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Abstract. These notes develop the mathematics of resonance with the point of view that theory,
intuition, and physical interpretation are inseparable. The mathematics involves connections
between Fourier analysis, spectral theory, and complex analysis. ... The notes and this abstract
are in continual, but not continuous, evolution.
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1 The simplest oscillators in excessive detail

’Tis insightful to examine the simplest models of oscillators in seemingly excessive detail. The insight will
be useful when studying more complex models, which are composed of integral superpositions of simple
oscillators.

1.1 Complex first-order oscillator

Consider the simple differential equation for a complex scalar function y(t),

iẏ = E0 y , (1.1)

in which h is a scalar. The spectrum of the multiplication operator on the right-hand side (y 7→ E0 y) is the
set {E0}, and it is self-adjoint when E0 ∈ R. This 1D complex equation is a first-order ODE system for two
real functions, the real and imaginary parts of y(t).

Free oscillation. The free oscillation of the system is the one-complex-dimensional family of solutions
of the homogeneous equation (1.1),

y(t) = y0 e
−iE0t . (1.2)

The characteristic (circular) frequency of the oscillator is h.

Response to harmonic forcing. Consider the harmonically forced system

iẏ = E0 y + f0 e
−iωt. (1.3)

Inserting a harmonic (steady-state) solution y(t) = y0 e
−iωt yields

y0 =
1

ω − E0
f0 . (1.4)

Notice the appearance of the resolvent R(ω) = (E0 − ω)−1 of the multiplication operator. As the forcing
frequency approaches that of the free oscillation, the response becomes unbounded. There is no steady-state
response to forcing at the characteristic (circular) frequency E0.

Of course, a free oscillation y1 e
−iE0t may be superimposed upon (added to) this response to obtain

another solution of the forced problem. The general solution is the 1-complex-dimensional family of functions

y(t) =
f0

ω − E0
e−iωt + c e−iE0t , (1.5)

in which c is an arbitrary complex number.

The initial-value problem. The solution of the initial-value problem{
iẏ = E0 y ,
y(0) = y0 ,

(1.6)

assuming that the system is at rest before time t = 0, is

y(t) = y+(t) :=

{
0 for t < 0 ,
y0 e
−iE0t for t ≥ 0 .

(1.7)
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The image of the map [0,∞) → C :: t 7→ e−iE0t is a unitary semigroup. The Fourier-Laplace transform of
y(t) is defined for Im (ω) > 0,

(Fy)(ω) :=
1

2π

∫ ∞
−∞

y(t) eiωt dt =
1

2π

∫ ∞
0

y(t) eiωt dt =
y0

2π

∫ ∞
0

e−iE0t eiωt dt =
1

2πi

1

E0 − ω
y0 . (1.8)

Notice that the Fourier-Laplace transform of the solution of the initial-value problem (the semi-group applied
to the initial value y0) is 1/(2πi) times the resolvent of the multiplication-by-E0 operator, applied to the
initial value y0. Here is another way to do this calculation, using the definition of the IVP (1.6) only and
not the exponential form of the solution directly:

E0 (Fy)(ω) =
1

2π

∫ ∞
0

E0 y(t) eiωt dt =
1

2π

∫ ∞
0

iẏ eiωt dt =
1

2π

∫ ∞
0

ω y eiωt dt+
y0

2πi
= ω (Fy)(ω) +

y0

2πi
,

(1.9)
which yields the same result as (1.8).

Notice that the resolvent appears in two ways. It gives (1) the response to a harmonic force and (2) the
Fourier-Laplace transform of the semigroup. The connection is made transparent by viewing the solution of
the IVP as the response to an impulsive force at t=0.

Response to an impulsive force. Another (maybe better) way to formulate the initial-value problem
(1.6) is by means of an impulsive force applied at time t = 0,

iẏ = E0 y + i y0 δ(t) , (1.10)

in which δ is the Dirac delta-function. By assuming that y(t) = 0 for t < 0, one can take the F-L transform
of this equation for Im (ω) > 0, and one obtains the simple algebraic equation

ω Y (ω) = E0 Y (ω) +
i

2π
y0 , (Im (ω) > 0) (1.11)

where Y = Fy , and one recovers (1.8),

Y (ω) =
1

2πi

1

E0 − ω
y0 . (Im (ω) > 0) (1.12)

The inverse Fourier transform gives

y(t) =
y0

2πi

∫ ∞
−∞

1

E0 − ω
e−iωt dω :=

y0

2πi
lim
ε→0+

∫ ∞
−∞

1

E0 − (ω + iε)
e−i(ω+iε)t dω . (1.13)

The residue calculus (see below) produces again the solution y(t) = y0e
−iE0t χ(0,∞)(t).

A more physically intuitive point of view is to think of the delta-function as an integral superposition of
pure oscillations, so that the forcing function becomes

i y0 δ(t) =
i y0

2π

∫ ∞
−∞

e−iωt dω . (1.14)

Then y(t) should be a superposition of responses to these harmonic forcings,

y(t) =

∫ ∞
−∞

Y (ω)e−iωtdω . (1.15)

From (1.4), the response to the forcing iy0e
−iωt/(2π) (ω 6= h) is

Y (ω) =
1

2π i

1

E0 − ω
y0 e
−iωt . (1.16)
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But if one tries to superimpose these responses (taking the inverse Fourier transform), one obtains, as above,

y(t) =
y0

2πi

∫ ∞
−∞

1

E0 − ω
e−iωt dω (1.17)

which does not converge as written. It can be interpreted as a limit of an integral along R + iε as ε → 0+,
as above, which produces the solution y+(t) = y0e

−iE0t χ(0,∞)(t) to the IVP with the system at rest for
negative time.

If one takes ε→ 0−, one obtains the solution y−(t) = −y0e
−iE0t χ(−∞,0)(t), or

y(t) = y−(t) :=

{
−y0 e

−iE0t for t < 0 ,

0 for t > 0 .
(1.18)

The average of y+(t) and y−(t) is another solution to (1.10),

y(t) =

{
−y02 e−iE0t for t < 0 ,
y0
2 e−iE0t for t > 0 ;

(1.19)

it is obtained by interpreting (1.17) as a principle-value integral

y(t) =
y0

πi
P.V.

∫ ∞
−∞

1

E0 − ω
e−iωt dω . (1.20)

Notice that the difference of y+(t) and y−(t) is a solution of the homogeneous equation iẏ = hy for all time,
and gives, as expected, the free oscillation y(t) = y0e

−iht . Of course any two solutions of the impulsively
forced system (1.10) differ by a multiple of this free oscillation.

Solution by residue calculus. Let’s now compute the solution y+(t) by residue calculus (y−(t) is done
analogously). Assume E0 ∈ R. It is important that ε > 0 in the limit in (1.13) because this places the pole
of the integrand below the contour of integration. For t < 0, the integrand decays exponentially in the upper
half ω-plane (as Imω → ∞), where it is analytic, and one obtains by contour deformation, y(t) = 0. For
t > 0, the integrand decays exponentially in the lower half ω-plane (as Imω → −∞), where it has a single
simple pole at ω = E0, and one obtains by contour deformation and the residue calculus, y(t) = y0e

−iE0t.

1.2 Real second-order oscillator

A sibling of the complex first-order oscillator is the usual harmonic oscillator,

ÿ = −ω2
0 y , (1.21)

in which ω0 > 0. It can be complexified by considering y to be complex-valued, but the real and imaginary
parts remain decoupled. This is converted into a two-dimensional first-order system by introducing the
velocity variable v = ẏ,

d

dt

[
y

v

]
=

[
0 1

−ω2
0 0

][
y

v

]
= −iA

[
y

v

]
, A = i

[
0 1

−ω2
0 0

]
. (1.22)

The operator in C2 represented by the matrix A is self-adjoint with respect to the inner product〈[
y1

v1

]
,

[
y2

v2

]〉
:= ω2

0 ȳ1y2 + v̄1v2 . (1.23)

The eigenvalues of A are ±ω0, and the complementary projections onto the corresponding eigenspaces are

P± =
1

2πi

∮
C±

(ωI −A)−1dω =
1

2

[
1 ∓(iω0)−1

∓iω0 1

]
, (1.24)
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in which C± is a closed curve in the complex ω-plane encircling ±ω0 but not ∓ω0. Thus P± provide a
resolution of the identity operator on C2 that simultaneously resolves, or diagonalizes, the operator given
by A:

I = P+ + P− , (1.25)

A = ω0P+ − ω0P− . (1.26)

This decomposition is known as the spectral resolution of the identity on C2 associated with A.

Free oscillations. The free oscillations of this system are

u(t) =

[
y(t)

v(t)

]
= e−iAtM

[
c1
c2

]
= c1

[
1

−iω0

]
e−iω0t + c2

[
1

iω0

]
eiω0t , (1.27)

in which M is the matrix whose columns are the eigenvectors [1 −iω0]T and [1 iω0]T . The characteristic
frequency of the system is ω0 > 0.

Response to harmonic forcing. Consider the harmonically forced oscillator

u̇ = −iAu+ f0e
−iωt , (1.28)

in which f0 is a constant vector. A solution of the form u(t) = u0e
−iωt has

u0 = −i(A− ωI)−1f0 . (1.29)

The matrix (A−ω)−1 is the resolvent of A at ω. Notice that it has poles at the spectral values of A, namely
±ω0.

Starting back at the forced second-order equation

ÿ = −ω2
0y + f0e

−iωt , (1.30)

in which f0 is a scalar, one finds that the vector [0 f0]T belongs in the place of the vector f0 in (1.28).

The initial-value problem, or response to an impulsive force. Consider the system to be at rest
until time t = 0, when it is instantaneously forced into a new state u0 ∈ C2,

u̇ = −iAu+ u0 δ(t) . (1.31)

In the Fourier-Laplace variable ω (Imω > 0), with Fu = U , this becomes

−iω U = −i AU +
u0

2π
,

with solution

U(ω) =
1

2πi
(A− ωI)−1u0 .

Thus the solution u(t) is

u(t) =
1

2πi

∫ ∞
−∞

(A− ωI)−1u0 e
−iωt dω :=

1

2πi
lim
ε→0+

∫ ∞
−∞

(A− (ω + iε)I)−1u0 e
−i(ω+iε)t dω .

The resolvent (A−ω)−1 is meromorphic with simples poles at ±ω0. Its spectral representation is (see 1.26):

(A− ωI)−1 =
1

ω0 − ω
P+ −

1

ω0 + ω
P− .

The contributions from the poles at ±ω0 are P+u0 e
−iω0t and P−u0 e

iω0t, and thus the solution is

u(t) = P+u0 e
−iω0t + P−u0 e

iω0t . (1.32)

This expected solution is also obtained simply by decomposing u0 into its eigenvector components and letting
them evolve at exponential rates given by the eigenvalues −iω0 and iω0 of −iA.
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1.3 The free Schrödinger equation on the line

The 1-dimensional Schrödinger equation for a function u(x, t) is

i∂tu = −µ∂xxu+ V (x)u , (1.33)

with µ > 0. The free Schrödinger equation has no potential, that is, V = 0. The operator −µ∂xx is a positive
closed operator in L2(R), whose domain is the Sobolev space H2(R).

Free oscillations. All solutions of i∂tu = −µ∂xxu of the form u(x, t) = ψ(x)e−iωt (ω 6= 0) are

u(x, t) = c1e
i(kx−ωt) + c2e

−i(kx+ωt) , k =
√
ω/µ . (1.34)

The branch cut for the square root is taken to be the positive real axis, with Im
√
ω > 0 if ω is not on the

branch cut, and
√
ω ≥ 0 otherwise. When ω > 0, ei(kx−ωt) is a rightward traveling wave, and e−i(kx+ωt) is a

leftward traveling wave. (The relation ω = µk2 demonstrates the characteristic quadratic dispersion of the
Schrödinger equation.)

A general solution of the unforced equation i∂tu = −µ∂xxu is a linear integral superposition of harmonic
oscillations with positive frequency,

u(x, t) =

∫ ∞
0

(
c1(ω) ei(kx−ωt) + c2(ω) e−i(kx+ωt)

)
dω , k =

√
ω/µ . (1.35)

As an integral in the wavenumber k, one can write

u(x, t) =

∫ ∞
−∞

c(k) ei(kx−µk
2t) dk , (1.36)

in which ±k correspond to left- and right-traveling waves at the same frequency.
The free Schrödinger equation is actually an integral superposition of decoupled harmonic oscillators over

all positive frequencies, with two simple oscillators per frequency. The spectral theory shows that this is true
for the more general equation i∂tu = Au, where A is a self-adjoint operator in a Hilbert space.

Harmonically forced oscillations. Consider the harmonically forced system

i∂tu = −µ∂xxu+ f(x)e−iωt . (1.37)

Setting u(x, t) = ψ(x)e−iωt, one obtains the forced Helmholtz equation

(µ∂xx + ω)ψ = f(x) . (1.38)

When the forcing is concentrated at x = 0, that is f is the Dirac delta-function δ, we call the solution
G(x;ω). It satisfies the distributional equation

(µ∂xx + ω)ψ = δ(x) . (1.39)

If ω 6≥ 0, the L2 solution is

G(x;ω) =
1

2i
√
µ
√
ω

exp
(
i
√

ω
µ |x|

)
, (1.40)

in which Im
√
ω > 0. [Exercise: Prove this in the rigorous distributional sense.] A forcing concentrated at

x− y results in G shifted by y,

(µ∂xx + ω)G(x− y; ω) = δ(x− y) . (1.41)

The force f(x) in the steady-state forced Schrödinger equation (1.38) can be considered to be an integral
superposition of shifted delta-functions, f(x) =

∫
δ(x− y) f(y) dy, and the principle of linear superposition

yields the solution

ψ(x, t) =

∫
G(x− y, ω)f(y) dy =

1

2i
√
µ
√
ω

∫
f(y) exp

(
i
√

ω
µ |x− y|

)
dy . (1.42)
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This solution is valid for any f ∈ L2(R) and thus represents the resolvent of the operator L := −µ∂xx,

(ωI − L)−1f (x) =

∫
G(x− y, ω)f(y) dy . (1.43)

If ω > 0, then G(· ;ω) is not in L2. The solution (1.42) still makes sense for a restricted class of forcing
functions, such as those in L1 ∩L2. This will be the key to an analytic extension of the resolvent across the
real ω axis.

The initial-value problem, or the impulsively forced equation. Let the system be at rest for
t < 0, and let it be instantaneously forced to an initial value of u0 ∈ L2 at t = 0, and then allowed to oscillate
freely:

i∂tu = −µ∂xxu+ i u0(x)δ(t) . (1.44)

Taking the Fourier-Laplace transform yields the same equation as (1.38),

(µ∂xx + ω)U(x; ω) = i
u0(x)

2π
, (1.45)

or

U(x; ω) =
1

2πi
(L− ωI)−1u0 (x) . (1.46)

The solution u(x, t) is

u(x, t) =
1

2πi

∫
(L− ωI)−1u0(x)e−iωt dω =

i

2π

∫
u0(y)

∫
G(x− y, ω) e−iωt dω dy

=
1

4π
√
µ

∫
u0(y)

∫
1√
ω

exp
(
i
√

ω
µ |x− y|

)
e−iωt dω dy =

∫
u0(y)K(x− y, t) dy . (1.47)

The inner integral comes out to the integral kernel K for the unitary semigroup of the anti-self-adjoint
operator iµ∂xx. It describes how an initial condition concentrated at x=y spreads out under the evolution
of the free Schrödinger equation. Here, it is given as a superposition of free oscillations.

To find a closed-form expression of this integral kernel, we go through the Fourier transform in the
x-variable.

u0(x) =

∫
û0(k)eikx dk , (1.48)

û0(k) =
1

2π

∫
u0(x)e−ikx dx . (1.49)

Since ∂x goes over to multiplication by ik under the Fourier transform, one has, for f ∈ D(L) (recall
L = −µ∂xx),

(Lf)ˆ(k) = µk2f̂(k) (1.50)

and thus

Û(k, ω) =
1

2πi
[(L− ωI)−1u0 ]̂ (k) =

1

2πi

1

µk2 − ω
û0(k) . (1.51)

Returning to the t-variable, one has

û(k, t) =
−1

2πi

∫
û0(k)

ω − µk2
e−iωt dω , (1.52)
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Then, returning to the x-variable, one obtains

u(x, t) =
−1

2πi

∫∫
û0(k)

ω − µk2
ei(kx−ωt) dω dk = χ(0,∞)(t)

∫
û0(k)ei(kx−µk

2t) dk (residue calculus)

= χ(0,∞)(t)
1

2π

∫∫
u0(y) ei(k(x−y)−µk2t) dy dk (formula for û0)

= χ(0,∞)(t) lim
ε→0

1

2π

∫
u0(y)

∫
ei(k(x−y)−µk2t)−εk2 dk dy (dominated convergence and Fubini’s)

= χ(0,∞)(t)
1√

2πiµt

∫
u0(y) ei

(x−y)2
4µt dy . (contour integration) (1.53)

Thus we have computed K,

K(x− y, t) = χ(0,∞)(t)
1√

2πiµt
exp

(
i
(x− y)2

4µt

)
. (1.54)

Observe the similarity in form to the heat kernel. Because of the i in the exponential, it is actually a
completely different thing from the heat kernel.

Spectral resolution of the identity for −µ∂xx. This stuff may not be necessary for the subsequent
development of resonance, but it places it in the context of spectral theory for self-adjoint operators in
Hilbert space. Since ∂x is diagonalized (it becomes a multiplication operator) under the Fourier transform,
the associated spectral resolution of the identity {Ek}k∈R is obtained by projecting onto Fourier modes,
that is,

(Ekf )̂ = f̂χ(−∞,k), (1.55)

or, concretely, Ekf is a truncated integral of the Fourier modes of f :

(Ekf)(x) =

∫ k

−∞
f̂(`) ei`x d` . (1.56)

The family of operators Ek has the following properties:r Ek is an orthogonal projection;r Ekf → 0 as k → −∞;r Ekf → f as k →∞;r EkE` = Emin{k,`}, that is, {Ek} is an increasing family.

Thus, one has ∫
R
dEkf = lim

L→∞

∫ L

−L
dEkf = f . (1.57)

For an interval ∆ = (k1, k2), one has

E∆f := Ek2f − Ek1f =

∫
∆

dEkf =

∫ k2

k1

f̂(k) eik(·) dk . (1.58)

Using the fact that (f ′)̂ (k) = ikf̂(k) for f ∈ H1(R), one obtains an integral representation of f ′ in terms of
the Fourier resolution of the identity:

f ′ = lim
L→∞

∫ L

−L
ikf̂(k)eik(·)dk = lim

|P|→0
L→∞

∑
∆∈P

ik∆

∫
∆

f̂(k)eik(·)dk = lim
|P|→0
L→∞

∑
∆∈P

ik∆E∆f =

∫
R
ik dEkf . (1.59)

The latter integral is a Riemann-Stieljes integral with respect to the spectral family {Ek}. In a similar manner,
one obtains the standard spectral representation for L = −µ∂xx:

Lf = −µf ′′ =

∫
µk2dEkf =

∫ ∞
0

ω d
(
E−
√
ω/µ
− E√

ω/µ

)
f =

∫ ∞
0

ω dẼωf , (1.60)
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in which the spectral family {Ẽk} associated with L is defined by Ẽω = E−
√
ω/µ
− E√

ω/µ
, or

Ẽωf =

{
0 (ω < 0),(
f̂ χ

(−
√
ω/µ,
√
ω/µ)

)
ˆ (ω ≥ 0).

(1.61)

1.4 The wave equation on the line

The 1D wave equation is
∂ttu = c2 ∂xxu =: −Lu . (1.62)

The operator L = −c2 ∂xx with domain H2(R) ⊂ L2(R) is self-adjoint and positive. This equation is put
into first-order-in-time form by setting v = ∂tu,

∂t

[
u

v

]
=

[
0 I

−L 0

] [
u

v

]
= −iA

[
u

v

]
. (1.63)

The operator A is self-adjoint in the Hilbert space H1(R)⊕H0(R) (where H0 = L2), where its domain is

D(A) = H2(R)⊕H1(R) ⊂ H1(R)⊕H0(R) . (1.64)

This means that D(A) = D(A∗) and that, with respect to the inner product〈[
u1

v1

]
,

[
u2

v2

]〉
=

∫
R

(ū′1u
′
2 + v̄1v2) , (1.65)

one has, for all [u1 v1]T and [u2 v2]T in D(A),〈
A

[
u1

v1

]
,

[
u2

v2

]〉
=

〈[
u1

v1

]
, A

[
u2

v2

]〉
. (1.66)

[Exercise: Prove this.]

Response to harmonic forcing. The harmonically forced wave equation is

∂ttu = c2 ∂xxu+ f(x)e−iωt . (1.67)

In first-order form, it is

∂t

[
u

v

]
=

[
0 I

−L 0

] [
u

v

]
+

[
0

f(x) e−iωt

]
. (1.68)

Put [u(x, t), v(x, t)] = [u(x), v(x)]e−iωt to obtain (L− ω2)u = f , or the pair v(x) = −iω u(x) and(
c2∂xx + ω2

)
u = −f . (1.69)

With f ∈ L2, the solution is

u = −(c2∂xx + ω2)−1 f = (L− ω2I)−1 f . (1.70)

For Imω > 0, the resolvent of L = −c2∂xx at ω2 is given by (see 1.38–1.42)[
(L− ω2I)−1f

]
(x) =

i

2c ω

∫
f(y) exp

(
i
ω

c
|x− y|

)
dy . (1.71)

The initial-value problem. The Fourier transform converts A into an operator of matrix multiplication,

F
{
A

[
u

v

]}
(k) = F

{
i

[
0 I

c2∂xx 0

] [
u

v

]}
(k)

= i

[
0 I

−(ck)2 0

] [
û(k)

v̂(k)

]
=
[
ck P+(ck)− ck P−(ck)

] [ û(k)

v̂(k)

]
. (1.72)
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The projections P± are defined above in (1.24), with ck in place of ω0. The Fourier transform of the resolvent
of A is

F
{

(A− ωI)−1

[
u

v

]}
(k) =

[
1

ck − ω
P+(ck)− 1

ck + ω
P−(ck)

] [
û(k)

v̂(k)

]
. (1.73)

The solution of the initial-value problem

∂t

[
u

v

]
= −iA

[
u

v

]
,

[
u(0)

v(0)

]
=

[
u0

v0

]
, (1.74)

is then

u(x, t) =
1

2πi

∫
(A− ωI)−1

[
u0

v0

]
e−iωt dω =

1

2πi

∫∫
F
{

(A− ωI)−1

[
u0

v0

]}
(k) ei(kx−ωt) dk dω

=
1

2πi

∫∫ [
1

ck − ω
P+(ck)− 1

ck + ω
P−(ck)

] [
û0(k)

v̂0(k)

]
ei(kx−ωt) dω dk

= χ(0,∞)(t)

∫
R

[
P+(ck)

[
û0(k)

v̂0(k)

]
eik(x−ct) − P−(ck)

[
û0(k)

v̂0(k)

]
eik(x+ct)

]
dk

= χ(0,∞)(t)

∫ ∞
0

. . . dk . (1.75)

This expression represents the solution of the wave equation as a superposition of forward and backward
traveling oscillatory waves, all traveling at the same speed c. But what the solution looks like in terms of
the initial conditions is not at all transparent.

Let’s look at deriving the solution by computing the resolvent directly in the spatial domain. We must
solve

(A− ωI)

[
U

V

]
=

[
g

f

]
, (1.76)

which is equivalent to the system

c2U ′′ + ω2U = −(ωg + if) , (1.77)

V = −i(g + ωU) . (1.78)

The solution for U is

U(x, ω) =
−1

2ic

∫ (
g(y) +

if(y)

ω

)
ei
ω
c |x−y|dy (1.79)

Now taking the inverse F.L. transform of U(x, ω) with g = u0 and f = v0, one obtains

u(x, t) =
1

2πi

∫
(A− ωI)−1

[
u0

v0

]
e−iωt dω =

1

4πc

∫∫ (
u0(y) +

iv0(y)

ω

)
ei
ω
c (|x−y|−ct)dy dω

=
1

2
(u0(x− ct) + u0(x+ ct)) +

1

2c

∫ x+ct

x−ct
v0(y) dy . (1.80)

[Exercise: Prove the last equality].
Notice that the result is easily obtainable by d’Alembert’s method. But when a defect is placed on the

string, as in the Lamb model below, doing these integrals becomes a powerful “tool”.

2 The Lamb model

The Horace Lamb model ... [7].
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2.1 Physically motivated solution

...

2.2 The propagation operator

Define a Hilbert space H by
H := L2(R;C)⊕ C (2.81)

and an operator L therein by

D(L) =
{

[f1 f0]T ∈ H2(R∗)⊕ C : f1(0−) = f1(0+) = f0
}
⊂ H , (2.82)

L

[
f1

f0

]
=

 −c2D2f1

ω2
0 f

0 − β[Df1]0

 , (2.83)

in which (Df)(x) = f ′(x) is the derivative, c > 0, ω0 ∈ R, β > 0, and [Df ]0 is the jump of the derivative
of f , in the sense of boundary traces,

[g]a = g(a+ 0)− g(a− 0) . (2.84)

In H, define an inner product (topologically equivalent to the standard one), depending on β and c, by〈[
f1

f0

]
,

[
g1

g0

]〉
:= β

∫
f̄1 g1 + c2 f̄0g0 . (2.85)

Fact. The operator L is self-adjoint with respect to the inner product 〈·, ·〉. This means that D(L∗) = D(L)
and that, for all [f1, f0]T and [g1, g0]T in D(L),〈[

f1

f0

]
, L

[
g1

g0

]〉
=

〈
L

[
f1

f0

]
,

[
g1

g0

]〉
. (2.86)

[Exercise: Prove this.]

Computing the resolvent (L− ω2I)−1 of L. For each y 6= 0, one must solve

(L− ω2)

[
G(·, y;ω)

G(0, y;ω)

]
=

[
δ(x− y)

0

]
,

which means {
−c2Gxx(x, y;ω)− ω2G(x, y;ω) = δ(x− y) (x 6= 0)

−β [Gx(·, y;ω)]0 + (ω2
0 − ω2)G(0, y;ω) = 0 .

The solution has the form of a field that is produced by a source concentrated at y and then modified, or
scattered, by the resonator at x = 0,

G(x, y;ω) =
−1

2i c ω
ei
ω
c |x−y| + g(y;ω) ei

ω
c |x| , (2.87)

in which Im (ω) > 0, so that the field decays exponentially as |x| → ∞. One computes that

g(y;ω) =
ω2 − ω2

0

2i c ω (ω2 + 2iβ
c ω − ω

2
0)
ei
ω
c |y|. (2.88)

One must also solve for the field produced by a source on the oscillator itself,

(L− ω2)

[
G0(·;ω)

G0(0;ω)

]
=

[
0

1

]
,

11



and the solution is

G0(x;ω) =
−1

ω2 + 2iβ
c ω − ω

2
0

ei
ω
c |x| . (2.89)

Now, for an element [f1 f0]T ∈ H, the field U(x, ω), defined by

U(x, ω) =

∫
f1(y)G(x, y;ω) dy + f0G0(x;ω) (2.90)

satisfies

(L− ω2)

[
U(·, ω)

U(0, ω)

]
=

[
f1

f0

]
, (2.91)

and thus, for Imω > 0, one has the resolvent R(ω,L) of L at ω2

R(ω,L)

[
f1

f0

]
= (L− ω2)−1

[
f1

f0

]
=

[
U(·, ω)

U(0, ω)

]
. (2.92)

2.3 The wave-equation version

In Lamb’s original model, L is the propagator of a second-order equation in time,

d2

dt2

[
u1

u0

]
= −L

[
u1

u0

]
. (2.93)

To formulate the problem as a first-order equation, introduce the velocity [v1, v0]t = d[u1, u0]/dt. Writing
u = [u1, u0]t and v = [v1, v0]t, (2.93) becomes

d

dt

[
u

v

]
= −iA

[
u

v

]
, (2.94)

in which the operator A is given by

A := i

[
0 I

−L 0

]
. (2.95)

This operator is self-adjoint in Q(L)⊕H, where its domain is

D(A) = D(L)⊕Q(L) ⊂ Q(L)⊕H , (2.96)

where Q(L) is the form domain of L ... (need to elaborate).
The initial-value problem for (2.93), or equivalently (2.94), stipulates an initial condition

u0 = [u1
0, u

0
0]t, v0 = [v1

0 , v
0
0 ]t , (2.97)

and with the additional stipulation that the solution vanishes for t < 0, one obtains, as before,[
u(t)

v(t)

]
=

∫ [
U(ω)

V (ω)

]
e−iωt dω =

1

2πi

∫
(A− ωI)−1

[
u0

v0

]
e−iωt dω , (2.98)

in which the F.L. transform [U, V ] of [u, v] is analytic in the upper half ω-plane and the integral is a limit to
the real line from above.

Computing the resolvent (A− ωI)−1 of A. One has to solve

(A− ωI)

[
U

V

]
=

[
g

f

]
, (2.99)
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which is equivalent to the pair

(L− ω2)U = (ωg + if) , (2.100)

V = −i(g + ωU) . (2.101)

We already have computed the kernel for the resolvent in (L− ω2)−1 (2.87–2.90), and thus can compute U .
Now, to compute the solution [u(t), v(t)], one takes [g, f ] = [u0, v0]. Let us specialize to the initial

conditions
u0 = [0, 0]t, v0 = [0, v0

0 ]t , (2.102)

which corresponds to striking an initially motionless string/mass system with an impulsive force at t = 0
that is applied only to the mass. The solution is

u(x, t) =
v0

0

2π

∫
−1

ω2 + 2iβ
c ω − ω

2
0

exp
[
iωc (|x| − ct)

]
dω . (2.103)

The poles of the integrand are at

ω± = − iβ
c
±

√
ω2

0 −
(
β

c

)2

. (2.104)

The residue calculus gives

u(x, t) = χ{|x|−ct<0}(x, t) iv
0
0

[
exp

[
iω+

c (|x| − ct)
]

ω+ − ω−
+

exp
[
iω−c (|x| − ct)

]
ω− − ω+

]

=


0 if |x| − ct > 0 ,

−v00√
ω2

0−( βc )
2
e
β

c2
(|x|−ct) sin

(
1
c

√
ω2

0 −
(
β
c

)2

(|x| − ct)

)
if |x| − ct < 0 .

(2.105)

Picture ...

2.4 The Schrödinger version

Replace ω2
0 by E0 and c2 by µ. Now, ...

2.5 Scattering of harmonic waves

... stuff about scattering ...
In either the wave or the Schrödinger case, the harmonic problem is

u′′ + k2u = 0 ,

α[u′]0 +
(
k2 − k2

0

)
u(0) = 0 .

(2.106)

First, let’s consider how a harmonic wave in the string ei(kx−ct), traveling from left to right, is scattered
by the spring-mass attached to the line. One seeks a solution of (2.106) of the form

u(x) =

{
eikx + r(k)e−ikx for x < 0 ,

t(k)eikx for x > 0 .
(2.107)

The field r(k)e−ik(x+ct) is the reflected field, and t(k)eik(x−ct) is the transmitted field. The total field
u(x)e−ickt is called a scattering state or extended state. It can be parsed as sum of the incident field eik(x−ct)

and the scattered field,

usc(x) =

{
r(k)e−ikx for x < 0 ,

(t(k)− 1) eikx for x > 0 .
(2.108)
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Because of the symmetry of the Lamb model, the scattering coefficients r and t for an incident wave in the
string e−i(kx+ct) traveling from right to left are identical to those for a right-traveling incident field. Thus
one has the scattering state

u(x) =

{
t(k)e−ikx for x < 0 ,

e−ikx + r(k)eikx for x > 0 .
(2.109)

By linearly combining the scattering states (2.107) and (2.109), one obtains states of the form

u(x) =

{
j+e

ikx + u−e
−ikx for x < 0 ,

u+e
ikx + j−e

−ikx for x > 0 .
(2.110)

Because of the linearity of the Lamb system, one obtains[
u+

u−

]
=

[
t(k) r(k)

r(k) t(k)

] [
j+
j−

]
= S(k)

[
j+
j−

]
. (2.111)

The matrix S(k) is called the scattering matrix or the S-matrix. The coefficients j± are the complex
amplitudes of the incoming field, and the coefficients j± are the complex amplitudes of the outgoing field.
The incident field is considered to be the field uinc(x) = j+e

ikx+j−e
−ikx, and the scattered field is, as above,

defined through
u = uinc + usc for x ∈ R. (2.112)

Notice that the scattered field satisfies an outgoing condition, namely, that it is a multiple of eikx (a rightward
wave) for x > 0 and a multiple of e−ikx (a leftward wave) for x < 0. For real k, this condition is also called
the radiation condition.

S is unitary ... prove it by integration by parts.
The radiation/outgoing condition ...
The transmission coefficient and the limit as β → 0—transmission resonances.

-4 -2 0 2 4
0.0

0.2

0.4

0.6

0.8

1.0

3 An elaborated Lamb model

... anybody volunteer to write this up?

4 Resonance in a discrete model

We now consider an extended (ambient) medium that is discrete, and still one-dimensional, namely the
integer lattice. ...
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4.1 The second-difference operator in the 1D lattice

The group of integers Z acts as a translational symmetry group on the integer lattice. This induces a unitary
group of operators on `2(Z) isomorphic to Z:

g : u 7→ u(·+ g). (4.113)

This translation group is generated by the shift operator

S : u 7→ u(·+ 1) (4.114)

through composition and inversion of maps. For each unitary number eik (k ∈ R), this action has a (non-`2)
eigenfunction, or character

χk(n) = eikn (4.115)

with eigenvalue eik, that is,
Sχk = eikχk . (4.116)

These characters provide a concrete realization of the spectral resolution of `2 for the shift operator, which
we know as the Fourier transform F . To wit: each f ∈ `2(Z) can be written as an integral superposition of
characters; the complex amplitudes are given by

f̂(k) = (Ff) (k) :=
∑
g∈Z

f(g)e−ikg , (4.117)

and the function f is recovered by

f(n) =
(
F−1f̂

)
(n) :=

1

2π

∫ π

−π
f̂(k)eikndk . (4.118)

The Fourier transform is a unitary operator from `2(Z) to L2[−π, π], and it diagonalizes the shift operator;
that is, it converts S into a multiplication operator on L2[−π, π]:

(Sf )̂ (k) = eikf̂(k) . (4.119)

The centered second-difference operator D2 on `2(Z),

(D2f)(n) = f(n+ 1)− 2f(n) + f(n− 1) , (4.120)

commutes with the shift operator S; in fact, it is a function of S,

D2 = S − 2I + S−1 . (4.121)

Thus D2 is also diagonalized by the Fourier transform,

(D2f )̂ (k) =
(
eik − 2 + e−ik

)
f̂(k) = 2(cos k − 1)f̂(k) . (4.122)

Since 2(cos k − 1) is negative for k ∈ R, D2 is a negative operator. Set

L := −D2 = 2I −
(
S + S−1

)
, (4.123)

which is represented on L2[−π, π] by the operator of multiplication by the function

m̂(k) = 2 (1− cos k) = 4 sin2 k
2 . (4.124)

Since m̂ is bounded, so is L, and since m̂ is positive, so is L. The resolvent (L− λI)
−1

of L is represented by

multiplication by (m̂− λ)
−1

whenever it is a bounded operator from L2[−π, π] to itself. This occurs exactly
for those λ not in the range [0, 4] of m̂. Thus the spectrum of L is

σ(L) = [0, 4] . (4.125)
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Since χk is a (non-`2) eigenfunction of S, with eigenvalue eik, it is also an eigenfunction of L = 2I−S−S−1

with eigenvalue 2(1− cos k). Thus the spectrum of L consists of all λ for which there exists k ∈ R such that
χk satisfies

Lχk = λχk . (4.126)

The characters χk (k ∈ R) are called the extended states for L (or radiating states, generalized eigenfunctions,
propagating modes, oscillatory modes, etc.). For each λ ∈ (0, 4), there are two such states

χ±k(n) = e±ikn . (4.127)

The locus of the relation λ = 2(1−cos k) is called the “Fermi surface” for L. If one introduces time dynamics
through i∂tu(n, t) = Lu(n, t) or ∂ttu = −Lu, one has harmonic solutions of the form

χk(n)e−iωt = ei(kn−ωt) (4.128)

for each pair (k, ω) for which ω = 2(1 − cos k) (in the case i∂t) or ω2 = 2(1 − cos k) (in the case ∂tt). This
relation between frequency ω and wavenumber k is called the dispersion relation for the dynamical system.
It has period 2π in k.

The resolvent of L. To compute the kernel for the resolvent of L for λ 6∈ [0, 4], let k be the solution
of λ = 2(1 − cos k) such that Im k > 0. Then notice that the function eik|·| is exponentially decaying and
satisfies (

(L− λI)eik|·|
)

(n) = δ(n)
[
2(1− eik)− λ

]
, (4.129)

in which δ is the function such that δ(0) = 1 and δ(n) = 0 for all n 6= 0. Thus, the function u =
eik|·|/

[
2(1− eik)− λ

]
satisfies (L− λI)u = δ. By shifting the forcing to the lattice point m one obtains the

solution G(n,m; k) of (L− λI)u = δ(· −m),

G(n,m; k) =
eik|n−m|

2(1− eik)− λ
(
λ = 2(1− cos k)

)
. (4.130)

So G(n,m; k), as a function of n, is the λ-harmonic response to a unit forcing at the lattice point m. One
then obtains the solution to the forced problem

(L− λI)u = f (4.131)

for any forcing function f ∈ `2(Z) by writing f(n) =
∑
m∈Z f(m)δ(n−m) and using linear superposition:

u(n) = (L− λI)−1f(n) =
∑
m∈Z

G(n,m; k)f(m) . (4.132)

4.2 Analytic continuation of the resolvent into the lower half k-plane.

For Im k > 0, the resolvent of L is a bounded operator in `2; let us denote it by R0(k):

R0(k) : `2(Z)→ `2(Z) (Im k > 0) , (4.133)

R0(k)f(n) =
∑
m∈Z

eik|m−n|

2(1− eik)− λ
f(m) . (4.134)

Evidently, this action can be extended meromorphically to k ∈ C as an operator on a restricted domain but
having a larger range:

R0(k) : `20(Z)→ F(Z) (k ∈ C \ {2πZ}) , (4.135)

in which `20(Z) consists of all functions in `2(Z) that have bounded support and F(Z) = CZ is the vector
space of all complex-valued functions on Z.

R0 is unbounded in the `2 norm for Im k ≤ 0. The sense in which R0 is analytic is that of pointwise
evaluation, that is, (R0(k)f) (n) is analytic as a function of k off the pole set 2πZ. R0(k) is periodic with
period 2π.
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4.3 The discrete wave equation

Consider the dynamical system for an evolving function u(n, t) in `2(Z), starting from rest and impulsively
attaining an initial velocity of v0(n) at t = 0,

utt = −Lu+ v0(n)δ(t) , (4.136)

u(n, t) = 0 for t < 0 . (4.137)

The Fourier-Laplace transform U(n, ω) of u(n, t) satisfies

U =
1

2π
(L− ω2)−1v0 , (4.138)

or, using the kernel for the resolvent derived above,

U(n, ω) =
1

2π

∑
m∈Z

eik|n−m|

2(1− eik)− ω2
v0(m) . (4.139)

Let us concentrate the impulsive force at the 0th lattice site,

v0(n) = δ0n , (4.140)

so that

U(n, ω) =
1

2π

eik|n|

2(1− eik)− ω2
, (4.141)

and

u(n, t) =
1

2π

∫ ∞+0i

−∞+0i

ei(k|n|−ωt)

2(1− eik)− ω2
dω (Im k > 0 for Imω > 0) . (4.142)

By contour integration and carefully checking the behavior of the integrand in its complex domain C\ [−2, 2],
one obtains that u(n, t) = 0 for t < 0, in accordance with the assumption, and that, for t > 0,

u(n, t) =
1

2π

∫ 2+0i

−2+0i

+

∫ −2−0i

2−0i

ei(k|n|−ωt)

2(1− eik)− ω2
dω (4.143)

=
1

2π

∫ 2+0i

−2+0i

ei(k|n|−ωt)

2(1− eik)− ω2
dω +

1

2π

∫ −2+0i

2+0i

ei(−k|n|−ωt)

2(1− e−ik)− ω2
dω (4.144)

=
1

2π

∫ 2+0i

−2+0i

ei(k|n|−ωt)

2(1− eik)− ω2
dω − 1

2π

∫ 2+0i

−2+0i

ei(k|n|+ωt)

2(1− eik)− ω2
dω (4.145)

=
i

4π

∫ π

−π

ei(k|n|−ωt) cos k2
sin k

dk − i

4π

∫ π

−π

ei(k|n|+ωt) cos k2
sin k

dk . (4.146)

Now switch the branch cut to a pair of cuts along (−∞,−2] and [2,∞) so that the integrand is analytic
across the spectrum [−2, 2] in ω and so that the range of k values in the relation ω = 2 sin k

2 is the strip
(−π, π) × R. [Need picture.] By contour integration [Need details], one finds that the second integral in
(4.146) vanishes, so that

u(n, t) =
i

4π

∫ π

−π

ei(k|n|−ωt) cos k2
sin k

dk, (4.147)

which expresses the solution as an integral superposition of outward-going waves. This integral can be
written as a superposition of normal modes by contour integration and residue calculus (the only pole of the
denominator is at k = 0),

u(n, t) =
1

2
+

i

4π

∫
C

ei(k|n|−ωt) cos k2
sin k

dk , (4.148)

in which C is a contour starting at −π, running vertically downward to −π− ib, then horizontally to π− ib,
and then vertically upward to π [Need picture].
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5 Resonant opening of gaps in spectral bands by decoration

Example of graph operators from [11] ...
Specialize to L = −D2 from above and a simple decoration.

[1, 2, 3, 4, 5, 6, 7, 9, 10, 8, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21]
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