V R0(λ)ρ)−1V Eρ(λ)∗ .

3. To prove (3.58) all we need to show is that for all k ∈ N

(3.59) trT (λ)k = trA(λ)k .
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In fact, (3.59) shows for t small (so that the log can be defined),

log det(I − tT (λ) = tr log(I − tT (λ))

= tr log(I − tA(λ))

= log det(I − tA(λ)) .

It follows that det(I − tA(λ)) = det(I − tT (λ)) for small values of t,
and by analytic continuation in t, for t = 1.

4. To establish (3.59) we use (λ ∈ R)

ρ(R0(λ)−R0(−λ))ρ = cnλ
n−2Eρ(λ)∗Eρ(λ)

in the definition of T (λ):

T (λ) = cnλ
n−2(I − V R0(λ)ρ)−1V Eρ(λ)∗Eρ(λ) .

Let A = Eρ(λ), B = (I − V R0(λ)ρ)−1V , C = Eρ(λ)∗ so that A and
C are trace class operators (between different Hilbert spaces):

A : H1 → H2, B : H1 → H1 , C : H2 → H1 ,

and B is a bounded operator. Cyclicity of trace shows that

trH1(ABC)n = trH1A(BCA)n−1BC

= trH2BCA(BCA)n−1

= trH2(BCA)n .

This gives (3.59). �

As the first consequence of Theorem 3.21 we prove the relation be-
tween the poles of S(λ) and of RV (λ) announced in Theorem 3.18:

mS(λ) = mR(λ)−mR(−λ) .

Proof of Theorem 3.18. 1. The formula (3.58) implies the following
inequality involving regularized determinants, detp, is defined in (B.21):
for any p > (n+ 1)/2,

detS(λ) =
detp(I + V R0(−λ)ρ)

detp(I + V R0(λ)ρ)
egp(λ)

gp(λ) :=

p−1∑
`=1

(−1)`

`
tr
(
(ρR0(λ)V )` − (ρR0(−λ)V )`

)
.

(3.60)

2. We now apply Theorem 3.8. Since exp gp(λ) does not contribute to
the multiplicity of the right hand side, the theorem follows. �.
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The next application provides a Hadamard factorization of the scat-
tering matrix:

THEOREM 3.22 (Factorization of the scattering matrix I).
Suppose that V ∈ L∞(Rn;C) where n ≥ 1 is odd. Then

detS(λ) = eg(λ) P (λ)

P (−λ)
,

P (λ) :=
∏

En(λ/µ)mR(µ) , En(z) := (1− z)ez+z/2+···+zn/n ,

g(λ) = anλ
n + an−2λ

n−2 + · · ·+ a1λ .

(3.61)

When V ∈ L∞comp(Rn;R), that is, when S(λ) is unitary for λ ∈ R,
an ∈ iR.

Proof. 1. Theorem 3.18 already shows that (3.61) holds with g given
an entire function. Since S(λ) = S(−λ)−1 we see that g has to be odd.
Hence all we need to show is that g is a polynomial of degree at most
n.

2. We will first establish two preliminary bounds

(3.62)

| detS(λ)| ≤
{
C expC|λ|n , Imλ ≥ 0 , |λ| > C ,

C expC|λ|2n2
, λ /∈

⋃
mH(µ)>0D(µ, 〈µ〉−n−ε) ,

where mH(R) was defined in (3.27). In view of (3.58) this will follow
from estimates on the characteristic values in the spirit of the proof of
Theorem 3.9.

3. To apply estimates on characteristic values we use (3.33) to write

T (λ) = cn(I + V R0(λ)ρ)−1V Eρ(λ̄)∗Eρ(λ) .

From (3.10) we see that

‖(I + V R0(λ)ρ)−1‖ ≤ C , Imλ ≥ 0 , |λ| ≥ C .

Hence in the same range of λ’s we have

sj(T (λ)) ≤ C|λ|n−2‖Eρ(λ̄)∗‖sj(Eρ(λ)) .

Applying (3.36) we obtain (with a different constant C)

sj(T (λ)) ≤ C exp
(
C|λ| − j

1
n−1/C

)
, Imλ ≥ 0 , |λ| ≥ C .
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The Weyl inequality can now be applied as in part 5 of the proof of
Theorem 3.9 gives

| det(I − T (λ))| ≤
∞∏
j=0

(1 + sj(T (λ)))

≤
∏

j≤(2C2|λ|)n−1

(1 + eC|λ|) exp
∑
j≥1

e−j
1/n−1/(2C)

≤ C ′ expC ′|λ|n ,

and this proves the first part of (3.62).

4. We now consider the case of λ outside of a union of discs containing

reasonances. First we note that for there exists a sequence rk → ∞,
such that

(3.63) ∀ k , ∂D(0, rk) ∩
⋃

mH(µ)>0

D(µ, 〈µ〉−n−ε) = ∅ ,

which follows from the fact∑
mH(µ)>0

〈µ〉−n−ε <∞ ,

which is in turn implied by (3.29).

To estimate ‖(I +V R0(λ)ρ)−1‖ away from resonances we use (B.23)
with p = n+ 1:

‖(I + V R0(λ)ρ)−1‖ ≤ G(λ)

H(λ)
,

where

G(λ) :=
∞∏
j=0

(1 + sj(V R0(λ))n+1) , H(λ) := det(I − (V R0(λ)ρ)n+1) .

Theorem 3.9 shows that H(λ) is an entire function of order n, and its
proof shows that

G(λ) ≤ C exp(C|λ|n) .

The minimum modulus theorem for entire functions of order n (see
(D.8)) shows that

|H(λ)| ≥ exp(−Cε|λ|n+ε) , λ /∈
⋃

mH(µ)>0

D(µ, 〈µ〉−n−ε) .

Hence for λ’s in the same set we obtain

‖(I + V R0(λ)ρ)−1‖ ≤ C exp(C|λ|2n+1) .
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Returning to singular values of T (λ) this gives

sj(T (λ)) ≤ C exp
(
C|λ|2n+1 − j

1
n−1/C

)
, λ /∈

⋃
mH(µ)>0

D(µ, 〈µ〉−n−ε) .

The same argument as before gives the second part of (3.62).

5. We now recall the estimates on Weierstrass products (see (D.7) and

(D.8) in Section D):

e−Cε|λ|
n+ε ≤ |P (λ)| ≤ eCε|λ|

n+ε

, λ /∈
⋃

mH(µ)>0

D(µ, 〈µ〉−n−ε) .

Hence in the same set of λ’s

| exp(g(λ))| = | exp(−g(−λ)|

= | detS(−λ)| |P (−λ)|
|P (λ)|

≤ C exp(C|λ|2n2

+ C|λ|n+ε)

≤ C expC|λ|2n2

.

(3.64)

We can now use this on circles of radius rk satisfying (3.63) so that the
maximum principle show that the above estimate holds everywhere.

Hence,

Reg(λ) ≤ C|λ|2n2

.

An application of the Borel-Carathéodory theorem (D.3) gives

|g(λ)| ≤ C|λ|2n2

,

which implies that g is a polynomial.

6. It remains to show that g(λ) is a polynomial of degree n. For that

we apply the same strategy as in (3.64) but for Imλ ≤ 0, |λ| ≥ C so
that we can use the first estimate in (3.62). That gives

Reg(λ) ≤ Cε‖λ‖n+ε , Imλ ≤ 0 , |λ| ≥ C .

For n ≥ 2 any polynomial satisfying this bound has to have degree at
most n.

7. The last statement about the polynomial g when V is real valued

comes from the unitarity of the scattering matrix. �

We can now give the proof of Theorem 3.20.

Proof of Theorem 3.20. We follow the proof of (2.15) closely with mod-
ifications due to the change in the growth of resonances. Theorem 3.22
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is essential new component. We again make the simplifying assumption
that there are no eigenvalues and that 0 is not a resonance.

1. Let us first consider the statement on R \ {0}. Just as in the proof
of Theorem 2.15 (3.57) is equivalent to the following statement: for
ϕ ∈ C∞c ((0,∞))

f(PV )− f(P0) =
∑

Imλ<0

ϕ̂(λ)mR(λ) + (mR(0)− 1)ϕ̂(0) ,

f(z) := ϕ̂(
√
z) + ϕ̂(−

√
z) , f ∈ S (R) .

(3.65)

Theorem3.19 and evennes of ∂λ log detS(λ) reduce the proof to showing
that

1

2πi

∫ ∞
−∞

ϕ̂(λ)∂λ(log detS(λ))dλ =
∑

Imλ<0

ϕ̂(λ)mR(λ) .(3.66)

2. We will now use the factorization (3.61). A calculation based on the
formula for En and P given there shows that

∂n+1
λ logP (λ) = −

∑
Imµ<0

mR(µ)

(λ− µ)n+1
,

where the bound (3.29) gives convergence.

Hence (3.61) gives

∂n+1
λ (log detS(λ)) =

∑
Imµ<0

mR(µ)

(λ− µ)n+1
−
∑

Imµ<0

mR(µ)

(λ+ µ)n+1
.

3. Define g ∈ S by ∂ng(λ) = ϕ̂(λ). This is possible as ϕ supported in
(0,∞):

(3.67) (λ) = inϕ̂/tn(λ) .

Now,∫
R
ϕ̂(λ)∂λ(log detS(λ))dλ = −

∫
R
g(λ)∂n+1

λ (log detS(λ))dλ

=
∑
±

±
∑

Imµ<0

∫
R

mR(µ)

(λ∓ µ)n+1
g(λ)dλ

= 2πi
∑

Imµ<0

mR(µ)∂ng(µ)

= 2πi
∑

Imµ<0

mR(µ)ϕ̂(µ) ,
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where we deformed the contour in the integral using the fact that

ϕ̂ ∈ C∞c ((0,∞)) =⇒ |∂ng(λ)| = O((1 + |λ|)−∞) , for Imλ ≤ 0,

Since this gives (2.71) the proof is complete when we only consider
testing against functions in C∞c (R \ {0}).

4. To obtain the more general statement we need to consider the ar-
gument above with ϕ(t) replaced by tk+ϕ where k ≥ n. In that case g
defined by (3.67) satisfies

|∂ng(λ)| = O((1 + |λ|)−n−1) , for Imλ ≤ 0,

but that is enough to justify the arguments above. �

The final application of Theorem 3.21 concerns asymptotics of the
scattering phase. It is of intrinsic interest but it will also play an
important rôle in the next section.

THEOREM 3.23 (Asymptotics of the scattering phase). Sup-
pose that V ∈ L∞comp(Rn,C) where n ≥ 1 is odd. Define the scattering
phase

(3.68) σ(λ) :=
1

2πi
log detS(λ) , σ(0) = 0 .

Then there exists a sequence ck(V ) such that

(3.69) σ(λ) ∼
∞∑
k=1

ck(V )λn−2k , λ −→∞ ,

where

(3.70) c1(V ) = cn

∫
Rn
V (x)dx , c2(V ) = c′n

∫
Rn
V (x)2dx .

Proof. We will use the determinant formula (3.60). �

REMARK. The method of proof is not the best for finding the coeffi-
cients ck(V ). The now classical connection to the heat or wave kernels
provides more efficient algorithms – see [Gu] and references given there.
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3.7. Existence of resonances for real potentials.

In Theorem 2.11 we proved that any complex valued compactly sup-
ported potential in one dimension has infinitely many resonances. In
Section 3.4 earlier in this chapter we have shown that there exist com-
plex valued compacty supported potentials in higher dimensions with
no resonances.

In this section we will prove the following

THEOREM 3.24 (Existence of resonances). Suppose that V ∈
L∞comp(Rn,R), n ≥ 3, odd. Then∑

λ∈C

mR(λ) =∞ ,

that is V has infinitely many scattering resonances.

Proof. 1. We will first assume that there are no non-zero resonances.
Then Theorem 3.22 implies that

σ(λ) :=
1

2πi
log detS(λ)

= bnλ
n + bn−2λ

n−2 + · · ·+ b1λ , bj ∈ R .
(3.71)

Comparison with (3.69) and (3.70) shows that

bn = 0 , bn−2 = cn

∫
Rn
V (x)dx , bn−4 = c′n

∫
Rn
V (x)2dx 6= 0 .

This gives an immediate contradiction when n = 3 as then g(λ) = b1λ.

2. To obtain a contradiction for n > 3. We consider the behaviour of
σ(λ) as λ→ 0. The formula (3.51) shows that if RV (λ) is holomorphic
near 0, which it is due to our assumption that there are no resonances,
then

‖A(λ)‖L1 = O(λn−2) , λ −→ 0 .

Using this we see that near 0,

2πiσ(λ) = log det(I + A(λ)) = tr log(I + A(λ))

= O(‖A(λ)‖L1) = O(λn−2) .

Comparing this with (3.71) we see that

σ(λ) = bn−2λ
n−2 .

But this contradicts the fact that bn−4 6= 0.
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3. It remains to show that the number of resonances is infinite. Again
we proceed by contradiction. Suppose that there exists a finite number
of non-zero resonances. Noting that we took σ(0) = 0, suppose that

σ(λ) = b(λ) +
1

2πi
log

(
(−1)K

K∏
k=1

λ+ µk
λ− µk

)

= bn−2λ
n−2 + · · ·+ b1λ+

K

2
+O(1/λ) ,

as λ→∞. This contradicts the asymptotic expansion (B.14) as it has
no even terms. �

3.8. Sources and further reading.

For a discussion of the threshold behaviour for non-compactly sup-
ported potentials see [Je-Ne] and references given there.

The proof of Theorem 3.9 is based on ideas of Melrose who proved
the bound ∑

{mR(λ) : |λ| ≤ r} ≤ CV r
n+1 .

The optimal bound (3.29) was proved in [Z3]. Our presentation uses
a substantial simplification of the argument due to Vodev [Vo] – see
Chapter 4 for further applications of these methods.

The class of examples in Theorem 3.11 was constructed by Chris-
tiansen [Ch].

The trace identity in Theorem 3.21 was proved by Buslaev in [Bus].
Theorem 3.23 and further references can be found in [Gu].

That a potential in any odd dimension has infinitely many resonances
was proved in [SaB-Zw] but the method there was less direct. There
have been many improvement since. Christiansen and Hislop [Ch-Hi]
proved that for a generic L∞com(Rn,R) (or C∞c (Rn,R)) potential the
exponent n in the polynomial bound (3.29) is optimal. That relied
on the existence of a lower bound given by (3.38) and is also true for
generic complex valued potentials. That paper can be consulted for
intermediate results on lower bounds.
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Figure 14. An example of trapped trajectories in ob-
stacle scattering.

4. Black box scattering in Rn

In Sections 2 and 3 we have studied general properties of resonances
in scattering by compactly supported potential. More general com-
pactly supported perturbations include metric perturbations, and ob-
stacle scattering. They offer many new interesting and relevant physical
features such a presence of trapping – see Fig. 14

For general results of the type presented in the last two sections it is
convenient to replace a specific perturbation by an abstractly defined
black box perturbation.

The following table shows the basic differences and analogies in the
case when n is odd.

Here P denotes the operator equal to −∆ outside B(0, R0) – see
Section 4.1 for precise assumption. The operator P is assumed to act
on a Hilbert space H with an orthogonal decomposition HR0⊕L2(Rn \
B(0, R0) and 1lB(0,R0 denotes the orthogonal projection onto the first
component – the black box.
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−∆ + V Black Box

Meromorphy of the resolvent OK when 1lB(0,R0)(P − i)−1 is compact,
RV (λ) : L2

comp → L2
loc R(λ) : Hcomp → Hloc, meromorphic

Upper bound on the number Upper bounds in terms of eigenvalues
of resonances, N(r) ≤ Crn of a reference operator:

N(r) ≤ CM(Cr), where M(r)
is the counting function of eigenvalues
of P acting on
HR0 ⊕ L2(Rn/((R0 + 1)Z)n \B(0, R0)).

Trace formula for resonances OK when for some k
1lB(0,R0)(P − i)−k ∈ L1(H,H)

Pole free region Need geometric assumptions
e.g. P = −∆g and all the geodesics
of metric g escape to infinity

Resonance expansions of wave Delicate when there are
no large pole free regions

4.1. General assumptions.

4.2. Meromorphic continuation.

4.3. Global upper bounds on the number of resonances.

4.4. Scattering matrix for general compactly supported per-
turbations.

4.5. Trace formulæ in black box scattering.
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THEOREM 4.1 (Factorization of the scattering matrix II).
Suppose that P satisfies the general assumptions of Section 4.1 and
that n is odd. Then

detS(λ) = eg(λ) P (λ)

P (−λ)
,

P (λ) :=
∏

En(λ/µ)mR(µ) , En(z) := (1− z)ez+z/2+···+zn/n ,

g(λ) = anλ
n + an−2λ

n−2 + · · ·+ a1λ .

(4.1)

When V ∈ L∞comp(Rn;R), that is, when S(λ) is unitary for λ ∈ R,
an ∈ iR.

4.6. Sources and further reading.

The black formalism was introduced in [S-Z1].



SCATTERING RESONANCES 81

5. The method of complex scaling

For the moment we only provide a brief review borrowed from [S-Z10].
In the simple but instructive setting of dimension one the method was
described in Section 2.6. Detailed discussion of the higher di-
mensional method will be presented later.

Since we will use the method for genera semiclassical operators our
assumptions on the operator are made in that setting.

We now state the general assumptions on the operator P . The sim-
plest case to keep in mind is

P = −h2∆ + V (x)− 1 , V ∈ C∞c (Rn) .

In general we consider

P (h) ∈ Ψ2(X) , P (h) = P (h)∗ ,

where the calculus of semiclassical pseudodifferential operators is re-
viewed in Appendix E.

P (h) = pw(x, hD) + hpw1 (x, hD;h) , p1 ∈ S2(T ∗X) ,

|ξ| ≥ C =⇒ p(x, ξ) ≥ 〈ξ〉2/C , p = 0 =⇒ dp 6= 0 ,

∃ R, ∀ u ∈ C∞(X \B(0, R)) , P (h)u(x) = Q(h)u(x) ,

(5.1)

where
Q(h) =

∑
|α|≤2

aα(x;h)(hDx)
α ,

with aα(x;h) = aα(x) independent of h for |α| = 2, aα(x;h) ∈ S(Rn)
uniformly bounded with respect to h (here S(Rn) denotes the space
of C∞ functions on Rn with bounded derivatives of all orders – see
Appendix E), and

∑
|α|=2

aα(x)ξα ≥ (1/c)|ξ|2, ∀ξ ∈ Rn , for some constant c > 0,

∑
|α|≤2

aα(x;h)ξα −→ ξ2 − 1 uniformly with respect to h as |x| → ∞.

(5.2)

We also need the following analyticity assumption in a neighbour-
hood of infinity: there exist θ ∈ [0, π), ε > 0 and R ≥ R0 such that the
coefficients aα(x;h) of Q(h) extend holomorphically in x to

{rω : ω ∈ Cn , dist(ω,Sn) < ε , r ∈ C , |r| > R , arg r ∈ [−ε, θ0 + ε)} ,
with (5.2) valid also in this larger set of x’s.
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z (h)

0
C

1/2
h

j

Figure 15. The resonances as eigenvalues the scaled
operator Pθ.

We very briefly recall the complex scaling procedure developed in
[Sj-2]. It follows a long tradition of the complex scaling method – see
[Ag-Co],[Ba-Co],[Si1] for the original ideas, and [S-Z1] for the approach
used here for compactly supported perturbations.

Let Γθ ⊂ Cn be a totally real contour with the following properties:

Γθ ∩BCn(0, R0) = BRn(0, R0) ,

Γθ ∩ Cn \BCn(0, 2R0) = eiθRn ∩ Cn \BCn(0, 2R0) ,

Γθ = {x+ ifθ(x) : x ∈ Rn} , ∂αx fθ(x) = Oα(θ) .

(5.3)

The contour can be considered as a deformation of the manifold X as
nothing is being done in the compact region. The operator P defines
a dilated operator:

Pθ
def
= P |Γθ , Pθu = P̃ (ũ)|Γθ ,

where P̃ is the holomorphic continuation of the operator P , and ũ is an
almost analytic extension of u ∈ C∞c (Γθ) (here we are only concerned
with Γθ ∩BCn(0, R0)).

For θ fixed, the scaled operator, Pθ, is uniformly elliptic in Ψ0,2(X)
outside a compact set and hence the resolvent, (Pθ− z)−1, is meromor-
phic for z ∈ D(0, 1/C). We can also take θ to be h dependent and
the same statement holds for z ∈ D(0, θ/C). The spectrum of Pθ in
z ∈ D(0, θ/C) is independent of θ and consists of quantum resonances
of P which are defined as the poles of the meromorphic continuation
of

(P − z)−1 : C∞c (X) −→ C∞(X) .

In fact, that is one of the ways of defining resonances, and in this paper
we will be estimating the number of eigenvalues of Pθ.
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6. Perturbation theory for resonances

6.1. Generic simplicity of resonances.

6.2. Fermi golden rule.
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7. Resolvent estimates in semiclassical scattering

In this chapter we will consider resonances close to the real axis in
semiclassical scattering. The example to keep in mind is

(7.1) P = −h2∆ + V (x) , V ∈ C∞c (Rn,R) ,

but our assumptions allow any operator P (x, hD) to which the complex
scaling method of Chapter 5 applies.

We denote
Res(P (h)) ⊂ {Imz ≤ 0}

the set of resonances that is the set of poles of the meromorphic conti-
nations of (P−z)−1 : C∞c (Rn)→ C∞(Rn). We denote this continuation

R(z, h) : C∞c (Rn)→ C∞(Rn) , R(z, h) = (P − z)−1 , Imz > 0 .

7.1. Classical scattering theory.

We start by presenting some basic concepts of classical scattering
theory. It concern the flow of the Hamiltonian p = p(x, ξ) which we
assume satisfies the assumptions (5.1) and (5.2).

The classical flow is defined using the Hamilton vector field

Hp =
n∑
j=1

∂

∂ξj

∂

∂xj
− ∂

∂xj

∂

∂ξj
,

as
Φt(x, ξ) = exp(tHp)(x, ξ) ,

see [EZ, Section 2.3]. For the basic example of

p(x, ξ) = ξ2 + V (x) , V ∈ C∞c (Rn;R) ,

the flow is given by solving Newton’s equations

ẋ = 2ξ , ξ̇ = −dV (x) ,

and it is given by the free Euclidean flow

ẋ = 2ξ , ẋ = 0 ,

outside a compact set.

We think of (x, ξ), the position and momentum, to lie in the cotan-
gent bundle of Rn,

(x, ξ) ∈ T ∗Rn ' Rn × Rn ,

and we denote

π : T ∗Rn −→ Rn , π(x, ξ) = x ,

the projection to the base.
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The incoming and outgoing tails of the flow at energy E are defined
as

Γ±E = {(x, ξ) ∈ p−1(E) : |π(Φt(x, ξ)| 6→ ∞ , t→ ∓∞} .

We think of Γ±E is forward (−) and backward (−) trapped sets at energy
E.

For J ⊂ R we also define

(7.2) Γ±J :=
⋃
E∈J

Γ±E .

Strictly speaking Γ±E should be denoted Γ±{E} but we allow ourselves

this notational lapse.

The trapped set is defined as

(7.3) KE := Γ+
E ∩ Γ−E ,

with KJ , J ⊂ R defined analogously.

THEOREM 7.1 (Properties of trapped sets). The Γ±J and KJ

defined in (7.2) and (7.3) have the following properties:

i) If J ⊂ R is closed then Γ±J are closed.

ii) If KE = ∅ then for some neighbourhood of E, J = (E − δ, E + δ),
δ > 0, KJ = ∅.

iii) If Γ+
E 6= ∅ or if Γ−E 6= ∅ then KE 6= ∅.

iv) Suppose that J = [a, b], and denote by m the canonical measure on
T ∗Rn. Then

m(Γ±J \KJ) = 0 .

v) Suppose that dp|p−1(E) 6= 0 and let LE denote the Liouville measure
on p−1(E).

LE(Γ±E \KE) = 0 .
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7.2. Non-trapping estimates; resonance free regions.

When there is no trapping we have very good estimates on the re-
solvent:

THEOREM 7.2 (Resonance free regions for non-trapping per-
turbations). Suppose that P satisfies general assumptions of Chapter
5 and that for some E > the trapped set at energy E defined by (7.3)
is empty:

KE = ∅ .
Then there exists δ > 0 such that for each M > 0 there exists hM > 0
so that

(7.4) Res(P (h)) ∩ ([E − δ, E + δ]− i[0,Mh log(1/h)]) = ∅ ,
0 < h < hM .

In addition we have a bound on the truncated resolvent: for χ ∈
C∞c (Rn),

(7.5) ‖χR(z, h)χ‖L2→L2 ≤ C exp(CImz/h)

h
,

z ∈ [E − δ, E + δ]− i[0,Mh log(1/h)], 0 < h < hM .

Proof. 1. Let Pθ ∈ Ψ2(Rn) be a complex scaled operator with θ =
M1h log(1/h).

We choose ε

(7.6) M3h ≤ ε ≤M2h log
1

h
,

where M2 > M1 and M3 are large constants to be fixed later.

Let G ∈ C∞c (T ∗X) and define

Pε,θ := e−εG/hPθe
εG/h

= e−
ε
h

adGPθ ∼
∞∑
0

εk

k!
(−1

h
adG)k(Pθ) ,

where to simplify notation we write

G = Gw(x, hD) .

We note that the assumption on ε and the boundedness of adG/h show
that the expansion makes sense. The operators exp(εG/h) are pseudo-

differential in an exotic class SC2
δ for any δ > 0 – see Appendix E More

on all this later
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2. Using the same letters for operators and and the corresponding
symbols, we see that

Pε,θ = Pθ − iε{Pθ, G}+O(ε2)

= pθ − iε{pθ, G}+O(h+ ε2),

so that

RePε,θ := (Pε,θ + P ∗ε,θ)/2

= Repθ + ε{Impθ, G}+O(h+ ε2)

= Repθ +O(h+ θε+ ε2) ,

and

ImPε,θ := (Pε,θ − P ∗ε,θ)/(2i)
= Impθ − ε{Repθ, G}+O(h+ ε2).

3. We now make the following assumption: for a fixed δ > 0

(7.7) |Repθ − E| < δ =⇒ −Impθ + εHpG ≥ c0ε .

We will show how this assumption implies the theorem. It will then
remain to construct G such that (7.7) holds.

4. To show how (7.7) implies (7.4) let let ψ1, ψ2 ∈ C∞b (T ∗R) be two
functions satisfying

ψ2
1 + ψ2

2 = 1 , ψ1||Repθ|<δ/2 ≡ 1 , suppψ1 ⊂ {|Repθ − E| < δ} .

Lemma E.2 gives two selfadjoint operators Ψ1 and Ψ2 with principal
symbols ψ1 and ψ2 respectively, such that

Ψ2
1 + Ψ2

1 = I +R , R = O(h∞) : H−M(R)→ HM .

We then write

Pε,θ − E = Aε,θ + iBε,θ, ,

where

Aε,θ =
1

2
(Pε,θ + P ∗ε,θ)− E

and

Bε,θ =
1

2i
(Pε,θ − P ∗ε,θ) .

The principal symbol of Bε,θ is given by

Impθ − εHpG
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and on the essential support of Ψ1 it is bounded below by c0ε � h.
The sharp G̊arding inequality now implies that for h small enough

‖(Pε,θ − E)Ψ1u‖‖Ψ1u‖ ≥ |〈(Pε,θ − E)Ψ1u,Ψ1u〉|
≥ |Im〈(Pε,θ − E)Ψ1u,Ψ1u〉|
= −〈Bε,θΨ1u,Ψ1u〉

≥ ε

C
‖Ψ1u‖2 ,

and hence

‖(Pε,θ − E)Ψ1u‖ ≥
ε

C
‖Ψ1u‖ .

On the support of ψ2 the operator Aε,θ is elliptic and by Lemma E.1,

‖(Pε,θ − E)Ψ2u‖ ≥
1

C
‖Ψ2u‖ − O(h∞)‖u‖ .

Applying Lemma E.3 with t = ε/h� 1 we conclude that

‖(Pε,θ − E)u‖ ≥ ε

C
‖u‖ .

This shows that the conjugated operator has no spectrum in

D(E, ε/(2C)) = D(E,Mh log 1/h) .

5. We now need to do is to construct G so that (7.7) holds.

Part ii) of Theorem 7.1 implies that

K[E−2δ,E+2δ] = ∅ ,
for some δ > 0.

Let us now fix R a large parameter. We will define Gρ ∈ C∞c (T ∗R),
a local escape function supported in a neighbourhood of the bicharac-
teristic segment

Iρ = {exp(tHp)(ρ) : t ∈ [−T, T ]} ,
and which satisfies HpGρ ≥ 1 on the part of Iρ lying over

(7.8) K ′ = {ρ′ ∈ T ∗R : |x(ρ′)| ≤ R}
For that, let Γ be a hypersurface through ρ which is transversal to Hp.
Then there is a neighbourhood Uρ of ρ, such that

Vρ = {exp(t(Uρ∩Γ)) : t ∈ (−T −1, T + 1)} ⊂ {E−2δ < p < E+ 2δ} ,
is a neighbourhood of Iρ. That ne

ighbourhood can be identified with a product,

Vρ ' (−T − 1, T + 1)× (Uρ ∩ Γ) ,
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and, in this identification, we will choose T and 0 < α < 1 so that

(((−T − 1,−αT ) ∪ (αT, T + 1))× (Uρ ∩ Γ))) ∩K ′ = ∅ .
We now need the following elementary

LEMMA 7.3. For any 0 < α < 1/2 and T > 0 there exist as function
χ = χT,α ∈ C∞(R;R) such that

χ(t) =

{
0 |t| > T
t |t| < αT

, χ′(t) ≥ −2α .

Proof. The piecewise linear function

χ#(t) =

 0 |t| > T
t |t| < αT

±α(T − t)/(1− α) αT ≤ ±t ≤ T

satisfies χ]
′ ≥ −α/(1 − α) > −2α wherever the derivative is defined.

A regularization of this function gives χT,α. �

Now let ϕρ ∈ C∞c (Uρ∩Γ) be identically 1 near ρ, and let χT be given
by the lemma. Using the product coordinates, we can think of ϕρ, t,
and hence χ(t), as functions on T ∗R. The functions ϕρ and χT (t) have
compact support in Vρ. Let

ψ ∈ C∞c ((−ε0, ε0)) , ψ|[−ε0/2,ε0/2] ≡ 1 ,

and put

(7.9) Gρ = χT (t)ϕρψ(p) , Gρ ∈ C∞c (Vρ) .

so that

(7.10) HpGρ = χ′Tϕρψ(p),

satisfies

HpGρ = 1 on Vρ ∩ {|x| < R} and HpGρ ≥ −2α everywhere.

Now let K b T ∗R be the compact set

(7.11) K = {ρ ∈ p−1([−ε0/3, ε0/3]) : |x(ρ)| ≤ R/2}.
Since K is compact, applying the previous argument for every ρ ∈ K
gives a Uρ, and a U ′ρ ⊂ Uρ on which ϕρ = 1. Since {U ′ρ : ρ ∈ K} covers
K, the compactness of K shows that we can pass to a finite subcover,
{U ′ρj : j = 1, . . . , N}. We let

(7.12) G =
N∑
j=1

Gρj .
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The construction of Gρj ’s now shows that by choosing α small enough
(depending on the maximal number of support overlaps we obtain

HpG(ρ) ≥ 1 , ρ ∈ p−1((E − 2δ, E + 2δ)) ∩ {|x(ρ)| < R}
HpG(ρ) ≥ −δ , ρ ∈ T ∗R .

(7.13)

We now want to choose the scaling so that (7.7) holds with G satis-
fying (7.13).

For that we choose the complex scaling so that

−Impθ(x, ξ) ≥ θ when |p(x, ξ)| ≤ ε0 and |x| ≥ R,

Impθ < C1θ when |p(x, ξ)| ≤ ε0,
(7.14)

where R is independent of θ. With ε = M2h log(1/h) we now choose
θ = M1h log(1/h) such that

M1 < M2/C1 , δM2 < M1 ,

where C1 comes from (7.14) and δ comes from (7.13). Since we can
choose δ as small as we want this can certainly be arranged leading to
(7.7).

�

7.3. A lower bound on the resolvent for trapping perturba-
tions.

In the previous section we have shown that the truncated resolvent
satisfies

KE = ∅ =⇒ χ(P − E − i0)−1χ = OL2→L2(1/h) .

In this section we will consider a lower bound on the norm of the
resolvent in the case of trapping. In Chapter 8 we will show that this
lower bound is achieved in many situations.

THEOREM 7.4 (Lower bounds on resolvent for trapping per-
turbations). Suppose that E0 > 0 and that KE0 6= ∅, and that χ ∈
C∞c (Rn) is equal to 1 near π(KE0).

Then there exists C0 = C0(E0) such that for any δ > 0 there exists
h0 = h0(δ) so that

(7.15) sup
|E−E0|<δ

‖χ(P − E0 − i0)−1χ‖L2→L2 ≥ log(1/h)

C0h
,

0 < h < h0.
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Before giving the proof of Theorem 7.4 we need to present an older
result, essentially due to Kato, relating resolvent estimates to local
smoothing in Schrödinger propagation.

THEOREM 7.5 (Kato’s local smoothing). Let E0 > 0 and let
K(h) ≥ 1 be a function on (0, 1).

Suppose that for |E − E0| < δ and χ ∈ L∞(Rn) we have

(7.16) ‖χ(P (h)− E − i0)−1χ‖L2→L2 ≤ K(h)

h
,

Then for ϕ ∈ C∞c ((E − δ, E + δ); [0, 1]) and u ∈ L2(Rn),

(7.17)

∫
R
‖χϕ(P ) exp(−itP/h)u‖2

L2dt ≤ CK(h)‖u‖2
L2 .

for C independent of h.

INTERPRETATION. If the integration in (7.17) takes place over a
finite interval in time, [0, T ], then the estimate is obvious with CK(h)
replaced by T . The localization in space, χ(x) and in energy, ϕ(P ) are
also not needed. Hence the point lies in having the integral over R.
For that χ for which (7.16) holds is needed. In our presentation we
take χ ∈ C∞c (Rn) but finer weights, such as 〈x〉−1/2−ε also work – see
[VaZw] and references given there.

When P = −h2∆g, where g is a metric, we can rewrite (7.17) as
follows ∫

R
‖χϕ(−h2∆g) exp(−it∆g)u‖2

L2dt ≤ ChK(h)‖u‖L2 .

If K(h) = 1, as is the case in (7.5) under non-trapping assumption,
then ∫

R
‖χϕ(−h2∆g)(I −∆g)

1/4 exp(−it∆g)u‖2
L2dt ≤ C‖u‖L2 .

A dyadic decomposition (see for instance [EZ, Section 7.5] for a self-
contained presentation in semiclassical spirit) then shows that

(7.18)

∫
R
‖χ(1− ψ)(−∆g) exp(−it∆g)u‖2

H
1
2
dt ≤ C‖u‖L2 ,

where ψ ∈ C∞c (R; [0, 1]), ψ ≡ 1 near 0. To control the term with
ψ(−∆g) one needs finer analysis of the bottom of the spectrum of −∆g
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but a crude bound gives

(7.19)

∫ T

−T
‖χ exp(−it∆g)u‖2

H
1
2
dt ≤ CT‖u‖L2 ,

This is the local smoothing estimate for non-trapping perturbations.
In this formulation the smoothing character is clear: we gain 1/2 de-
rivative when localizing in space and averaging in time.

Doi [Doi] showed that any trapping produces a loss in the H1/2 regu-
larity. The proof of Theorem 7.4 uses Theorem 7.5 and a semiclassical
and quantitative version of his argument to obtain the lower bound
K(h) ≥ log(1/h)/C.

Proof. 1. It is enough to prove the theorem with the integral in (7.17)
over (0, T ), with estimates independent of T . This will be done using
a TT ∗ argument.

2. Thus we define

AT : u 7−→ 1l[0,T ]χϕ(P )e−itP/h ,

AT : L2(Rn) −→ L2([0, T ]× Rn) ,

so that (7.17) is equivalent to

‖ATu‖2
L2
tx
≤ CK(h)‖u‖L2

x
,

or to

‖A∗Tf‖2
L2
x
≤ CK(h)‖f‖2

L2
tx
.

This last inequality is equivalent to showing that

(7.20) ATA
∗
T = O(K(h)) : L2([0, T ]× Rn) −→ L2([0, T ]× Rn) ,

with bounds independent of T .

3. To obtain (7.20) we start by calculating the adjoint:

A∗Tf =

∫ T

0

eisP/hϕ(P )χf(s)ds , f ∈ L2
tx ,

so that

ATA
∗
Tf = 1l[0,T ](t)

∫
R
χe−i(t−s)P/hϕ(P )2χ1l[0,T ](s)f(s)ds .
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This we can rewrite as ATA
∗
Tf =

1l[0,T ](t)χ

(∫
R

∑
±

1lR±(t− s)χe−i(t−s)P/hϕ(P )2

)
χ1l[0,T ](s)f(s)ds

= 1l[0,T ](t)

(∑
±

χ1lR±(•)χe−i•P/hϕ(P )2χ

)
∗
(
1l[0,T ](•)f(•)

)
,

(7.21)

where ∗ denotes the convolution in the t variable.

4. The boundary values of cut-off resolvents on the real axis are and
the propagators are related as follows:

(P − λ∓ i0)−1 = ∓ i
h

∫
R

1lR±(t)e−itP/heitλ/hdt ,

or, in terms of the (unitary) semiclassical Fourier transform, F ,

(P − λ∓ i0)−1 = ∓i
√

2π

h
F∗t7→λ

(
exp(−itP/h)1lR±(t)

)
.

Returning to (7.21) and using the relation between the Fourier trans-

forms and convolution (paying attention to the factor of
√
h because

of the unitarity of F) we see that

ATA
∗
Tf = (h/i)1l[0,T ](t)×

Fλ 7→t

((∑
±

±χ(P − λ± i0)−1ϕ(P )2χ

)
F∗t7→λ

(
1l[0,T ](t)f(t)

))
,

We now note that by Stone’s formula (B.1) the difference of the resol-
vent gives the spectral projection of P and consequently we can replace
ϕ(P ) by ϕ(λ) – see (B.2).

5. To conclude the proof we apply Plancherel’s formula:

‖ATA∗Tf‖L2tx

≤ h

∥∥∥∥∥
(∑
±

±χ(P − λ± i0)−1χ

)
ϕ(λ)2F∗t7→λ

(
1l[0,T ](t)f(t)

)∥∥∥∥∥
L2
λx

≤ 2h sup
λ
‖ϕ(λ)2χ(P − λ− i0)−1χ‖L2

x→L2
x
‖f‖L2

tx

≤ 2K(h)‖f‖L2
tx
,
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Here we used hypothesis (7.16), the assumptions on ϕ, and the basic
fact that the norms of χ(P − λ± i0)−1χ are the same.

This proves (7.20) and consequently (7.17). �

Proof of Theorem 7.4. 1. We will use Theorem 7.5. It shows that if for
some nontrivial u0 ∈ L2(Rn) and

ϕ ∈ C∞c ((E0 − δ, E0 + δ); [0, 1]) , ϕ(E0) = 1 ,

(7.22) ‖χϕ(P ) exp(−itP/h)u0‖2
L2
tx
≥ K(h)‖u0‖L2

x
,

then

sup
|E−E0|<δ

‖χ(P − E − i0)−1χ‖L2→L2 ≥ K(h)

Ch
.

Hence we need to show that for χ satisfying

(7.23) χ ∈ C∞c (T ∗Rn) , χ ≡ 1 near π(KE0) ,

(7.22) holds with

K(h) = c log
1

h
,

where c is independent of δ, 0 < h < h0(δ).

2. Functional calculus for pseudodifferential operators (see [D-S, Chap-
ter 8] or [EZ]) shows that

ϕ(P (h))χ(x)2ϕ(P (h)) = aw(x, hD) , a ∈ S(T ∗Rn) ,

a(x, ξ) = χ(x)2ϕ(p(x, ξ))2 +O(h〈x〉−∞〈ξ〉−∞) .
(7.24)

We put

awt (x, hD) := eitP/haw(x, hD)e−itP/h .

Theorem E.4 shows that for

(7.25) 0 < t < α log
1

h
,

with α sufficiently small, independent of δ,

at ∈ Sγ(T ∗Rn) , 0 < γ < 1/2 ,

at − (exp tHp)
∗a ∈ h2−3γSγ(T

∗Rn) ,
(7.26)

with all the symbol estimates uniform for t satisfying (E.2).
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3. Hence

‖χϕ(P ) exp(−itP/h)u0‖2
L2
tx

=

∫
R
〈eitP/hϕ(P )χ2ϕ(P )e−itP/hu0, u0〉L2

x
dt

≥
∫ α log(1/h)

0

〈awt (x, hD)u0, u0〉L2
x
dt .

(7.27)

It remains to find u0 such that

(7.28) 〈awt (x, hD)u0, u0〉 ≥
1

2
, ‖u0‖L2(Rn) = 1 ,

uniformly for

0 < h < h0 , 0 < t < α log(1/h) .

4. To find u0 satisfying (7.28) we choose (x0, ξ0) ∈ KE0 and take for u0

a coherent state concentrated at (x0, ξ0):

(7.29) u0(x) = (2πh)−n/4 exp

(
i

h
(〈x− x0, ξ0〉+ i|x− x0|2/2)

)
.

Since KE0 is invariant under the flow

exp(tHp)(x0, ξ0) ∈ KE0 .

The assumption (7.23) and the fact that ϕ(E0) = 1 show that

(exp tHp)
∗a(x0, ξ0) = 1 ,

for all time.

Consequently, (7.26) gives

at(x0, ξ0) = 1 +O(h1/2) ,

uniformly for 0 < t < α log 1/h.

The properties of 〈awt (x, hD)u0, u0〉 are implied by the following
lemma:

LEMMA 7.6. Suppose that u0 is given by (7.29) and that b ∈ Sγ,
0 < γ < 1/2. Then

〈bw(x, hD)u0, u0〉 = b(x0, ξ0) + e(h) ,

|e(h)| ≤ Cnh
1
2 max
|α|=1

sup
T ∗Rn
|∂αb| ≤ Cn(b)h1/2−γ .

(7.30)
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Proof. 1. Using the definition of u0 (7.29) and making a change of
variables x = z + w, y = z − w we obtain

〈b(x, hD)u0, u0〉

=
1

(2πh)n

∫
Rn

∫
Rn

∫
Rn
b((x+ y)/2, ξ)e

i
h
〈x−y,ξ〉u0(y)u0(x) dydξdx

=
2

3n
2

(2πh)
3n
2

∫
Rn

∫
Rn

∫
Rn
b(z, ξ)e

2i
h
〈w,ξ−ξ0〉e−

1
h

(|z−x0|2+|w|2) dwdξdz ,

2. For each fixed z and ξ, the integral in w is∫
Rn
e

2i
h
〈w,ξ−ξ0〉e−

1
h
|w|2 dw = e−

1
h
|ξ−ξ0|2

∫
Rn
e−

1
h
|w+i(ξ−ξ0)2| dw

= 2−
n
2 (2πh)

n
2 e−

1
h
|ξ−ξ0|2

3. Therefore

〈b(x, hD)u0, u0〉 =
2
n
2

(2πh)n

∫
Rn

∫
Rn
b(z, ξ)e−

1
h

(|z−x0|2+|ξ−ξ0|2) dzdξ

b0(x0, ξ0)
2
n
2

(2πh)n

∫
Rn

∫
Rn
e−

1
h

(|z−x0|2+|ξ−ξ0|2) dxdξ + e(h)

= Cn(h)b(x0, ξ0) + e(h) ,

where e(h) satisfies the estimate of (7.30) and

Cn(h) :=
2n

(2π)n

∫
Rn

∫
Rn
ei〈x,ξ〉e−

1
2

(|x|2+|ξ|2) dxdξ.

Taking b ≡ 1 and recalling that ‖u0‖L2 = 1, we deduce that Cn(h) =
1. �

End of proof of Theorem 7.4. 5. We apply the lemma to b = at which
gives

〈awt (x, hD)u0, u0〉 −→ at(x0, ξ0) = 1 ,

again uniformly in t. Hence (7.28) holds. Using (7.27) we obtain

‖χϕ(P ) exp(−itP/h)u0‖2
L2
tx
≥ α

2
log

1

h
,

which is (7.22) with K(h) = c log(1/h), as needed for (7.15). �

7.4. Lower bounds on resonance widths.

7.5. From quasimodes to resonances.
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7.6. Sources and further reading.

The presentation of classical scattering follows [Ge-S1, Appendix].

Theorem 7.2 was proved by Martinez [Ma-2] following a long tradi-
tion of works in scattering theory – see that paper and [TZ] for refer-
ences. Here we mention the seminal work of Lax and Phillips[LP] and
of Vainberg [Vai] providing an abstract frame for obtaining resonance
free regions, and the work of Helffer and Sjöstrand [H-S], [Sj-1] on large
resonance free regions,

KE = ∅ =⇒ Res(P (h)) ∩D(E, δ = ∅
for large classes of operators P (h) with analytic coefficients. The proof
given here comes from [S-Z10, Section 4].

Theorem 7.4 was proved by Bony, Burq, and Ramond [B-B-R]. The
comment that C is independent of δ was made by J.-F. Bony. For
more connections between resolvent estimates and local smoothing for
Schrödinger propagators see [Bu],[Dat], and references given there.
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8. Chaotic scattering
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Appendix A. Notation

A.1. BASIC NOTATION.

R+ = (0,∞)

Rn = n-dimensional Euclidean space

x, y denote typical points in Rn : x = (x1, . . . , xn), y = (y1, . . . , yn)

R2n = Rn × Rn

z = (x, ξ), w = (y, η) denote typical points in Rn × Rn :
z = (x1, . . . , xn, ξ1, . . . , ξn), w = (y1, . . . , yn, η1, . . . , ηn)

Tn = n-dimensional flat torus = Rn/Zn

C = complex plane

Cn = n-dimensional complex space

U b V means Ū is a compact subset of V

〈x, y〉 =
∑n

i=1 xiȳi = inner product on Cn

|x| = 〈x, x〉1/2

〈x〉 = (1 + |x|2)1/2

Mm×n = m× n-matrices

Sn = n× n real symmetric matrices

AT = transpose of the matrix A

I denotes both the identity matrix and the identity mapping.

J =

(
O I
−I O

)
σ(z, w) = 〈Jz, w〉 = symplectic inner product

#S = cardinality of the set S

|E| = Lebesgue measure of the set E ⊂ Rn
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A.2. FUNCTIONS, DIFFERENTIATION..

The support of a function is denoted “supp”, and a subscript “c” on
a space of functions means those with compact support.

• Partial derivatives:

∂xj :=
∂

∂xj
, Dxj :=

1

i

∂

∂xj

• Multiindex notation: A multiindex is a vector α = (α1, . . . , αn),
the entries of which are nonnegative integers. The size of α is

|α| := α1 + · · ·+ αn.

We then write for x ∈ Rn:

xα := x1
α1 . . . xn

αn ,

where x = (x1, . . . , xn).

Also

∂α := ∂α1
x1
. . . ∂αnxn

and

Dα :=
1

i|α|
∂α1
x1
. . . ∂αnxn .

(WARNING: Our use of the symbols “D” and “Dα” differs from that
in the PDE textbook [E].)

If ϕ : Rn → R, then we write

∂ϕ := (ϕx1 , . . . , ϕxn) = gradient,

and

∂2ϕ :=

ϕx1x1 . . . ϕx1xn
. . .

ϕxnx1 . . . ϕxnxn

 = Hessian matrix

Also

Dϕ :=
1

i
∂ϕ.

If ϕ depends on both the variables x, y ∈ Rn, we put

∂2
xϕ :=

ϕx1x1 . . . ϕx1xn
. . .

ϕxnx1 . . . ϕxnxn


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and

∂2
x,yϕ :=

ϕx1y1 . . . ϕx1yn
. . .

ϕxny1 . . . ϕxnyn

 .

• Jacobians: Let
x 7→ y = y(x)

be a diffeomorphism, y = (y1, . . . , yn). The Jacobian matrix is

∂y = ∂xy :=


∂y1

∂x1
. . . ∂y1

∂xn
. . .

∂yn

∂x1
. . . ∂yn

∂xn


n×n

.

The absolute value of the determinant, | det ∂y|, which is the Jacobian
factor in integration is denoted |∂y|.

• Differentiation of determinants: suppose t 7→ A(t) is a function
from R to invertible N ×N matrices:

A : R −→ GL(N,R) ,

Then

(A.1)
d

dt
detA(t) = tr

(
A(t)−1dA(t)

dt

)
detA(t) ,

and consequently

(A.2)
d

dt
| detA(t)|α = α tr

(
A(t)−1dA(t)

dt

)
| detA(t)|α .

• Poisson bracket: If f, g : Rn → R are C1 functions,

{f, g} := 〈∂ξf, ∂xg〉 − 〈∂xf, ∂ξg〉 =
n∑
j=1

∂f

∂ξj

∂g

∂xj
− ∂f

∂xj

∂g

∂ξj
.

• The Schwartz space is

S = S (Rn) :=

{ϕ ∈ C∞(Rn) | sup
Rn
|xα∂βϕ| <∞ for all multiindices α, β}.

We say
ϕj → ϕ in S

provided
sup
Rn
|xαDβ(ϕj − ϕ)| → 0



102 M. ZWORSKI

for all multiindices α, β

We write S ′ = S ′(Rn) for the space of tempered distributions, which
is the dual of S = S (Rn). That is, u ∈ S ′ provided u : S → C is
linear and ϕj → ϕ in S implies u(ϕj)→ u(ϕ).

We say

uj → u in S ′

provided

uj(ϕ)→ u(ϕ) for all ϕ ∈ S .

A.3. ELEMENTARY OPERATORS..

Multiplication operator: Mλf(x) = λf(x)

Translation operator: Tξf(x) = f(x− ξ)

Reflection operator: Rf(x) := f(−x)

A.4. OPERATORS..

A∗ = adjoint of the operator A

[A,B] = AB −BA = commutator of A and B

σ(A) = symbol of the pseudodifferential operator A

spec(A) = spectrum of A.

tr(A) = trace of A.

We say that a bounded operator B is of trace class if

(A.3) ‖B‖tr :=
∑√

λj <∞,

where the λj ≥ 0 are the eigenvalues of the self-adjoint operator B∗B.

• If A : X → Y is a bounded linear operator, we define the operator
norm

‖A‖ := sup{‖Au‖Y | ‖u‖X ≤ 1}.
We will often write this norm as

‖A‖X→Y
when we want to emphasize the spaces between which A maps.
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The space of bounded linear operators from X to Y is denoted
L(X, Y ); and the space of bounded linear operators from X to itself is
denoted L(X).

A.5. ESTIMATES.

• We write
f = O(h∞) as h→ 0

if for each positive integer N there exists a constant CN such that

|f | ≤ CNh
N for all 0 < h ≤ 1.

• If we want to specify boundedness in the space X, we write

f = OX(hN)

to mean
‖f‖X = O(hN).

• If A is a bounded linear operator between the spaces X, Y , we will
often write

A = OX→Y (hN)

to mean
‖A‖X→Y = O(hN).

A.6. PSEUDODIFFERENTIAL OPERATORS..

We cross reference the following terminology from Appendix E. Let
M denote a manifold.

• A linear operator A : C∞(M) → C∞(M) is called a pseudodiffer-
ential operator if there exist integers m, k such that for each coordi-
nate patch Uγ, and there exists a symbol aγ ∈ Sm,k such that for any
ϕ, ψ ∈ C∞c (Uγ)

ϕA(ψu) = ϕγ∗aw
γ (x, hD)(γ−1)∗(ψu)

for each u ∈ C∞(M).

• We write
A ∈ Ψm,k(M) ,

and also put
Ψ(M) := Ψ0,0(M) .

When h = 1, that is we do not consider the limit h→ 0, we put

Ψm(M) := Ψm,0(M).
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Appendix B. Functional analysis

B.1. Spectral theory. to be re-organized and re-written

THEOREM B.1 (Stone formula). The spectral projector is given
by boundary values of the resolvent as follows

(B.1) dEλ(P ) =
1

2πi

(
(P − λ− i0)−1 − (P − λ+ i0)−1

)
dλ .

REMARK. An informal but instructive way of writing (B.1) is

(B.2) δ(P − λ) =
1

2πi

(
(P − λ− i0)−1 − (P − λ+ i0)−1

)
Let H be a complex Hilbert space with inner product 〈·, ·〉. For a

bounded operator, A : H → H, we define the adjoint A∗ : H → H using
the inner product:

〈Au, v〉 = 〈u,A∗v〉 .
An operator A is self-adjoint if A∗ = A.

THEOREM B.2 (Spectral theorem for bounded operators).
Let A be a bounded self-adjoint operator on H. Then there exist a
measure space (X,M, µ), a real-valued funtion f ∈ L∞(X,µ) and a
unitary operator U : HL2(X,µ) such that

U∗MfU = A ,

where Mf is the multiplication operator:

[Mfu](x) = f(x)u(x) , u ∈ L2(X,µ) .

The same theorem applies to normal operators, that is, operators
satisfying

[A,A∗] = AA∗ − A∗A = 0 .

In that case f can be complex valued but otherwise the statement is
the same.

DEFINITION. Suppose that A is a bounded operator on H. Then
the spectrum of A, Spec(A) ⊂ C, is defined by

Spec(A) = {{λ ∈ C : (A− λ)−1 : H → H exists} .
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We say that λ ∈ Spec(A) is an eigenvalue of A, if there exists u ∈ H
such that

(B.3) Au = λu .

Theorem B.2 implies that for a self-ajoint bounded operator A,

Spec(A) = image (f) b R.

The following important result concerns spectrum of compact oper-
ators: A : H → H is called compact if the image of {u : ‖u‖ ≤ 1}
under A is a pre-compact subset of H.

THEOREM B.3 (Spectra of compact operators). Suppose A is
a compact operator on H. Then

(i) Every λ ∈ Spec(A) \ {0} is an eigenvalue of A.

(ii) For all nonzero λ ∈ Spec(A) \ {0}, there exist N such that

ker(A− λ)N = ker(A− λ)N+1 .

(iii) The eigenvalues can only accumulate at 0.

(iv) Spec(A) is countable.

(v) Every λ ∈ Spec(A) \ {0} is a pole of the resolvent operator

λ 7−→ (A− λ)−1 .

(vi) Suppose in addition that A is self-adjoint. Then there exists an
orthonormal set {uk}k∈K ⊂ H, K = {0, 1, 2, · · · , N} or K = N, such
that

(B.4) Au(x) =
∑
k∈K

λkuk(x)〈u, uk〉 ,

where λ0 ≥ λ1 ≥ · · · are the non-zero eigenvalues of A.

(vii) Conversely, if (B.4) holds with λj → 0 then A is compact.

One of the most frequently encountered classes of compact operators
are inclusions between Hilbert spaces. Here is one which is used in this
book:



106 M. ZWORSKI

THEOREM B.4 (Rellich-Kondrachov theorem for unbounded
domains). Suppose that the Hilbert H ⊂ L2(Rn) is defined by the norm

‖u‖2
H = ‖〈ξ〉αû‖2

L2(Rn) + ‖a(x)−1u‖2
L2(Rn) ,

α > 0 , a(x) > 0 , lim
|x|→∞

a(x) = 0 ,

where û is the Fourier transform of u and a is continuous.

Then the inclusion

H ↪→ L2 is compact .

THEOREM B.5 (More on spectrum of self-adjoint operators).
Suppose A : H → H is a bounded self-adjoint operator.

(i) Then (A− λ)−1 exists and is a bounded linear operator on H for
λ ∈ C− spec(A), where spec(A) ⊂ R is the spectrum of A.

(ii) If spec(A) ⊂ [a,∞), then

(B.5) 〈Au, u〉 ≥ a‖u‖2 (u ∈ A).

THEOREM B.6 (Maximin and minimax principles). Suppose
that A : H → H is self-adjoint and semibounded, meaning A ≥ −c0.
Assume also that (A+ 2c0)−1 : H → H is a compact operator.

Then the spectrum of A is discrete: λ1 ≤ λ2 ≤ λ3 · · · ; and further-
more

(i)

(B.6) λj = max
V⊂H

codimV <j

min
v∈V
v 6=0

〈Av, v〉
‖v‖2

,

(ii)

(B.7) λj = min
V⊂H

dimV≤j

max
v∈V
v 6=0

〈Av, v〉
‖v‖2

.

In these formulas, V denotes a linear subspace of H.

DEFINITIONS. (i) Let Q : H → H be a bounded linear operator.
We define the rank of Q to be the dimension of the range Q(H).
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(ii)If A is an operator with real and discrete spectrum, we set

N(λ) := #{λj | λj ≤ λ}
to count the number of eigenvalues less than or equal to λ.

THEOREM B.7 (EstimatingN(λ)). Let A satisfy the assumptions
of Theorem B.6.

(i) If

(B.8)


there exist δ > 0 and a self-adjoint operator Q,

with rank Q ≤ k, such that

〈Au, u〉 ≥ (λ+ δ)‖u‖2 − 〈Qu, u〉 for u ∈ H,
then

N(λ) ≤ k.

(ii) If

(B.9)


for each δ > 0, there exists a subspace V

with dimV ≥ k, such that

〈Au, u〉 ≤ (λ+ δ)‖u‖2 for u ∈ V,
then

N(λ) ≥ k.

Proof. 1. Set W be the orthogonal complement of Q(H), W := Q(H)⊥.
Thus codim W = rank Q ≤ k. Therefore the maximin formula (B.6)
implies

λk+1 = max
V⊂H

codimV <k

min
v∈V
v 6=0

〈Av, v〉
‖v‖2

≥ min
v∈W
v 6=0

〈Av, v〉
‖v‖2

= min
v∈W
v 6=0

(
λ+ δ − 〈Qv, v〉

‖v‖2

)
= λ+ δ,

since 〈Qv, v〉 = 0 if v ∈ Q(H)⊥. Hence λ < λ+ δ ≤ λk+1, and so

N(λ) = max{j | λj ≤ λ} ≤ k.

This proves assertion (i).

2. The minimax formula (B.7) directly implies that

λk ≤ max
v∈V
v 6=0

〈Av, v〉
‖v‖2

≤ λ+ δ.
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Hence λk ≤ λ+ δ. This is valid for all δ > 0, and so

N(λ) = max{j | λj ≤ λ} ≥ k.

This is assertion (ii).

�

B.2. Singular values.

Let A : H1 → H2 be a bounded operator between Hilbert spaces H1

and H2. Then (A∗A)
1
2 : H1 → H1 is also a also a bounded operator

and we inductivly define

s0(A) = ‖A‖ ,

sj+1(A) = sup{λ ∈ Spec(A∗A)
1
2 , λ < sj(A)} ,

(B.10)

with sj+1(A) = sj+p(A) if sj+1(A) lies in the discrete spectrum and its
multiplicity is p.

In particular we have,

s0(A) ≥ s1(A) ≥ s2(A) ≥ · · · , sj(A) ∈ Spec((A∗A)
1
2 ) ,

When the spectrum of A is discrete, for instance when A is compact
operator, then

s0(A) = ‖A‖ , sj(A) −→ 0 , j −→∞ .

Otherwise the top of the essential spectrum is repeated with infinite
multiplicity.

The spectrum of (AA∗)
1
2 is the same as that of (A∗A)

1
2 and hence

we can define sj(A)’s either ways. They are called the singular values
of A.

A useful characterization is given in the next theorem.

THEOREM B.8 (Variational characterization of singular val-
ues). Let A : H1 → H2 be a bounded operator. Then

(B.11) sj(A) = inf
rankK≤j

‖A−K‖H1→H2 .

The following important result can be easily deduced from Theorem
B.8.
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THEOREM B.9 (Additive and multiplicative properties of
singular values). 1) If A : H1 → H2 and B : H1 → H2 then

(B.12) sk+`(A+B) ≤ sk(A) + s`(B) .

2) If A : H1 → H2 and B : H2 → H3 are bounded operators then

(B.13) sk+`(AB) ≤ sk(A)s`(B) .

A central inequality between eigenvalues and singular values is due
to Weyl:

THEOREM B.10 (Weyl inequalities). 1) Suppose that A : H1 →
H2 is a bounded operator and λj(A),

|λ0(A)| ≥ |λ1(A)| ≥ · · · |λN(A)| ,
be its discrete spectrum satisfying

Spec(A) ∩ {λ ∈ C : |λ0(A)| ≥ |λ| ≥ |λN(A)|} = {λj(A)}Nj=1 ,

where λj(A)’s are included according to their multiplicities as in (B.10).

If there is a maximal N we put

λk(A) := inf{λ ∈ Spec(A) : |λ| > |λN(A)} , k > N .

Then for any K we have

(B.14)
K∏
k=0

(1 + |λk(A)|) ≤
K∏
k=0

(1 + sk(A)) .

2) More generally, let f : [0,∞), f(0) = 0, be a function such that

t 7−→ f(exp t) is convex.

Then for any k we have

K∑
k=1

f(|λk(A)|) ≤
K∑
k=1

f(sk(A)) .

EXAMPLE. Suppose that (M, g) is compact manifold n dimensional
Riemannian manifold and that −∆M is the Laplace-Beltrami operator
on M . Then the Weyl law for eigenvalue asymptotics states that

|{λ ≥ 0 : λ2 ∈ Spec(−∆M) , |λ| ≤ r}| = cnvolg (M)rn(1 + o(1)) ,

cn = vol (BRn(0, 1))/(2π)n .
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If we order the eigenvalues of −∆M as 0 = λ2
0 < λ2

1 ≤ λ2
2 ≤ · · · , it then

follows that

(B.15) λj ≥ (cnvolg (M))−
1
n j

1
n (1− o(1)) , j →∞ ,

and

(B.16) sj((−∆M − 1)−s/2) ≤ CMj
− s
n .

Suppose now that A : L2(M)→ Hs(M), s ∈ N. Then

sj(A) ≤ sj((−∆M − 1)−s/2)‖(−∆M − 1)s/2A‖L2→L2

≤ sj((−∆M − 1)−s/2)‖A‖L2→H2

≤ CAj
− s
n .

(B.17)

B.3. Trace class operators and determinants.

When

(B.18)
∞∑
j=1

sj(A) <∞ ,

we say that A is of trace class:

A ∈ L1 = L1(H1, H2) , ‖A‖L1 :=
∞∑
j=1

sj(A) .

(B.19) | det(I+A)−det(I+B)| ≤ ‖A−B‖L1 exp(1+‖A‖L1 +‖B‖L1) .

B.4. Regularized determinant.

Suppose that instead of assuming that A is of trace class we only
have the property

(B.20)
∞∑
j=1

sj(A)p <∞ , for some p > 1.

Just as (B.18) defined the trace class of operators, (B.20) defines the
p-Schatten class:

A ∈ Lp = Lp(H1, H2) , ‖A‖L1 :=
∞∑
j=1

sj(A)p .
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For A ∈ LP (H,H) (the case of H1 = H2) we defined the regularized
determinant of I + A using the following operator

Rp(A) = (I + A) exp

(
−A+

A2

2
− · · ·+ (−A)p−1

p− 1

)
− I ∈ L1 ,

(B.21) det
p

(I + A) := det(I +Rp(A)) .

We note that if A ∈ Lq for q < p, then

(B.22) det
p

(I + A) = det
q

(I + A) exp

(
p−1∑
`=q

tr(−A)`

`

)

In the case of matrices we know that M−1 can expressed using
Cramer’s rule and hence its norm can be estimated using | detM |−1.
There is also an infinite dimensional version of this result:

(B.23) ‖(I −K)−1‖ ≤ det(I + (K∗K)
p
2 )

| det(I −Kp)‖
, K ∈ Lp .

B.5. Sources and further reading. For the moment I suggest [Sj-3,
Chapter 5] as a concise reference.
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Appendix C. Fredholm theory

In this appendix we will describe the role of the Schur complement
formula in spectral theory, in particular in analytic Fredholm theory.

C.1. Grushin problems.

Linear algebra. The Schur complement formula states for two-by-
two systems of matrices that if(

P R−
R+ R0

)−1

=

(
E E+

E− E0

)
,

then P is invertible if and only if E0 is invertible, with

(C.1) P−1 = E − E+E
−1
0 E−, E−1

0 = R0 −R+P
−1R−.

Generalization. We can generalize to problems of the form

(C.2)

(
P R−
R+ O

)(
u
u−

)
=

(
v
v+

)
where

P : X1 → X2, R+ : X1 → X+, R− : X− → X2,

for appropriate Banach spaces X1, X2, X+, X−. We call (C.2) a Grushin
problem. (In practice, we start with an operator P and build a Grushin
problem by choosing R±, in which case it is normally sufficient to take
R0 = 0.)

If the Grushin problem (C.2) is invertible, we call it well-posed and
we write its inverse as follows:

(C.3)

(
u
u−

)
=

(
E E+

E− E0

)(
v
v+

)
for operators

E : X2 → X1, E0 : X+ → X−, E+ : X+ → X1, E− : X2 → X−.

LEMMA C.1 (The operators in a Grushin problem). If (C.2) is
well-posed, then the operators R+, E− are surjective, and the operators
E+, R− are injective.
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C.2. Fredholm operators.

DEFINITIONS. (i) A bounded linear operator P : X1 → X2 is called
a Fredholm operator if the kernel of P ,

kerP := {u ∈ X1 | Pu = 0},

and the cokernel of P ,

cokerP := X2/PX1, where PX1 := {Pu | u ∈ X1},

are both finite dimensional.

(ii) The index of a Fredholm operator is

indP := dim kerP − dim cokerP.

EXAMPLE. Many important Fredholm operators have the form

(C.4) P = I +K,

where K a compact operator mapping a Banach space X to itself.

Theorem C.3 below shows that the index does not change under con-
tinuous deformations of Fredholm operators (with respect to operator
norm topology). Hence for operators of the form (C.4) the index is 0:

indP = ind(I + tK) = ind I = 0 (0 ≤ t ≤ 1).

�

The connection between Grushin problems and Fredholm operators
is this:

THEOREM C.2 (Grushin problem for Fredholm operators).
(i) Suppose that P : X1 → X2 is a Fredholm operator.

Then there exist finite dimensional spaces X± and operators R− :
X− → X2, R+ : X1 → X+, for which the Grushin problem (C.2) is
well posed. In particular, PX1 ⊂ X2 is closed.

(ii) Conversely, suppose that that for some choice of spaces X± and
operators R±, the Grushin problem (C.2) is well posed.

Then P : X1 → X2 is a Fredholm operator if and only if E0 : X+ →
X− is a Fredholm operator; in which case

(C.5) indP = indE0.

Assertion (ii) is particularly useful when the spaces X± are finite
dimensional.
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Proof. 1. Assume P : X1 → X2 is Fredholm. Let n+ := dim kerP
and n− := dim cokerP , and write X+ := Cn+ , X− := Cn− . Select then
linear operators

R− : X− → X2, R+ : X1 → X+,

of maximal rank such that

R−X− ∩ PX1 = {0}, ker(R+|kerP ) = {0}.
Then the operator (

P R−
R+ O

)
has a trivial kernel and is onto. Hence it is invertible, and by the Open
Mapping Theorem the inverse is continuous.

In particular, consider P acting on the quotient space X1/ kerP ,
which is a Banach space since kerP is closed. We have n+ = 0, and

PX1 = P (X1/ kerP ) =
(
P R−

)( X1/ kerP
{0}

)
is a closed subspace.

2. Conversely, suppose that Grushin problem (C.2) is well-posed.
According to Lemma C.1, the operators R+, E− are surjective, and the
operators E+, R− are injective. We take u− = 0. Then

(C.6)

{
the equation Pu = v is equivalent to

u = Ev + E+v+, 0 = E−v + E0v+.

This means that
E− : ImP → ImE0,

and so we can define the induced map

E# : X2/ ImP → X−/ ImE0.

Since E− is surjective, so is E#. Also, kerE# = {0}. This follows since
if E−v ∈ ImE0, we can use (C.6) to deduce that v ∈ ImP . Hence E#

is a bijection of the cokernels X2 ImP and X−/ ImE0.

3. Next, we claim that

E+ : kerE0 → kerP

is a bijection. Indeed, if u ∈ kerP , then u = E+v+ and E0v+ = 0.
Therefore E+ is onto; and this is all we need check, since E+ injective.

We conclude that

dim kerP = dim kerE0, dim cokerP = dim cokerE0.
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In particular, the indices of P and E0 are equal. �

THEOREM C.3 (Invariance of the index under deformations).
The set of Fredholm operators is open in L(X1, X2), and the index is
constant in each component.

Proof. When P is a Fredholm operator, we can use Theorem C.2 to
obtain E0 : Cn+ → Cn− , with

(C.7) indE0 = n+ − n−.
by the Rank-Nullity Theorem of linear algebra. The Grushin problem
remains well-posed (with the same operators R± ) if P is replaced by
P ′, provided ‖P −P ′‖ < ε for some sufficiently small ε > 0. Hence the
set of Fredholm operators is open.

Using (C.7) we see that the index of P ′ is the same as the index of
P . Consequently it remains constant in each connected component of
the set of Fredholm operators. �

We refer to Hörmander [H2, Sect.19.1] for a comprehensive introduc-
tion to Fredholm operators

C.3. Meromorphic continuation of operators.

The Grushin problem framework provides an elegant proof of the
following standard result:

THEOREM C.4 (Analytic Fredholm Theory). Suppose Ω ⊂ C is
a connected open set and {A(z)}z∈Ω is a family of Fredholm operators
depending holomorphically on z.

Then if A(z0)−1 exists at some point z0 ∈ Ω, the mapping z 7→ A(z)−1

is a meromorphic family of operators on Ω.

Proof. 1. Fix z1 ∈ Ω. We form a Grushin problem for P = A(z1),
as described in the proof of Theorem C.2. The same operators Rz1

±
also provide a well-posed Grushin problem for P = A(z) for z in some
sufficiently small neighborhood V (z1) of z1.

According to Theorem C.3

indA(z) = indA(z0) = 0.

Consequently
n+ = n− = n,

and Ez1
0 (z) is an n × n matrix with holomorphic coefficients. The

invertibility of Ez1
0 (z) is equivalent to the invertibility of A(z).
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2. This shows that there exists a locally finite covering {Ωj} of Ω,
and a family of functions fj, holomorphic in Ωj, such that if z ∈ Ωj,
then A(z) is invertible precisely when

fj(z) 6= 0.

Indeed, we can define fj := detEz
0 , where Ez

0 exists for z ∈ Ωj by
the construction in Step 1. Since Ω is connected and since A(z0) is
invertible for at least one z0 ∈ Ω, none of fj’s is identically zero.

So detE0(z) a non-trivial holomorphic function in V (z1); and conse-
quently E0(z)−1 is a meromorphic family of matrices. Applying (C.1),
we conclude that

A(z)−1 = E(z)− E+(z)E−+(z)−1E−(z)

is a meromorphic family of operators in the neighborhood V (z1). Since
z1 was arbitrary, A(z)−1 is in fact meromorphic in all of Ω. �

C.4. Gohberg-Sigal theory. Suppose M(λ) is a meromorphic family
of Fredhold operators on H. Suppose that M(λ) has a pole at λ = µ:

(C.8) M(λ) =
K∑
k=1

Mk

(λ− µ)k
+M0(λ) ,

where λ 7→M0(λ) is holomorphic near µ.

We then say that the order of the pole is K and we define the mul-
tiplicity of the pole, m(µ), and the rank at µ:

(C.9) m(µ) := rankM1 , rank(µ) := dim
K∑
k=1

ImMk .

A root function at µ is a holomorphic function, λ 7→ ϕ(λ) ∈ H such
that

lim
λ→µ

M(λ)ϕ(λ) = 0 , ϕ(µ) 6= 0 .

The multiplicity of ϕ, mult(ϕ), is defined as the order of vanishing of
M(λ)ϕ(λ) at µ. The vector v = ϕ(µ) is called an eigenvector of M(λ)
at µ. We define

rank(v) := max{mult(ϕ) : ϕ(µ) = v} .

We also define

ker(µ) := span{v ∈ H : rank v > 0} .
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If dim ker(µ) < ∞ and for all v ∈ ker(µ), rank(v) < ∞ we define a
canonical system of eigenvectors {v`}1≤`≤L as follows:

rank(v1) = max
v∈ker(µ)

rank(v) ,

rank(v`) = max
v∈V

rank(v) , for some V ⊂ ker(µ),

V + span{v1, · · · , v`−1} = ker(µ) .

A canonical system of eigenvector is not unique but the ordered set

{r`}1≤`≤L , r` := rank(v`) ,

is. We call this set, the set of partial null multiplicities and we define
the null multiplicity of M(λ) at µ as

(C.10) Nµ(M) :=
L∑
`=1

r` .

Partial null multiplicities (and hence the null multiplicity as well) are
unchanged when M(λ) is left or right multiplied by U(λ), where U(λ)
is invertible and holomorphic near µ.

THEOREM C.5. Suppose that M(λ) is a meromorphic family of
Fredholm operators with a pole of finite rank at λ = µ. If M0(λ) in
(C.8) has index 0 then there exist family of operators λ 7→ Uj(λ), j =
1, 2, holomorphic and invertible near µ, and operators Pm, 1 ≤ m ≤ N ,
such that, near µ,

M(λ) = U1(λ)(P0 +
N∑
m=1

(λ− µ)kmPm)U2(λ) , k` ∈ Z \ {0} ,

P`Pm = δ`mPm , rankP` = 1 , ` > 0 , rank(I − P0) <∞ .

(C.11)

We see that M(λ)−1 exists, near µ, as a meromorphic family of op-

erators if and only if P0 +
∑N

m=1 Pm = I, in which case

M(λ)−1 = U2(λ)−1(P0 +
N∑
m=1

(λ− µ)−kmPm)U1(λ)−1 .

Invariance of null multiplicities under multiplication by holomor-
phic invertible operator-valued functions shows that, in the notation
of (C.11)

(C.12) Nµ(M) =
∑
k`>0

k` , Nµ(M−1) =
∑
k`<0

k` .
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Theorem C.6 now gives the following result about multiplicities.

THEOREM C.6. Suppose that M(λ) and M(λ)−1 are meromorphic
families of Fredholm operators with poles of finite rank. Then

(C.13)
1

2πi
tr

∮
µ

∂λM(λ)M(λ)−1dλ = Nµ(M)−Nµ(M−1) ,

where the integral is over a positively oriented circle which includes µ
and no other pole of ∂λM(λ)M(λ)−1.

In particular, when M(λ) = I + A(λ) where A(λ) is a meromorphic
family of trace class operators then we obtain a formula for the multi-
plicity of zeros and poles of det(I +A(λ)) given by the right hand side
of (C.13):

1

2πi
tr

∮
µ

D′(λ)

D(λ)
dλ = n+(µ)− n−(µ) ,

D(λ) := det(I + A(λ)) , n±(µ) := Nµ((I + A)±1) .

(C.14)
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Appendix D. Some complex analysis

Suppose that f : C→ C is a holomorphic function. In other words,
f is an entire function.

The basic result relating the growth of f to the possible growth of
the number of its zeros is the Jensen formula:

Suppose that f(0) 6= 0. Then

(D.1)

∫ r

0

n(t)

t
dt+ log |f(0)| = 1

2π

∫ 2π

0

log |f(eiθr)|dθ ,

where n(t) is the number of zeros of f(z) with |z| < t.

From this we get an estimate on the number of zeros of f in a disc
of radius r:

n(r) ≤ 1

log 2

∫ 2r

r

n(t)

t
dt

≤ 1

log 2

(
log max

|z|=2r
|f(z)| − log |f(0)|

)
.

(D.2)

If f(0) = 0 we apply the formula to f(z)/zp where p is the order of
vanishing of f at 0.

We also use the Harnack inequality and the Borel-Carathéodory the-

orem: for f holomorphic in the closed disc D(0, R) and 0 < r < R we
have

(D.3) max
|z|≤r
|f(z)| ≤ 2r

R− r
max
|z|≤R

Ref(z) +
R + r

R− r
|f(0)| .

Another thing which comes up frequently are estimates of canonical
products.

We define

Ep(z) = (1− z) exp

(
z +

z2

2
+ · · · z

p

p

)
.

If a sequence zk
∞
k=1, zk ∈ C, satisfies

(D.4)
∑ 1

|zn|p+1
<∞

then the infinite product

P (z) :=
∞∏
k=1

Ep(z/zn)
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conveges and

mP (z) :=
1

2πi

∮
z

P ′(w)

P (w)
dw = ]{k : zk = z} .

Here the integral is over an “arbitrarily” small positively oriented circle
around z.

Using the notation n(r) above we have the following estimate:

(D.5) max
|z|≤r

log |P (z)| ≤ kpr
p

(∫ r

0

n(t)

tp+1
dt+ r

∫ ∞
r

n(t)

tp+2
dt

)
.

In particular, when

(D.6) n(r) ≤ Crp ,

we have

(D.7) log |P (z)| ≤ C|z|p .

A lower bound also holds and here is the case we use. When (D.6)
is satisfied then for any ε > 0 there existst r0 such that

(D.8) log |P (z)| ≥ −|z|p+ε , z /∈
⋃

mP (w)>0

D(w, 〈w〉−p−ε) , |z| ≥ r0 .

We say that f is of exponential type τ if

lim sup
r→∞

log supλ≤r |f(r)|
r

= τ .

The type 0 < τ <∞ is called normal.

The indicator function f gives a more precise notion of order:

h(θ) :=
log |f(reiθ)|

r
.

The function h is an indicator function of a convex set K ⊂ C:

h(θ) = sup
z∈K

(cos θRez + sin θ Imz) .

The set K is called the indicator diagram of f .

When h(θ) is a limit along a density one sequence of r’s (not just
lim sup) and the convergence is uniform in θ, the function f is said
to have completely regular growth. In that case we can describe the
distribution of zeros in sectors using the indicator function – see [Le].

Here we quote a specific result which is used in Section 2.4:
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THEOREM D.1 (Asymptotics of zeros). If f is of exponential
type in C and if

(D.9)

∫
R

log+ f(x)

1 + x2
dx <∞ ,

then f has completely regular growth and the indicator diagram of f is
given by an interval If ⊂ iR.

Writing mf (z) for the multiplicity of a zero of f we have

lim
r→∞

1

r

∑
−ε<arg z<ε
|z|≤r

mf (z) = 0 ,

lim
r→∞

1

r

∑
−ε<arg(−z)<ε

|z|≤r

mf (z) =
|If |
2π

,

lim
r→∞

1

r

∑
π−ε<arg z≤π+ε

|z|≤r

mf (z) =
|If |
2π

.

It is not difficult to check that if f satisfies (D.9) and it has normal
type τ then

(D.10) |f(z)| ≤ (1 + |z|)Neτ(Imz)− =⇒ If = [−iτ, 0] .
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Appendix E. Semiclassical microlocal analysis

We say that A ∈ h−mΨk(X) is elliptic on K b T ∗X if

|σ(A)|K | > h−m/C, .

This is equivalent to saying

LEMMA E.1. Suppose Q ∈ Ψm(X) is elliptic at (x0, ξ0) , ‖u‖L2 =
1, and WFh(u) is contained in a sufficiently small neighbourhood of
(x0, ξ 0). Then for h small enough,

‖Qu‖L2 ≥ 1/C .

LEMMA E.2. Suppose that ψj ∈ C∞b (T ∗X), ψ2
1 + ψ2

2 = 1, suppψ1 ⊂
{(x, ξ) : |ξ| ≤ C}. Then, there exist Ψ1 ∈ Ψ−∞(X) and Ψ2 ∈ Ψ0,0(X),
with principal symbols ψ1 and ψ2 respectively, such that

Ψ2
1 + Ψ2

1 = I +R , R ∈ h∞Ψ−∞(X) , Ψ∗j = Ψj .

The semiclassical Sobolev spaces, Hs
h(X) are defined by choosing a

globally elliptic, self-adjoint operator, A ∈ Ψ1(X) (that is an operator
satisfying σ(A) ≥ 〈ξ〉/C everywhere) and putting

‖u‖Hs
h

= ‖Asu‖L2(X) .

When X = Rn,

‖u‖2
Hs
h
∼
∫
Rn
〈hξ〉2s|Fu(ξ)|2dξ , Fu(ξ)

def
=

∫
Rn
u(x)e−i〈x,ξ〉dx .

The following lemma will also be useful:

LEMMA E.3. Suppose that Pt, t ∈ (0,∞), is a family of operators
such that

Pt : Hs
h(X) −→ Hs−m

h (X) ,

∀ A ∈ Ψ0,−∞(X) , adPtA = O(h) : L2(X) −→ L2(X) , 0 < h < h0(t) ,

with the bound depending on A but not on t. Let Ψj be as in Lemma
E.2 and suppose that

‖PtΨju‖ ≥ th‖Ψju‖ − O(h)‖u‖ , j = 1, 2 , u ∈ C∞c (X) .

Here the constants in O are independent of h and t. Then for t > t0 �
1 and 0 < h < h0(t),

‖Ptu‖ ≥ th‖u‖/2 .
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In Section 7.3 we use the following important result from [EZ, Chap-
ter 13]:

THEOREM E.4 (Egorov’s theorem up to Ehrenfest time).
Suppose that m ≥ 1 is an order function P = Op(p), p ∈ S(m),
p = p0 +OS(m)(h

2), and p0 ≥ m/C − C, for some C > 0.

Suppose also that a ∈ S sastisfies

suppa ⊂ {(x, ξ) : p0(x, ξ) ≤ R} ,
for some R > 0, and define

(E.1) ΓR := lim
t→∞

1

t
sup
p0≤R

log ‖∂ϕt‖ , ϕt = exp tHp0 .

For any γ > ΓR, T ≥ 0, and δ ∈ [0, 1/2), if

(E.2) 0 ≤ t ≤ T +
δ

γ
log

1

h
,

then

eitP/haw(x, hD)e−itP/h = aw
t (x, hD) ,

at ∈ Sδ(m−∞) , at − ϕ∗ta ∈ h2−3δSδ(m
−∞) ,

(E.3)

with symbolic estimates uniform in t.

INTERPRETATION. This theorem estimates the length time on
which we know that the classical/quantum correspondence remains
valid. These correspondece refers to the correspondence between clas-
sical and quantum flows:

t 7→ eithaw(x, hD)e−itP/h

is the quantum evolution of the quantume observable aw(x, hD).

t 7→ ϕ∗ta

is the classical evolution of the classical observable a(x, ξ)

The statement that at − ϕ∗ta = O(h2−3δ) means that the quantum
evolution of aw given by the conjugation with exp(−itP/h) is well ap-
proximated by the classical evolution up to the time δ/γ log(1/h). Till
that time we also know that the quantum evolved operator is a quan-
tization of a slightly exotic (δ > 0) classical observable at. When we
allow p = p0 +OS(m)(h) then the error becomes O(h1−δ). The assump-
tion p = p0 +OS(m)(h

2) with p0 independent of h is natural as the term
p0 is (under further assumptions) invariantly defined up to O(h2).



124 M. ZWORSKI

References

[Ag-Co] J. Aguilar and J.M. Combes, A class of analytic perturbations for one-body
Schrödinger Hamiltonians, Comm. Math. Phys. 22(1971), 269–279.

[Ba-Co] E. Balslev and J.M. Combes, Spectral properties of many-body Schrödinger
operators wth dilation analytic interactions, Comm. Math. Phys.
22(1971), 280–294.

[Be] J. P. Berenger, A perfectly matched layer for the absorption of electromag-
netic waves, J. Comp. Phys., 114(1994), 185–200.

[Bi-Go] D. Bindel and S. Govindjee, Elastic PMLs for esonator anchor loss sim-
ulations, Int. J. Num. Meth. Eng., 64(2005), 789–818.

[Bi-Zw] D. Bindel and M. Zworski, Theory and computation of resonances in 1d
scattering, http://www.cims.nyu.edu/∼dbindel/resonant1d/

[B-B-R] J.-F. Bony, N. Burq, and T. Ramond, Minoration de la résolvante dans le
cas captif, Comptes Rendus Acad. Sci, Mathematique, 348(23-24)(2010),
1279–1282.

[B-C] J.-M. Bony and J.-Y. Chemin, Espaces fonctionnels associés au calcul de
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[S-Z11] J. Sjöstrand and M. Zworski, Elementary linear algebra for advanced spec-
tral problems, Ann. Inst. Fourier, 57(2007), 2095–2141.

[Ste] P. Stefanov, Sharp upper bounds on the number of the scattering poles, J.
Funct. Anal. 231(2006), 111–142.

[Sto] H.-J. Stöckmann, Quantum Chaos - An Introduction, Cambridge Univer-
sity Press, 1999.

[TZ] S.H. Tang and M. Zworski, Resonance expansions of scattered waves,
Comm. Pure and Appl. Math. 53(2000), 1305–1334.



SCATTERING RESONANCES 127

[E-T] L.N. Trefethen and M. Embree, Spectra and Pseudospectra: The Behavior
of Nonnormal Matrices and Operators, Princeton University Press, 2005.

[Vai] B.R. Vainberg, Exterior elliptic problems that depend polynomially on the
spectral parameter and the asymptotic behavior for large values of the
time of the solutions of nonstationary problems. (Russian) Mat. Sb. (N.S.)
92(134)(1973), 224–241.

[VaZw] A. Vasy and M. Zworski, Semiclassical estimates in asymptotically Eu-
clidean scattering, Comm. Math. Phys. 212 (2000) 205–217

[Vo] G. Vodev, Sharp bounds on the number of scattering poles for perturba-
tions of the Laplacian, Comm. Math. Phys. 146(1992), 205–216.

[Z1] M. Zworski, Distribution of poles for scattering on the real line, J. Funct.
Anal., 73(1987), 277–296.

[Z2] M. Zworski, Sharp polynomial bounds on the number of scattering poles
of radial potentials, J. of Funct. Anal. 82(1989), 370–403.

[Z3] M. Zworski, Sharp polynomial bounds on the number of scattering poles,
Duke Math. J. 59(1989), 311–323.


