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Summary

Motivated by a problem of scattering theory, the authors solve by quadratures a vector Riemann—
Hilbert problem with the matrix coefficient of Chebotarev—Khrapkov type. The problem of
matrix factorization reduces to a scalar Riemann—Hilbert boundary-value problem on a two-
sheeted Riemann surface of genus 3 that is topologically equivalent to a sphere with three
handles. The conditions quenching an essential singularity of the solution at infinity lead
to the classical Jacobi inversion problem. It is shown that this problem is equivalent to an
algebraic equation of degree that coincides with the genus of the Riemann surface. A closed-
form solution of this nonlinear problem is found for genus 3. A normal matrix of factorization
and the canonical matrix are constructed in explicit form. It is proved that the vector Riemann—
Hilbert problem possesses zero partial indices and is, therefore, stable. The proposed technique
is illustrated by a problem of scattering of sound waves by a perforated sandwich panel.

1. Introduction

First, the boundary-value probled™(p) = G,®(p) + g,, p € I', on a Riemann surfack
cut alongr’,,, was stated by Prym in 1869. Since that time, many papers devoted to analysis of the
problem and its generalizations have been published. The best guide to constructive methods for
boundary-value problems in the theory of analytic functions on Riemann surfaces is the paper by
Zverovich (). This work provides an excellent survey of papers on that problem; see?dtsd)(
We mention works byf:ibrikova 6), Moiseyev and Popowsj, Nuller (7), Silvestrov 8,9), Antipov
and Moiseyev10), where boundary-value problems on hyperelliptic surfaces were used for solution
of problems of elasticity theory. Riemann surfaces have found effective application to analysis of
integrable nonlinear systems (sd4,(12)).

Another important application of the theory of boundary-value problems on Riemann surfaces
arises in matrix factorization. Moiseye®3) analysed the problem of splitting the Jones matrices
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(14) and, in particular, factorization of the Chebotarev—Khrapkov mat®x1(6)

(b FcdI)  ct)m)
G(t)_( c(n(t) b(t)—c(t)l(t))’ (1.1)

whereb(t), c(t) are arbitrary Hlder functions,l(t), m(t), n(t) are polynomials ofany degree.
Moiseyev (L3) showed that the problem of splitting the Chebotarev—Khrapkov matrix is reducible
to a homogeneous scalar Riemann—Hilbert boundary-value problem on a two-sheeted surface of the
algebraic functiorw? = f(s), where f(s) = 12(s) + m(s)n(s). If the Khrapkov restriction1)
degf(s) < 2 holds, then the genus of the corresponding surface is equal to 0. The surface is
equivalent to a sphere, and the matrix can be factorized either by the Khrapkov miahaut py
solution of the corresponding Riemann—Hilbert problem on a sphere. In this case, both approaches
are equivalent. If ded(s) > 2, then the Khrapkov method fails since it leads to an essential
singularity of the matrix factors at infinity. Daniel&®) suggested a scheme which eliminates the
exponential growth of the factors. To achieve, at worth, algebraic growth of the factors at infinity, it
is necessary and sufficient to find a solution to a systemesfuations witth = [(degf (s) — 1)/2]
([x] is the integer part of the real number This system is essentially nonlinear. Daniele managed
to find an exact solution of the system in terms of elliptic functions for the kbasel. In addition,
the solvability of the system for the general case was analysed.h Fer1, neither analytical
technique, nor numerical procedure was indicated.

On the contrary, the idea based on the reduction of matrix factorization to a scalar Riemann—
Hilbert boundary-value problem on a hyperelliptic surface of gdnus[(degf (s) — 1)/2], leads
to a nonlinear system that is different from Daniele’s system, and, in fact, is a classical problem,
namely, Jacobi’s inversion problem (Krazd8), Springer 19), Zverovich ()). Moiseyev and
Popov @) analysed a contact problem of bending of a semi-infinite plate bonded to an elastic
half-space. This problem reduces to a vector Riemann—Hilbert boundary-value problem with the
Chebotarev—Khrapkov matrix. The degree of the corresponding polyndnialis equal to 6.
Because of the symmetry, the authors managed to eliminate the essential singularity of the solution
by inversion of the corresponding abelian integral. Motivated by a two-dimensional problem of
a composite plane with a crack crossing the interface, Antipov and Moisdgg\afalysed cases
when two copies of the complex plane are glued (i) along two finite cuts and (ii) along four semi-

infinite straight segments. The positions of the branch points of the funcEt%Qs) dictate the
choice of the Riemann surface that is of genus 1 in both cases. Because the condition eliminating
the essential singularity at infinity can be satisfied by standard inversion of an abelian integral, there
was o need to state the Jacobi inversion problem. The unknown parameters were found in terms of
elliptic functions.

If the genus of the surface is greater than 1 and there is no special symmetry, the problem is
unlikely to be solved in terms of elliptic functions. The main steps of the algorithm in the case
h> lare

(i) to construct canonicah- and B-cross-sections of the Riemann surféee
(ii) to choose Weierstrass'’s kernel (an analogue of the Cauchy kernel of the sRifacel write
down a meromorphic solution to a Riemann—Hilbert boundary-value problem which possesses
h arbitrary points sayq; (j =1, 2, ..., h), of the surfaceR, and 41 integers;
(iii) to achieve an algebraic behaviour of the solution at infinity by setting the pgjrasid the 2
integers to provide a solution to Jacobi’s inversion problem;
(iv) to compute theA- and B-periods of the abelian differentials of the first kind (Hensel and
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Landsberg 20), Schiffer and Spencer2{), Springer (9)) and normalize the basis of the
abelian integrals;

(v) to construct a Rieman@-function (Krazer 18), Farkas and Kra2?)) and find its zeros (which,
in fact, give rise to a solution to Jacobi’s inversion problem) by solving an algebraic equation
of degreeh.

Thus, this algorithm provides an exact solution of the Riemann—Hilbert problem on the Riemann
surface and, therefore, allows to factorize the original Chebotarev—Khrapkov matrix practically
for any degf (s). In addition, it is possible to construct a normal matrix of factorization and the
canonical matrix (Vekua2B), Gakhov @4), Muskhelishvili 5)). The canonical matrix defines
the partial indices of the corresponding vector Riemann—Hilbert problem. Moisg§eedmputed
the partial indices for the case when the genus of the surface is equal to 1 or 2. In the later case
it was assumed that the total index of the vector problem was even. The knowledge of the partial
indices is crucial for the solvability theory of the vector Riemann—Hilbert boundary-value problem
and for constructing an approximate factorization. It is known (Litvinchuk and Spitkfo@'k)b
that, in general, the partial indices are unstable. This means that in any neighbourhood of the
matrix coefficientG(t) there exists a matri6, (t) such that the corresponding factorization factors
X (t), X, (t) do not approachX*(t), X~ (t) ase — O, whereX*(t) are the exact factors for
the original matrixG(t). The stability of the partial indices is necessary and sufficient for the
stability of the solution of the Riemann—Hilbert problem and substantiation of the convergence of
an approximate solution to the exact one. It turns out (Gohberg and K&irMekua @3)) that the
partial indices are stable if and only if the difference between the largest index and the smallest one
is less than or equal to 1. Otherwise they are unstable. However, in general, there is no way to find
the partial indices a priori without constructing exact factorization. Approximate factors do not give
information about the indices.

To the best of the authors’ knowledge, the first paper on approximate matrix factorization, is the
work by Mandzavidze R9). Babeshko 30, 31) proposed to use a rational approximation for the
matrix factorization arising in dynamic problems of linear elasticity. Abrahadd} [fresented
a constructive approximate approach for factorizing the Chebotarev—Khrapkov matrix with the
polynomial f (s) of any degree. The method hinges on @agproximation and has been verified
by comparing with Daniele’s exact results. The Riemann—Hilbert problem in the case considered
by Daniele (7) possesses zero partial indices and is therefore stable. Abrahams reported numerical
results demonstrating a good convergence of an approximate solution to Daniele’s exact solution.

Motivation of the present paper is a problem of scattering by a semi-infinite perforated sandwich
panel which is reducible to a vector Riemann—Hilbert problem with the matrix coefficient of
Chebotarev—Khrapkov type (Leppingtod3], Jones 84)). Using an asymptotic approach, Jones
constructed an approximate solution of the problem for a small parametanich accounts for
the perforations. However, this parameter does not admit only small values and can also be large.
The corresponding polynomidl(s) of the vector Riemann—Hilbert problem is of degree eight and,
therefore, the problem of matrix factorization is equivalent to a scalar boundary-value problem on a
hyperelliptic surface of genus 3 that is topologically equivalent to a sphere with three handles.

The main objectives of the present paper are

(i) to develop a method of exact factorization of the Chebotarev—Khrapkov matrix for the case
degf(s) = 8§;
(ii) to solve Jacobi’s inversion problem by quadratures for a hyperelliptic surface of genus 3;
(iii) to find a closed-form solution to the problem of scattering of sound waves by a sandwich panel.
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The paper is organized as follows. In section 2, the problem of factorization of the Chebotarev—
Khrapkov matrix with ded (s) = 8 is dated. A Riemann surfacR of genus 3 of the algebraic
functionw? = f(s) is constructed. The vector Riemann—Hilbert problem on the real axis reduces
to a scalar problem on the hyperelliptic surfae

Section 3 depicts canonical cross-sections of the surface, derives a meromorphic solution of the
scalar Riemann—Hilbert problem and states Jacobi’s inversion problem for defining threegpoints
on the surface and six integers, m, (v = 1, 2, 3).

In section 4.1, a classical algorithm for Jacobi’s inversion problem for a surface of gesus
summarized, and it is shown how to express the pajntéj = 1, 2, ..., h) in terms of the zeros
of Riemann’s®-function. The next section describes Zverovich’s method that replaces the Jacobi
problem by a system of nonlinear algebraic equations for the affixes of the zeros. We present an
approach reducing this system to a single algebraic equation of degrekemploy this device for
the caseh = 2 andh = 3. Implementation of the algorithm fdr = 4 is reported in Appendix
A. In addition, an alternative direct numerical procedure for identification of the zeros is proposed
in Appendix B. This technique is based on the argument principle for an analytic function on a
Riemann surface.

We construct a solution to Jacobi’s inversion problem for the two-sheeted surface defined by the
algebraic functions? = s8 — 2M;s* + M, (M2 > M2), in section 5. First, the\- and B-periods
of the abelian integrals are evaluated (section 5.1). Next (section 5.2), we normalize the basis of the
abelian integrals and verify the symmetry of the mat$iand the positive definiteness of the matrix
Im(B), whereB is the matrix of theB-periods of the canonical basis of the abelian differentials. In
section 5.3, Jacobi’s inversion problem reduces to a cubic equation with the coefficients evaluated
in section 5.4. Explicit definition of the integens, m, (v = 1, 2, 3) completes the solution of the
Jacobi problem.

In section 6, the original vector Riemann—Hilbert problem is solved by quadratures.

A normal matrix of factorization and the canonical matrix are obtained in section 7. It is found
that both partial indices of the vector Riemann—Hilbert problem arising in the scattering problem of
section 8 are equal to 0. This ensures their stability.

As an illustration of the proposed technique, the problem of scattering of sound waves by a
perforated sandwich panel is solved by quadratures in section 8. Concluding remarks are given in
the final section.

2. Vector Riemann—Hilbert problem

Let L be the real axi® andC*, C~ be the upper (Irts) > 0) and lower (Ings) < 0) half-planes,
respectively. Consider the following Riemann—Hilbert problem.

Given a 2 x 2 matrix G(t) and a vector g(t) find two vector functions ®*(s), ®(s), analytic in
the domains C*, C~, respectively, vanishing at infinity and satisfying the boundary condition

GH®T )+ P (1) =gt), tel. (2.1)
Thematrix G(t) and the vector g(t) satisfy the Holder condition on every finite segment of L and at

infinity detG(t) = 1+ O(t~%) and g(t) = O(t~%) (§ > 0). The matrix G(t) is also non-singular
onlL.
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Let the matrixG(t) have the Chebotarev—Khrapkov structuts, (6):

B 1 0 () mt)
G(t)_b(t)<0 1>+c(t)<n(t) —I(t))’ (2.2)

whereb(t), c(t) are Hlder functions] (t), m(t), n(t) are polynomials. Following Khrapko\i§)
we introduce the notation for the polynomiit) = 12(t)+m(t)n(t) and the characteristic functions
(eigenvalues of the matri®(t)):

A(t) = bt) +ct) F2(t),  Ia(t) = bt) — () FE(t). (2.3)
Note that then deB(t) = A1(t)A2(t). Our main assumptions are
(i) the polynomialf (t) is of eighth degree:
f)y=t8—2Mit* + My, MieR, Mp> M2 (2.4)

(ii) the increment of the arguments of the characteristic functiqiis andi»(t) whent traverses
the contoutL in the positive direction, equals zero:

ind_ A1(t) = ind_ A2(t) = 0. (2.5)

REMARK  The degrees of the polynomidlg), m(t), n(t) are supposed to be not higher than 4.
Among the above restrictions (i), (ii) there is only one essential condition thaf dgeg= 8. The
others have been assumed for simplicity and can be always overcome.

To fix a branch of the functiorf %(s), first, we find the eight zeros of the polynomigds) which
are

si=p0€%, j=12...,8
m-—1 m
Oom—1 = 6o + 7w, Oom= —0p+ ET[, m=12 3,4,
1 1 M
po=MJ, 6= 2 arccos—i. (2.6)
M?
2

The pointssj (j = 1, 2,...) are the branch points of the functic (s). Cut thes-plane along
the arcs joining the branch poings with s, s3 with s4, S5 with sg ands; with sg (Fig. 1). Put

f%(O) > 0, that isf%(O) = /Ma. The chosen branch is positive everywhere on the real and
imaginary axes:
f3(t) >0, f2(it)>0 (—oo <t < 00).

The key step of solution of the vector problem (2.1) is splitting the m&i(i into a product of
two matrices

Gt) =XTMOX" ML teR, (2.7)

which are analytically continuable into the upper and lower half-planes respectively, with the
exception maybe of a finite number of poles and points at which the mafpicess)] 1, X~ (s)
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Fig. 1 Two copies of the cut complex planes generating the surface

have poles. To do this we reduce the matrix factorization problem (2.1) to a scalar Riemann—Hilbert
problem on a Riemann surface.
Let R be the hyperelliptic surface given by the algebraic equation

w? = f(s). (2.8)

The surfacer is formed by gluing two copie€1 andC; of the extended complex plaieu {oo}
cut along the system of the aress,, s34, 5%, S7Sg- The positive sides of the cuts @&y are glued
with the negative sides of the corresponding cuts on the secondGhemid the negative banks of
the cuts inC; are glued with the positive sides of the corresponding cuts on the 8heki such a
way, we obtain a two-sheeted Riemann surface of genus 3. Now the funet®rdefined by (2.8)
is single-valued on the surfag&

1
w=]1?®, st (2.9)
—f2(s), seCy,

where f %(s) is the branch chosen earlier. Denote the point of the suffRaeath affix s on C1 by

the pair(s, f%(s)) and that on the sheét, by the pair(s, —f %(s)). Define a contouil” on the
surfaceR by I' = L3 U Ly, whereL; = R ¢ C1 andL; = R C Cj. The factorization of the
matrix G(t)

GHt) =XTOX" MO =X~ XTt), tel, (2.10)
in terms of a solution of the Riemann—Hilbert problem on the Riemann surface is givaa,ig)
X)) =F@wY(s w)+ F(s —w)Y(s, —w),

. Y, w) Y(s, —w)

1
XN = Esw TFe —w)

(2.11)
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where

1 1
Y(s, w) = > (' + EQ(S)> )

(10 () m(s)
I = (0 1)’ Q= <n(s) —I(s)>’ (2.12)
F(s, w) is a function on the surfacR to be determined. Derivation of formulae (2.11) is rather
straightforward. Indeed, by using the identities

Q%(s) = f(9)l,

Y2(s,w) =Y(s,w), Y, wY(s —w)=0 (2.13)

from relations (2.11) we get

1
XFOX(t 1=—(
WO =:{Fwe "Faee
1 (F+<t,s> CFte -9
Z\F e F Lo

+ +(t. —
F (t,§)+F (t, S))l

>Q(t), tel, (2.14)

where¢ = f %(t). Next, by comparing the last relation with formula (2.2) we obtain that in order
for the boundary condition (2.10) to hold, we have to put

+ +(t—
F (t,é)iF (t, -%)

Fto) = Ft g — PO +EOIEDBO —gc®), tel. (2.15)
By introducing the new function
At E) =bt) +&ct), (,&el, &=w), (2.16)

defined on the contour of the Riemann surfac®, we realize that the conditions (2.15) are
equivalent to the following Riemann—Hilbert problem on the surfdce

FT(t, &) =At,&)F(t, &), (t,&) el. (2.17)

This problem is the subject of the next section.

3. Homogeneous Riemann—Hilbert boundary-value problem on a hyper elliptic surface of
genus 3

In this section we aim to analyse the boundary-value problem (2.17) on the sRrfaee reduce it
to Jacobi’s inversion problem. Consider the following problem.

Find a function F(s, w) meromorphic on R \ T" which admits an H-continuous extension to I
(F*(t, &) are Holder functions on I') and satisfies the boundary condition

Fr(6,8) =1t HF (8, & erl. .1
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Fig. 2 Canonical cross-sectiosg, ap, ag

The last condition on the contodit of the Riemann surface can be rewritten on the contours
L4, Lo of the sheet€1, C, as follows:

ET@M) = MMET (), tely,

ET (@) =2M)E (1), tels (3.2)
with
=+t — /
F:t(t, %.) — ~ (t)s E =+ f(t), te Lls (33)

EE), &=-—JF@®), teln,.

Let us find a canonical function of the problem (3.1) that is a solution of the problem bounded at
infinity and admitting a finite number of poles and zeros.

First, we construct a system of canonical cross-sections of the suRacey, ap, az and
b1, bo, bs. The curvesay, ap, az are smooth closed contours which coincide with the banks of the
cutss1®, 34, S5, respectively. They lie on both shedts, Co. These cross-sectiors, ap, as
are indicated on Fig. 2. The positive direction is chosen in such a way that the firstCghisain
the left when a point traverses the contour.

The cross-sectiob lies on both sheet§1, C, and consists of the arsss; C Cq ands;s, C Co.
The starting point is; € C1. Then a point traverses the part of contdmyr ¢ C1 to the point
s; € C1, passes to the second sh@etand returns frons; € Cs to the terminal poing, € C, that
coincides with the starting poist € C;. In Fig. 3, the part ob; on C; is indicated by the solid
line and the rest, lying oft',, is shown as the broken line.
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Fig. 3 Canonical cross-sectioig, by, b3

The cross-sectionls; and bz are illustrated in Fig. 3 and defined as follows. The contour
consists of the are,s; of the first sheeC; and the arcs;s4 of the second sheél,. The positive
direction is from the poings € C; to the points; € C1 and then froms; € Cy back to the point
s4 € Co. The last cross-sectioz, is aunion of the arcsgs; ¢ C1 andsy;ss € Cu. A point
traverses the contour in the positive direction with the starting meiatC1 and the terminal point
ss € Co. The contouraj (j = 1,2, 3) intersects the curvb; from left to the right and there is
one point of intersection only. We note that the cross-sectigradby do not intersect iff # k.
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ap

Fig. 4 A sphere with three handles and the canonical cross-sections

Topologically, the hyperelliptic surfade is equivalent to a sphere with three handles. The loop-cuts
aj andbj (j = 1, 2, 3) are shown schematically in Fig. 4.

The second step of the algorithm of the solution of a Riemann—Hilbert problem on Riemann
surfaces is a choice of an analogue of the Cauchy kernel on the surface that is one of Weierstrass’s
kernels. We shall use the following kerné){(

dw=-—°_— (3.4)

with w = (—1)I=1f(s), s e Cj andé = (—1)I"1f2(t), te L; c Cj (j = 1,2). If apoint

(s, w) is fixed then the differentiad W decays fort, £) — (oo, 00j) as%dt/t. Here and later we
denote by(oco, oo01) and (oo, coz) the infinite points of the first and the second shégtsC,. On

the other hand, if a poirt, &) is fixed, then the kerne&lW has a pole of the third order at infinity.
Therefore we choose the solution to the homogeneous Riemann—Hilbert problem (3.1) in the form
which enables us to remove the pole of the solution at infirdity (

F(s, w) = exple(s,w)}, (s, w)eR, (3.5)
S w) = — / log (t, £)dW 23: Y dw dw (3.6)
oS, w) = — og s + / +m'f +n-¢ . .
2ri Jr i=1 8j,v)) ) a; : bj

The exponent of the first integral,

©o(S, w) = i/ logA(t, £)dW, 3.7
2 r
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satisfies the boundary condition of the problem (3.1)
expleg (1, §)) = A(t, &) explyg (t, §)),  (t,§) €T, (3.8)

However, sincepo(s, w) grows at infinity ass®, the function expyo(s, w)} has an essential
singularity at infinity. To remove it, we need the second term in the formula (3.6):

3 (o}, wj)
prsw) =y /( dw+mjf dW+n17§) dw |, (3.9)
aj i

j=1L7Gj.vj)

wheremj, nj are unknown integers. The integral

(oj,wj)
/ dw (j =1,2,3) (3.10)
(8j,vj)
is taken over any contoyyj with starting point(éj, vj) and terminal pointoj, wj). The contours
y1, Y2 andys lie on the surfacé&k and do not intersect the cross-sectiansay, ag andb1, by, bs.
The points(§j, vj) € C1 (j = 1,2, 3) are any fixed points such th&dj, vj) ¢ L1 andv; =
f%(sj-). The points(oj, wj), (wj = f%(oj) orwj = —f%(oj) (j = 1,2,3)) may lie on both
sheets of the surfacR. The points(oj, wj) (j = 1,2, 3) will be specified later. The integral
(3.10) satisfies the Sokhotski—Plemelj formulae on the surfa@nd is therefore discontinuous
through the contouy; with a jump of 2ri. In aneighbourhood of the end points;, vj) and
(oj, wj) (j = 1,2, 3) the integral (3.10) possesses the logarithmic singularities

(oj,wj) o . .
f dW = log(s — o) + O(D), (s, w) — (oj, wj), (3.11)
8j.v)) —log(s —§j) + O(D), (s, w) — (5j, vj).
At infinity, the integral (3.10) has a pole of the third order. The other integrals
fl dw and dw (3.12)
a; bj
are analytic on the surfac® cut along the contoursj,b; (j = 1,2, 3), respectively and

discontinuous through the corresponding cont@jtd; with jumps of 2ri. It is needless to say
that both integrals (3.12) have poles of the third order at infinity.

Because the numbersj, nj are integers, the functiof (s, w) is continuous through all the
contoursyj, aj, bj (j = 1,2, 3). Atthe points(§j, vj) (j = 1, 2, 3) this function has simple poles.
(We note that all the point&s;, vj) are distinct.) The pointgoj, wj) are zeros of the function
F (s, w). Their order depends on whether the poifts w1), (o2, w2) and(os, w3) are different or
some of them coincide. It is always possible by choosing the initial p@nt)j) (j = 1,2, 3) to
awid the multiplicity of the zerogoj, wj). In general, the functiop(s, w) grows at infinity as®.
To define the conditions of boundedness of the funci(s) w) at infinity, we rewrite formula (3.6)
as follows:

(s w) = if log{A1()A (t)}— PRI s (ORI
¢S, _4JTI gir1 2 Arri L gkz(t) f%(t)(t_s)

(oj,wj) dt
— i i ——— |, (313
+Z Z[/ +w(5)(/<aj,y,-) +m‘7£j+n1}€,j)g(t)(t—s)} (3.13)
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and use the identity

1 1t ot t3
= R — 3.14
t—s s g2 s3+s3(t—s) ( )

The analysis of the behaviour of the functig(s, w) at infinity shows that

1. 1 Ap(t) tv—1dt
y = -3 A I NN
o(s. w) 22[% /L %950 1i

v=1

" RS Ak +0(D), . (3.15
Z(~/(‘3jsvj) mj ii nj ﬁj) 5D :| py (1), s— oo. (3.15)

=1

In order for the functionp(s, w) to be bounded at infinity, it is necessary and sufficient that the
following three conditions be satisfied:

(oj,wj)
Z(/ Y dwv+mj?§ dwv+njy§ dwu>=d§, v=123, (3.16)

=1 \Y©j.v)) bj

where L

1 A(t) tV—

do=—— |og£l— ,

27 JL Ao(t) f2(t)

tv—1dt
do, = : (3.17)

&(t)

The differentialdw;, dw>, dws form the basis of abelian differentials of the first kind on the surface
R. The integrals

tv~Ldt tv~Ldt
Aj = —— and B, = (3.18)
a £ 0)
are theA-periods and th&-periods of the abelian integrals
(s,w) t\)fldt
wy = w, (S, w) = / , v=123. (3.19)
%0 &M
By using the notation (3.17) to (3.19) we rewrite the equations (3.16) as follows:
3
(w,,(aj,wj)+mjA,,j+nijj):d;‘, v=123, (3.20)
j=1

where

dy =d) + w, (81, v1) + ®, (82, v2) + @, (83, v3). (3.21)

The nonlinear system (3.20) with respect to the poiats wj) € R and the integermj, nj (j =
1, 2, 3) is Jacobi’s inversion probleni (18).
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4. Jacobi’sinversion problem
4.1 Solution in terms of the zeros of Riemann’s ®-function

This section will summarize the algorithrh)that reduces Jacobi’s inversion problem to the finding
of the zeros of Riemann®-function. LetR be a hyperelliptic Riemann surface of getudefined
by the algebraic function

w?=(S—S)(S— %) ... (S— Sn2), (4.1)
where 1, S, ..., Snt2 are distinct fixed complex numbers. The canonical cross-sections
aj,b; (j = 1,2,...,h) are chosen in the same manner as in section 3. Assume that
{u1(q), u2(q), ..., un(q)} is the normalized basis of the abelian integrals of the first kind. Here

and latelg = (s, w) € R. The basiqdu,(q)} (v =1, 2,..., h) has the followingA- and B-periods:
Aj= i@ =bi Bi=¢ dup Gr=12..h, (4.2)
8] i

wherep = (t,§) € R andg§j, is Kronecker's symbol. The matri8 = (B,j) is symmetric and
Im(B) is positive definite.
Consider the classical Jacobi inversion problem on the suRace

Given h constants di, do, ..., dn find h points g1, gz, ..., gn on the surface R and 2h integers
my, My, ..., My andng, Ny, ..., Ny such that

[uy@)) +njByjl+m,=d,, v=12... h (4.3)
1

h
J=
Hereq; = (oj, wj), wj = w(oj). It wasproved (L, 18) that the solution of this problem always

exists. First, the problem (4.3) can be rewritten in the following form more convenient for further
analysis:

h
> lu@) +njBil+m, =e, -k, v=12..h (4.4)
j=1

wheree, = d, + k, andk, are Riemann’s constants of the surfdce

h
va - Z

f ur (pduj (p), (4.5)
=1, J;é‘) 8

ky = —

Nl

+

Nl

andu; (p) is the limit value of the functiom, (q) on the cross-sectiom from the side of the second
sheetCs:

uy(p)=_lim u,(q). (4.6)
g—p,qeCsz



620 Y. A. ANTIPOV AND V. V. SILVESTROV

Next, we take the Rieman®-function

00 h h h
= > explai YD Bl +27i Y L[uy(@) — ] 4.7
11,12, .. lp=—00 n=1lv=1 v=1

and show that its zeros provide the solution of the inversion problem. Since

h h
D) IM@Bu)ll, (4.8)
n=1lv=1

is a positive definite form, the series (4.7) converges exponentially everywhé&teaod therefore
F(q) is an entire function on the surfaée formed from the original surfacR by cutting it along
the cutsay, ap, .. ., an. Moreover, this function is single-valued @), is discontinuous through the
cutsay, ap, ..., ap, and satisfies the boundary condition

FH(p) =3 (p)explniBjj — 2rie) + 2riuf (p)}, peaj, j=12...,h (4.9)
Here

uj+(p) = lim uj@ (4.10)
gq—p.qeCy

is the limit value of the functiom; (q) on the cross-sectioa; from the side of the sheét;. To
establish the boundary condition (4.9) it is necessary to use the property of quasi-periodicity of the
®-function:

O(u1 + By, U2 + Bay, ..., Uq + Bpy) = exp(—mi By, — 27iu,)® (U, Uz, ..., Uy).  (4.11)

Note that the functior§(p) is continuous through the cross-sectidns by, ..., b, since it is
periodic with the unit period in each of its arguments:

®(Ug,...,Uu,+1,...,Uup) = O, ...,Upy,...,Up). (4.12)

The increment of the argument of the function i uT(p)} along the contoua; is 27. This

is because the basfs,} is assumed to be normalized. Therefore the argument principle applied
for the cut surfacék enables us to find the number of zeros of the funcog) on the surface

R. The ®-functionF(q) has exactlyh zeros (the zeros are counted according to the multiplicity).
Letqs, Oz, ..., On be the zeros of the functiogi(q) on R. It might turn out that the functio§(q)

is identically equal to zero. The simple criterion whether the Rien@sfanction is trivial or not

was proposed by Zverovichl]. Choose any + 1 distinct points ork and observe whether or not

all theh + 1 values of the functiorf(q) vanish. It is clear that in the first cag€q) = 0. If the
®-function is trivial we analysé + 1 values of its partial derivative of the first order with respect
tou;:

00
ouj

(up—eq,Uux—e,...,up—€y), j=212,...,h (4.13)
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Each non-trivial function (4.13) has oR preciselyh zeros providing the solution of Jacobi's
inversion problem. In the case of the problem (3.20) on the suffacé genush = 3, there is
another possibility. The coefficient corresponding to the problem (3.20) depend on the choice
of the initial points(8j, vj), j = 1,2, 3. Therefore by changing the position of these points, it
is possible to get a new-function to be non-trivial and to avoid analysing the derivatives of the
®-function.

Next, consider the integral

(P
h=5= u,(p) dp, 4.14
21 JoRr P S(p) P (4-14)
whereR is the surfac& cut along the union of the cross-secti@asay, .. ., ay, andb1, by, ..., by

and R is the boundary of the surfade. On one hand, by the logarithmic residue theorem, the
integral 7, can be expressed through the zeros of the fungiap, namely

h
7= u.a@p. (4.15)
=1

On the other hand, the above integral can be written as a sum of the integrals over the contours
af, aj, b;r, by (i =12....h). Allthe contoursa}r, aj, bj+, b are closed curves. The loops

ajr, b;’ are the left sides of the cross-sectiagsbj, and the other curves, b; are the right sides

of aj, bj, respectively. We mention that’ c C; anda; C Cz (j = 1,2,...,h). Then we

take into account that the abelian integrals of the first kinp) are multiple-valued. Using the
boundary condition (4.9) the following expression for the integral (4.14) is found:

h
Ty ==Y njBy—m,+e —k,. (4.16)
j=1

By comparing (4.15) and (4.16) we arrive at the system of nonlinear equations that is Jacobi’s
inversion problem (4.4). This means that to solve the problem (4.3), we have to find the zeros
of the Riemannm®-function §(q). The final step of the algorithm is to find the integens and

n, (v=12,...,h)fromthe system (4.4) which is a linear algebraic system with respect to these
integers. Separate the real and imaginary parts of the left- and right-hand-sides of the equations to
obtain the system for the integenrs:

h
niimB,j) =Im@,), v=12..,h (4.17)
j=1

j
where

h
=8 —ky _Zuv(qj)- (4.18)
j=1

We mention that the matrix IiB) = (Im{B,;}) (v, ] = 1,2,...,h) is symmetric and positive
definite. The other integers, are defined explicitly:

h
m, = Re(n,) — > njRe(B,j). (4.19)
j=1
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Thus, the key point in the solution of Jacobi’s inversion problem is defining the zeros of the Riemann
®-function. To find them one can use an analytical technique proposed by Zvertyidhig also
possible to apply a direct numerical method based on the argument principle (see Appendix B).

4.2 Zverovich's procedure

This method reduces the problem of identification of the zeros to a systeralgébraic equations.
Let us describe the procedure. First, consider the auxiliary integral

1
S f t"dlog(p) (4.20)
2mi TR
over the boundary of the surfad@ cut along the cross-sections, ay, .. ., ay. By the logarithmic
residue theorem
h VR vt
:Z s"§ () res Sg(Q), (4.21)

q ooe<C1 §(@  g=o00eCz F(Q)

whereq = (s,w) € R, w = w(s), andqj = (oj, wj) are the zeros of the-functionF(q). On
the other hand, the integrd] can be represented as a sum of the integrals aﬁ?e&nda (j =

o
I, Zm. (f +h ) “dlog(p). (4.22)

The directions of the qupafr andaj‘ are opposite (the positive directions on the contours are
chosen so that the surfageis on the left when a point traverses the curves). Therefore

- +
T =5 Zyi [dlogF* (p) —dlogF~(p)l. (4.23)
By using the boundary condition (4.9) we get
1 & h
Li=55 Zyﬁ t'dlxi Bjj — 2riej + 2riuf (p)] = Z% tduf(p).  (4.24)
mi — Jy 2 I,

Taking into account formula (4.21) we obtain the following nonlinear system of algebraic equations
for the affixesoy, o2, ..., on Of the pointsgy, O, . . ., gn on the Riemann surface:

h
Zgj":gv, v=12...,h, (4.25)
=1

whereg, are determined by quadratures

h VR VR
- Zyg t”du}“(p) ~ res > @ _ res > § (Q). (4.26)
— qj

g=00eC1 §(Q)  g=cccCz §(Q)
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The solution of the system (4.25) provides the affixes of the paipts= (o1, w1),qp =

(o2, w2),...,0n = (oh, wp) on the Riemann surfacR. Each pointq, (v = 1,2,...,h) may
lie on either sheet of the surfage
The final step of the algorithm is to find the numbers(v = 1, 2,...,h) from the linear

algebraic system system (4.17); the numbmgsare given explicitly by (4.19). Those sets of the
pointsqj (j =1, 2,...) are a genuine solution for which all the numberg n;j are integers.

4.3 Equivalence of Jacobi’s inversion problemto an algebraic equation

In sections 4.1 and 4.2 it was revealed that the classical approach for Jacobi’s inversion problem
leads, first, to identification of the zeros of Riemané*$unction and secondly, to solution of

the system oh algebraic equations (4.25). Let us show that the latter system is equivalent to
an algebraic equation of degrbe

1. Obviously, ifh = 2, then the system (4.25) reduces to the quadratic equation
202 — 2¢10 + s% — & =0.

2. Forh = 3, we notice that from the first and second equations in (4.25) the unknewarsd
o3 can be expressed in termsafonly:

02 = z (81 —o1+ v A(Ul)) , o03= : (51 —o1— v/ A(Gl)) , (4.27)

2 2
where\/A(s) is any fixed branch of the function 2 (s) and
A(0) = =302 + 2610 — 62 + 2¢5. (4.28)

By substituting formulae (4.27) into the last equation (4.25), we arrive at the cubic equation with
respect tary:

603 — 65102 + 3(8% — &2)0 — si’ + 3g162 — 2¢3 = 0. (4.29)
For each rootol(")(v = 1,2, 3) of this equation, there is a definite par.”, 03(”)) with az("), U?EU)
determined by formulae (4.27). However, due to the symmetry of the system (4.25), all the triples

0", 05", 0"”) (v = 1,2, 3) coincide. Thus, the three roots of the cubic equation (4.29) provide

the solution of the system (4.25); = 01(1)’ o9 = 01(2), o3 = 01(3).
3. In general, applying the ®te theorem yields an algebraic equation of degreRealization
of this idea for the caske = 4 isreported in Appendix A.

5. Solution of Jacobi’'s inversion problem for the hyperelliptic surface of genus 3 by
quadratures

The main aim of this section is to construct an efficient solution of Jacobi’s inversion problem (3.20)
that the Riemann—Hilbert boundary-value problem (3.1) was reduced to.
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5.1 Determination of the A- and B-periods of the abelian integrals

To apply the procedure of the previous section, we have to evaluatd-thed B-periods of the

abelian integrals defined in (3.19) and normalize the hagis», w3. Let us start with the integrals
tv—dt

a &)

wherea; is the closed contour on the shégt. It is convenient to transform the expression of the

branch of the functiog(t) = f %(t) that was chosen in section 2. Let us wtite pg exp(if). Then
it is easy to verify that

v, =123, (5.1)

vj =

0 —0j ; . .
t—sj= ZiPOSinTJe'(0+91)/2 (j=1,2...,8), (5.2)

wheresj = ppexp(ifdj) are branch points of the functioﬁ%(s). By direct multiplication, the
function&(t) becomes

1
8 2 _
M) = []‘[(t - sp} = 16p5€” "£0(6), (5.3)

j=1

where

5 g_p, 2
g0 = (] ]sin > : (5.4)
j=1

We note that due to the symmetry
g O1t0a++08)/2 _ 1 (5.5)

The branch of the new functigyp(9) must be consistent with the chosen braa@h of the function

f%(t). Since&(s) ~ s* ass — oo, we fix the branch of the functiogo(9) so thatég(0) > O.
Formula (5.3) enables us to write down the limit values of the fundighnon the contous; (j =
1,2, 3): _

E(t) = £16p5e” |50(0)| as [t|=po+0, teaUag,

£(t) = F16ip5e?’ 150(0)] as |t|=po+0, teap. (5.6)

Substituting the last relations into the definition (5.1) of kperiods gives

-4 L la_0y J(v—2)i6
po - [T €
Ag=——— dd (v=1273). (5.7)
’ 8 Joo |£0(0)]
Because of the symmetry of the location of the pomtss, ..., ss, we obtain for the otherA-

periods

A= ivAul, Av3 = (_1)UAvl (V =1, 27 3) (58)
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Here we have used the quasi-periodicity of the functig@):

1
8 1 2
. 57+ 0 — 0
So( T+ 9) (l_[ sin 27]> = —£&0(0). (5.9)
j=1 2
Next, compute th@-periods of the abelian integrals
tv—1dt
B, = (j,v=123). 5.10
=% o (5-10)

Let us start withB,; (v = 1, 2, 3). It is worthwhile to recall the definition of the closed contdur
It consists of the arcs;S3, 354, . . ., S5S7 on the first shee€; and the arcsyss, %S5, ..., 3 on
the second sheét, (Fig. 3). Therefore, from (5.10)

6 v—1 v—1
tV—dt tV—dt
Bl=§/ Ef (5.11)
' T3 /sscty § 30} sorsgrcCy £ (1)

The new functiong ™ (t) and ~ (t) are the limit values of the functiom(s) defined by

T = lim  w(s) = f2(t) ,
s—teby,seCy [t|=po+0
M= lim  wE) =—f() (5.12)
S—)tEbl,SE(CZ t|=po—0

The continuity of the functiorf 2 (t) through the arcsys3, 4S5 andsssy guarantees the discontinuity
of the functionw(s) through these portions of the cross-sectignOn the contrary, because of the
condition (5.6), the functionv(s) is continuous through the arsss; andsssg. On the arcs of
the discontinuity, by using the alternative representation (5.3) of the fun&tionwe hae the
following formulae for the limit values of the functian(s):

EE(t) = T1603e?150(0)], t € ($253) U (S6%7),

£5(t) = £16p3e?|50(0)], t € (uS5) U (SeS)- (5.13)

The direction of the arcssg, ..., SsS7 on C is opposite to that for the arsssg, ..., S35 on Co.
By cancelling the integrals over the aresy, ss5 on the first shee€; andssss, s4s3 on Co, in
virtue of (5.11), (5.13), (5.3) and (5.4), we get

i~ —4 1r 160 T+60 37460\ gv—2i6
Byp = ——2 / _/ + do (v=1,273). (5.14)
10(6)]

8 %n—@o 7 —6g gn—Qo

By the property of quasi-periodicity (5.9), the last integral is transformed into

i V=4 .6y A(v—2)i0
109 /0 e
B,1=— dd (v=1,273). 5.15

! 8 J 4 5000 (5:15)
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To compute the other period,» and B,3, we notice that the closed contobp consists of the
arcsySs, 555, S6S7 on C1 and the arcsyss, s, 483 on C,. The contourbs consists of the arcs
sS7 C C1 andsysg € Co. Similarly to computing the periodB,; (v = 1, 2, 3), we get

ip5—4 T+6g %71+90 e(V_Z)i9
Byy = — —/ +/ df = —[(=1)" + (=i)"1By1,
8 T —0o §7'[—00 |$0('9)|

2

. _ 3 H
|,05 4 r3m+6p e(v—2)ie

8 Jira 15000

B3 = dd = —(=i)'Byy (v=1,2 3). (5.16)

Thus, the desirable matrices of tihe and B-periods of the abelian integrafs = (A,j), B =
(Byj) (v, j = 1,2, 3) have been found:

A1 A1 —An
A=|Axn —.A21 A |,
Az1 —iAs1 —Aa

Bin (1+i)Bix B
B=|Bx 0 By |. (5.17)
Bs1 (1—-i)B31 —iBa1
We carried out the calculation of the periods1 and B,1 (v = 1,2, 3) and they are given by
formulae (5.7) and (5.15).

5.2 Normalization of the basis of the abelian integrals

The canonical basis for the abelian integrals of the first kind is formed by
Uy = (11 + 2w + 3wz, v =123, (5.18)

where the coefficientg,; (r = 1, 2, 3) provide the solution of the three separate systems of linear
algebraic equations

3
D Ay =8jr (j.r=1,23) (5.19)
v=1

(8jr is Kronecker's symbol). By substituting the elements of the matrixom (5.17) into (5.19)
and solving the last systems with respeciute we find the matrix of transformation from the old
non-normalized basi®1, w», w3 to the new canonical basig, uy, us:

u=Muw, (5.20)

where
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1—i 1 1+i
M1l K12 413 4A17  2A1  4Az
i i
M=1uxn m22 pas|=|-— 0 = 5.21
2711 2As1 (21)
31 M32 K33 14 1 1-i

4A11 2A;1  4Ag
The definition of theA-periods and the representation (5.18) reveal the links betweek tegiods
of the old and the new basis of the abelian integrals:
Avj :f du, = f (uv1dwr + py2dw2 + py3dws)
a a
= wv1A1j + 2A2j + 3Agj, (5.22)

thatis, A, (v, j = 1,2, 3) are the elements of the product of the matriteandA: A = MA. It
is easy to verify thatd,j = §,j. Similarly, the B-periods of the basis, uz, us

By =¢. du, (5.23)
bj
are the elements of the mattiB. By direct calculation we find that
1—i 1+i 1+i 1-i
1 TH1+H2+?H3 Iy + I3 TH1+H2+TH3
B= —iIly +iM3 A1-DMy+ @A +i)I3 My + 113 ,
? Y im-1n iy +ill L ym+
> 2 5 s 1 3 > 2 5 13
(5.24)
where
B
m=-"2 1v=12a3. (5.25)
Avl

Since the matrix of th&-periods corresponds to the canonical basis it must, by the theory of abelian
integrals, first, be symmetric and second, satisfy the condition th@)ris a positive definite
matrix. At first glance, the matri8 is not symmetric. Let us prove that, in fact, the matrix (5.24)
enjoys the property thd,; = Bj, . To do this we notice that the following identities

As1=ip5A11, Bsi= piBu (5.26)

hold. Indeed, formula (5.7) yields

1r—6y L6
1 /2 evdo (5.27)

Az = ——— .
T T80y, 1E0O)]

By changing the variables = %n — 0,4 and using the relation

Eo(% - 9)‘ = |86y (5.28)
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we obtain another expression for the same integgal

i %n—@o e—i9d9
Agi= —— .
8p0 Jog 1§0(0)]

(5.29)

Comparing formula (5.29) with (5.7) shows that the iden#iy, = ipgAll is valid. The second
relation in (5.26) is proved similarly. Identities (5.26) enable us to simplify the matrix oBthe

periods
Br1t+B2 B B2
B=i B1 21 p1 , (5.30)
B2 B1 B+ B2
where
o B iBa 531

2 A P27 T 2Am

Itis now seen that the matri® is symmetric. To verify the second property of the maBipnamely,

the positive definiteness of the matrix (B), we analyse the coefficientg; and 8. Because of
the quasi-periodicity (5.28) of the functidf(f) we can reduce the expressions for the periods
A11, A21, B11 andBy4 to the form

i—1 )
A= ——a1, Au=-——,
4p3 4p§
a3 o
Bii=—-—3, Ba=-—, (5.32)
4pg 4p4
whereas, a2, o3 anday are positive and are defined by the integrals
1 37 cosd + sind i de
a1 = ¢ ——————df, az= —_
2 Jo, 1§0(6)] 0 160(0)]
% cosg % de
as =/ do, oy =/ . (5.33)
o 1500l o [50(®)]

By the definition (5.31) and from formulae (5.32) and (5.33) the coefficienesd g, are positive:

o3 7

= —, = —. 5.34
2a1 2 20[2 ( )

B1

Consider the quadratic form

3 3
Z Z BujxoXj = i [B1(X1 + X2) + B2(x1 + X3)2 + Br(x2 + X3)2], (5.35)
v=1j=1

wherexy, X2, X3 are real. Sincgy > 0, 82 > 0 the form Im(B) is positive definite and the real part
of the matrixB vanishes: R@3) = 0.
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Identities (5.26) allow us to simplify the expressions for the elements of the canonical basis

" 1—i n w3 . w2
1=— o1+ = —
4A11 pg 2A21

1+i w3 w2
Uz = — _ = < . 5.36
3 Y <w1 pc2)> + T (5.36)

5.3 Reduction of the inversion problem (3.20)to a cubic equation

We are now able to state the Jacobi inversion problem (3.20) in terms of the canonical basis
u1, Uz, uz. To do this we rewrite the original problem (3.20) as follows:

[w(o,—,w,—)+mjAj+nij]=d*, (5.37)
1

3
=

whereAj, Bj (j = 1,2, 3) andd* are the vector-columns
Agj B1j di
Aj=1A). Bj=[|B2]. d* = d; . (5.38)

Agj Bgj d}

Multiply the vector equation (5.37) from the left by the transformation maiixThen

3
Z[u(aj,wj)—f-mjAj—i-nij]:d, (5.39)

j=1

whereB;j is the jth column of the matrix3 defined in (5.30),4; is the jth column of the unit
matrix andd is the vector-column with the elements

1—i d d
di=—(di + 3|+ =2,
4A11<1 p2) " 2An

1 d%
d=—[-idi+=2),
2 2A11< 1 pg)

1+i d; d;
Or = — dF— 3 ) 4+ =2, 5.40
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Therefore the Jacobi inversion problem in the canonical basis is given by

3
Y luv(oj, wi) +njByjl+m, =d,, v=123 (5.41)

=1

that is a particular case = 3 of the problem (4.3) considered in section 4. In that section, this
problem was reduced to the algebraic system (4.25) which in the case under consideration becomes

01+ 02 + 03 = €3,

012+022+U32=£2,

of +03 + 0§ = e3 (5.42)

with the coefficients1, €2, 3 defined from (4.26) foh = 3:

3 3
ev=2 D WirAurj—Ra—R2 (v=123), (5.43)
j:ll‘:l
where
sv !

Rur 5@ r=12). (5.44)

= res
gq=00eCy S(Q)
We have already established (section 4.3) that the system (5.42) is equivalent to the cubic equation

03— g10% + %(8% —£2)0 — %(8% — 35162 + 2¢3) = 0. (5.45)

5.4 Evaluation of the coefficients of the cubic equation

Thus, to find the pointgo1, w1), (02, w), (03, w3) or, equivalently, to solve the cubic equation
(5.45) it is necessary to know the coefficieniseo andez. Formula (5.43) gives; (j = 1,2, 3)

in terms ofA,r j and the residueR,,. Obviously, the first and second sets of the coefficiehip
and Az; are the corresponding-periods of the basi®1, vz, wsz defined in (5.7), (5.8). The other
coefficients can be expressed through the basic vector-cohym = 1, 2, 3):

vr—4 lp g, ev+r—2)ig
Av+r,1 = _,00 /2 4(19,
8 Jo 1§0(6)]
Au+r,2 =it Av+r,l, Av+l’,3 = (_1)v+r Av+r,1 (v+r =45, 6)- (5-46)

To ewvaluate the residue®,;, R,2, we find the coefficientc_1 in the Laurent expansion of
the meromorphic functios’§ (q)[F(9)]~1 in a neighbourhood of the infinite points on both
sheetsCq, Co: (00, 001) and (oo, 002). First, by substituting (5.30) into (4.7), we rewrite the
representation for the Riema@nfunctionF(q) in the form

Fa= Y Y > expl-wlpils+12%+ Bal1+13)? + frll2 +12)2]:

l1=—00lp=—00l3=—00
+27i[l1(u1(q) —er) +12(uz(q) — e2) + I13(u3(q) — €3)1}, (5.47)

wheree, = d, + k,, the coefficientsl, and Riemann’s constanits are defined by (5.40) and (4.5),
respectively.
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5.4.1 Riemann’s constants. To simplify the expressions for Riemann’s constakisof the
surfaceR, we evduate the integral in (4.5). Based on the relation

u, (t) — uj(t) =y§ du,(p), tea; (v =123 (5.48)
bj

and allowing for the valugs,; of the above integral, we may now rewrite the Riemann constants as
follows:

3

kn=—3+3By— Y. [i_ut(t)dumt)wuj _de<t>]- (5.49)
J

j=1 j#v 8

Clearly, the last integral in (5.49) is equal to 1. Recall thatt) is the limit value of the function
u,(g) on both banks of the slij_15j C C;. Lett = t* be a point of the upper side of the cut
(Is| = po + 0) onC1. Then

Sj— t
ur(tt) = / e + / du, (t) = U7 (S2j_1) + Gy 1), (5.50)
S8 Sj-1

Whereuj(st_l) is the value of the first integral along a smooth curve on the first sheet which
does not intersect the canonical cross-sections of the sudgae) gives the value of the second
integral along the upper asgj_1t of the slit. Ift =t~ lies on the lower bank of the cut, then since
du,(z7) = —du,(z 1), T € j_1%j, we get

j-1 t
ul (o) =f duv(S)+f du, (t7) = U (2j-1) — Tj (t). (5.51)
S8 j-1
By substituting (5.50) and (5.51) into (5.49) we transform the first integral in (5.49) as follows:
2j
7{ uj(t)du,-(t)zf [(u (825 -1) — Tuj (1) duj (t7) — (U (S2-1) + Guj (D) duj )]
a; Sj-1
(5.52)

The differentialsdu;j have opposite signs on the upper and lower banks of the dutgit™*) =
—duj(t7),t € j_15j. Therefore

i
7§ ul®dujt) = 2u (s25-1) duj(t™) = U:_(Sijl)f duj(t) = ul(j-1), (5.53)
] Sj-1 aj

and formula (5.49) becomes

ko= -3+

NI

3
B,y — Z [Uj(SZj—l) + ij] . (5-54)
=L j#v

NI

It is possible to evaluate; (sp;—1) explicitly. For u; (s1) we get

S1 S8
uf(sy) = / du,(s) = —/ du,(s). (5.55)
s s
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The last integral is taken over the inner side of thesgsg on C1. Then the line of integration does
not intersect the canonical cross-sections and

S 4 S 3 S5 s7 S
uj(sl) = - </ +/ +/ )duv(s‘) — (f +f +/ )duu(s) —/ du,(s7),
s1 S3 S5 S s S s7

(5.56)

where the first sum is equal l%q and the sum of the second group of integrals is equ%lﬁgl.
Since the differentialdu, are linearly expressible through the differentials
doy (1) =
wjt) = ——
0

and at infinity(co, co1) € C;1 they behave asl —>dt, it follows that

(% +?§ +?§ > u,(s) + du,(s) = 0. (5.58)
a ap ag S78g

The sum of the first group of integrals is 1. Therefore

t, j=123 (5.57)

%8 1
/ duy(sH)=-=, v=123. (5.59)
Sy 2
The explicit expression follows from use of the formulae (5.56) and (5.59):
uf(s) =3By, v=123. (5.60)
Similarly,
Ui (ss) = —3Bu2+ 381, Uf(s) =—3Bis+3(1—83), v=123 (5.61)

wheres,; is Kronecker's symbol. Now, formulae (5.54), (5.60), (5.61) and (5.30) enable us to
obtain Riemann’s constants of the surface

ki=-3 k=-1 k=-

Nl

. (5.62)

5.4.2 Residues R,;. Let us derive the behaviour of the abelian integralgq) at infinity and
evaluate the residues (5.44).
Fix a pointg, € C; (r = 1, 2) on the ray arg = —6p such thatq.| > po and use the asymptotic

expansion of the functiorf -3 (s) at infinity

1 M; 3MZ-

_1 M2 —16
S S

Then we represent the abelian integral as follows:

% s'—1ds q 1 M; 3M2—M,
, =_1r—1/ / (2 M MM L Vs, .
oy () = (1) [qo Te thylarer—om + ds|, qeC

(5.64)
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Hereqp = (sg, 0). The contour of integratiogpq consists of pointss, w) of the segment

(o, O] = {S: po < IS| < p«, @GS = =60} (o« = |0)),

and any curvey,q such thats| > p,. This choice guarantees that the path of integration does
not cross the cross-sectioas andb, (v = 1,2, 3). The second integral in (5.64) can be found

explicitly and we arrive at the asymptotic expansion of the abelian integrals) at infinity
v—4

wy (@) = (=11 |:I., +2 ﬂsv—8 + 0(5”—12)} , s—>o0 (qeC), (5.65)

v—4 v-—8
where
I, = & / P tdp
po \/(p“ — P (p* — pgedifo)

St M8 BMF - Mgyt
v—4 v—38 2(v —12)

FO(®) (1v=123). (5.66)

Hereq, = p«e7'%, p, > po.
To compute the residues (5.44) we shall need expansions at infinity not only for the abelian
integrals but also for their first derivative:

3M2 — Mj

Wl (@) = (=11 [5”‘5 + Mys" 9 + 5

s34 O(s"‘”)} , s—>o00, qecC;.
(5.67)
By substituting (5.65) into (5.47) and introducing the notation

(1,12, 13) = w[B1(11 +12)% + B2(l1 +13)% + B1(l2 +13)?]
3 3
—2mi Y1, (Z(_l)f—lm,- lj — ev> (5.68)
v=1 j=1

we get the asymptotic expansion for the functiya)

Fa= Y. Y. D expi—x(ilzla)

l1=—00lp=—00l3=—00

3. 3 gi—4 _
+2ri (=D Y Y |:Mvj a2t 0(517)]},

v=1 j=1
q—>o00€eC, r=12. (5.69)

The positive definiteness of the quadratic form(By is important for the series representation of

the ®-function §(q) to be convergent. In fact, the convergence is extremely rapid and just the
first few terms yield an accuracy of dozens of significant figures. For our purposes, we need an
asymptotic expansion for the functiorid(q) that follows from (5.69)

1 1 a 2 1
= oty oty o<_>, q— 0o eCy, (5.70)
S(@ aor ags a5 s?

s3
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where

o0 o (0.¢]
ag = Z Z Z g (nl2l3)

l1=—00 lp=—00l3=—00

o0 o0 00
ay = (D 2ni Y Y Y pealulaly,

l1=—00lp=—00l3=—00

o o0 o
Ay =i Z Z Z [(—1)r_112 — 2nit§] glulaly)  p — 1 2

li=—00lp=—00l3=—00

Here we have introduced the following notation:

3
T = Z Hojly.
v=1
Next, we study the behaviour of the derivative of théunctionF’ (q)

Fay=2ri Y > > [lauh(@) + l2u5(9) + l3u5@)]

l1=—00lp=—00Il3=—00

X exp{—n[ﬂl(ll +12)% 4 Ba(l1 4 13)% + B1(12 4 13)?]

3
+27i > 1, [u, (@) —ev]}

v=1

(5.71)

(5.72)

(5.73)

at infinity. By the same procedure that was applied for the functi@(d), we establish that the

derivative’ (q) enjoys the expansion

by by b 1
5’(q)=§+§+§+o<$), q— c0eCy,

where
bor = a1, bz =2ay,

o0 o0 o0
ba = 27i Z Z Z{(—l)r_l‘fl—ZJTi‘Ezl’g

l1=—00lp=—00l3=—00
—mita[ro + (—1) 27i t??]}ef}" (ul2ld) —p =1 2,
Thus, we find
vy b: b b, 1
SS(Q):SVI: 2r i 3r —I—i—l—O( )]

3@ RS s

1 a ag + a2 1
x| —+ er +a()r23r721r+o(_3) , q— o0 eC.
Qor ag S 8y S S

(5.74)

(5.75)

(5.76)
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Now it is straightforward to obtain the desired expressions for the residues of the function in the
left-hand side in (5.76) at the infinite points on both sheets of the suRace

bor

R — T >

1r aor

Ry = _@ . b2r23-1r

a A
2

Ry — _bi _ aerbBr B (8or @ ‘galr)bZr . (5.77)

aor gy Ay

Thus, the coefficients;, 2, g3 in the cubic equation (5.45) are determined explicitly by formulae
(5.43), (5.7), (5.8), (5.46) and (5.77).

5.5 Explicit expressions for the integersn,, and m,

Now we proceed to the solution of the cubic equation (5.45). Clearly, the list of possible solutions
possesses eight triples of the poigis gy, gz. For each set of the points, the numbagsandm,
(v =1, 2, 3) are easily found from the linear system (4.17) and formulae (4.19):

Ny — (B1+ 2B2)n7 — Pang + (B1 — 2B2)ng

4182
Ny — —pBn] + (B1+ 282)n5 — Bing
4p182 ’
e = (B1 — 2B2)n7 — Bins + (B1+ 2B2)n3
4p182 ’
m, =Ren,), v=123. (5.78)

Here we have assumed the following notation:
3
o =Im@my), 0y =d, — > uy(j). (5.79)
j=1

and used the property of the mat#k Re(3,j) = 0 (v, j = 1, 2, 3). The solution of the system
(4.17) exists and is unique because the determinant of the syaf%ﬁg,ds dways positive.

Formulae (5.78) provide an efficient test to verify whether thelgetn,, m, (v = 1,2,3)}is a
genuine solution of Jacobi’s problem or a mock one.

Indeed, the parameters,, m,(v = 1, 2, 3) are integers, so must be the right-hand sides of
formulae (5.78). This completes the solution of the Jacobi inversion problem (3.20) for the
hyperelliptic surface of genus 3. The problem is solved by quadratures.

6. Solution of the vector Riemann—Hilbert problem

The purpose of this section is to derive an exact solution of the homogeneous Riemann—Hilbert
problem (2.1). By substituting the factorization (2.10) of the matig) into the boundary
condition (2.1) we obtain

XTH)®H(t) = X" ()P (1) + X (Hgt), tel. (6.1)
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The vectorX—(t)g(t) satisfies the Hider condition on the contour and therefore admits the
representation

X~ (Mgt)=THt)—¥ (1), tel (6.2)

through the limit values of the vector

_ 1 [ XTmgW)
‘I’(S)_zni/L . (6.3)

Now the boundary condition becomes
XTO®TH) - Tt)=-X"O® 1) —¥ (1), tel, (6.4)

and it is ready for applying the generalized Liouville’s theorem. It has been pointed out that the
function F (s, w) has three simple pold8;j, vj) (j = 1, 2, 3) on the first sheet’; and three simple
zerosgj (j = 1,2, 3) on the surfacek. This means that in the vicinity of the points;, vj) the
solution of the Riemann—Hilbert problem (3.1) behaves as follows:

F(s,w)~Dj(s—48)"t, s—36j, (ssw)eCy, Dj=const
Fs.—w)=0(), s—8, (s—-weCs j=123. (6.5)

Assume that the zem lies on the first sheef;. Then

1
F(s,w) ~ Ej(s—0oj}), m =01), s-— oj,

Ej=const (ssw)eCy, [j=123. (6.6)

The situation changes symmetricallyif € Cy:

1
F(s, w)

=010, F(s,—w)~Ej(s—o0j), s—o, GSweC, =123 (6.7)

Let us derive the behaviour of the vectots (s)®*(s) at the pointss = 8j. Since wi(s) =
12(s) + m(s)n(s), the matrixY (s, w) is singular and rank (s, w) = 1. Therefore by formulae
(2.11), (2.12), (6.5)

£ ()DE(S) ~ —2L Y (51 vi)BE(G) = — 2L
XE(5)®E(s) S_an(aj,vJ)é (3’)_2(3—51-)

x[<1+'“”)qaf(&,-ﬁwﬁ(aj)}<1>, s— 5 cCE, (6.8)

vj vj gj

wherecbf(s), d)f(s) are the components of the vector-functiah$ (s), respectivelyyp i = w(j)
and
nes;j)

= 6.9
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Atinfinity, the matrices<*(s) are bounded and the vectdbs (s), ¥*(s) vanish. By the continuity
principle and the generalized Liouville’s theorem the vectors

ET(s) = XT(9)®T(s) —¥T(s), seCT,

ET(S)=-X" ()P (S)—P (s), seC” (6.10)

constitute the analytical continuation of one another and they are a rational vector

E+(s)—E_(s)—23: Ci (1) seC (6.11)
o _J.ZlS—Sj ¢i )’ ’ .

whereCy, C,, C3 are arbitrary constants. Hence by inverting the matrigegs), X (s) in (6.10),
the solution of the problem (2.1) becomes

+ + i e 1 +
B+ (s) = X (9] [\Il (S”Zs_aj (;,-)]’ secC,

®(s) = —[X (9" |:\II (s)+2 8 (;)} seC. (6.12)
= 0j

Let us analyse the solution at the poiats: §; (r = 1, 2, 3). First, we note that

Y(6j, —vj)

X g~ —L 17
®) F(@j, —vj)

+0(s—38j), s—3 (j=1223). (6.13)
It is straightforward to check that
Y6 —u) (1) 1 —v—1|(5,) —1m(3,);, B (o) (6.14)
PG T2 —v_ln(8,)+[1+v_ 1(8)1¢j 0 '

and, therefore, the points= 81, 8», 83 are removable singularities of the vector-functid$(s).
As far as the points = o1, 02, 03 are concerned, they are simple poles of the fundtfess, w)] 1
or of the function F (s, —w)]~* on the shee€;. Hence

_ Y (or, wr)
X)) ~ ——=, =1,273), 6.15
XTOI~ ey S70 € ) (6.15)
wherew, = f%(ar) for a pointg; € Cy, andwy = — f%(o,-) for a pointg; € C;. Ingeneral, we

would have six conditions eliminating the singularities of the vector

(s [\Il(s)JrZ - (;)} (6.16)
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at the pointss = 01, S = 02, S = 03. Howevwer, because rank(s, w) = 1, we have only three
conditions:

I (or) 3 C m(or) 3 Gci \ B
(1+ o )(wl(ar)+zar_aj)+ ” (‘I’Z(Gr)-i-zj =0, r=123

(6.17)

whereWw(s), Wz (s) are the components of the vect®ks). Thus, in order for the vectap (s) to be
analytic at the points = oy (r = 1, 2, 3) itis necessary and sufficient that the const&ntsC,, C3
provide the solution of the system of linear algebraic equations

3
Y xiCi=h (=123, (6.18)
=1

where

Oy _8] Wr

I (or)

Wr

m(or)

he = — (1+ ) witor) — ™0 g o). (6.19)

r
The definition of the constants;, C,, C3 completes the solution of the vector Riemann—Hilbert
boundary-value problem (2.1).

7. Canonical factorization and the partial indices
7.1 Déefinition of the canonical matrix

The factorization matrixX(s) we have constructed, possesses three poles at the pidss 5s.

At the three pointsry, o2, o3 the determinant of the matrix vanishes and at infinity the matrix is
bounded. The matriX(s) allows us to apply the generalized Liouville theorem and to find the
exact solution of the non-homogeneous Riemann—Hilbert problem (2.1). However, it does not give
an answer to the fundamental questions in matrix factorization theory.

(i) What are the partial indices of the problem (2.1)?
(i) Are the partial indices stable or not?

The main purpose of this section is to construct the canonical matrix and determine the partial
indices. We reproduce the basic definitio#3 {0 25) that we need to proceed further.

LetTj(s) = ij’(s)(s — )%, s— s (j =1,...,n), whereY?(s) is bounded and does not
vanish at the point = sp. Then the real number; is called the order of the function; (s) at the
points = sg. The order of the vectoll' (S) = (Y1(S), ..., Tn(9) " isa = min{a, ..., an}.

Assume further thal’j(s) = ij“(s)s—“i, s—>o0(j=1...,n), whereT]?*(s) is bounded at
infinity and T]?k(oo) # 0. Then, by the Gakhov definitior24), the orderx of the vectorY (s) at
infinity is defined in the same manner:= min{ay, ..., an}.

A matrix Z(s) is said to be imormal form at a points = sy with respect to the columns if the
order of the determinant at this point is equal to the sum of the orders of the columns.
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A matrix
1© e
Xo®={ .. . (7.1)
x0© ()
consisting ofn solutionsy ) (s) = (Xij)(s), T (j = 1,...,n) of the homogeneous
boundary-value problem
Tt +DMP® (1) =0, tel, (7.2)

which are analytic everywhere in a finite complex plane and admitting poles at infinity, is called the
canonical matrix if it satisfies the following two properties:

(i) detXp(s) # 0 everywhere in a finite complex plane;
(ii) the matrixXg(s) is in normal form at infinity.

If the matrixXo(s) possesses the property (i) only, then it is callegbiamal matrix.

The orders of the columns of the canonical makix< x2 < --- < kp are called thepartial
indices of the boundary-value problem. The partial indices play an essential part in the theory of
solvability of a vector boundary-value problem and in the theory of approximate methods for vector
Riemann—Hilbert problems. Indeed, the partial indices can be unstable. By the stability criterion
for the partial indicesZ3, 28), the system of the partial indicag < --- < «y is stable if and
only if kn — k1 < 1. If the partial indices do not satisfy the above criterion, th&r) (n any
neighbourhood of the matri(t) there exists a matri®, (t) with the partial indicegxy, ..., k,}
which are different front1, . .., xn. Therefore the factorization factoxs' (t), X (t) for the matrix
D, (t) cannot be too close to the matric)é‘g (1), Xy (1), respectively. This circumstance may not
guarantee the convergence of an approximate solution to the exact one.

Let us outline the procedure of construction of the canonical matrix for the problem (2.1). First,
we write down the homogeneous problem in the form (7.2), that is,

Tt +[GMH)] @ (1) =0, tel. (7.3)

Thus, the original matrix we have to work with, [X(s)]~! given by (2.11). The matrix(s)

has poles at the points = §1,s = 82,5 = §3 and deX(s) = 0 ass = 01,S = 02,S = o3.
Therefore, its counterpafX (s)]~! possesses three poles and the determinant has three zeros:
del[X(Bj)]‘1 =0 (j = 1, 2,3). To obtain the canonical matrix, we apply the Gakhov algorithm
(24). The procedure consists of three steps. At the first stage, we reduce the asik ! to
normal form at the point§; (j = 1, 2, 3) and remove the zeros of its determinant. The second
step of the algorithm eliminates the polgsand transforms the matrpX (s)] ! into normal form

at these points. Finally, we check whether the new matrix is in normal form at infinity and if not
reduce it to normal form which, in fact, is the canonical matrix.

7.2 Anormal matrix

We start with the poins = 81, the zero of the function dpt (s)]~1, and reduce the matrix to normal
form at this point. In virtue of formula (6.5), in the vicinity of the poBi= 81, the matrix[X(s)]~*
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admits the representation

|
F1<l——1>+F11(S—51)+... —F1ﬂ+F12(s—81)+...
X1 = . 8 . (74

n [
—F1U—1+F21(s—51)+... F1<1+v—1>+|:22(5—51)~|—...
1 1

whereF; # OandFj, # 0 (j,r =1, 2) are constants. Here and later we use the notation

j.lj.mp.np) = . l.mm@E) (j=123 and vZ=IZ+mjn;. (7.5)

Clearly, the order of dgX(s)] 1 ats = 81 is 1 while the sum of the orders of the columns is 0. The
matrix is not in normal form at this point. Introduce the maffix

P = (tll f) , (7.6)

wheret; = (v1 — Il)mil. The matrix[X(s)]*ng is in normal form at the poing = §; and the
orders of the columns are 1 and 0. Therefore the matrix that eliminates the zeroXafilet! has

the following form:
(=Dt 0
Ti(s) = (tl(s— 51 1) . (7.7)

The determinant of the new matriX (s)]~1T1(s) does not vanish and the elements of this matrix
are still analytic at the poins = §;. We repeat the procedure and find the next matrix of
transformationT »(s)

82 — 61

0
To®) = | 5% . (7.8)
S— 42

with t = (v2 — |2)m2_l. To proceed further we need the expression of the product of the two
matricesT 1(s) andT»(s), that is,

(29 0O
T1(S)Ta(s) = <zo(s) 1) , (7.9)
where
N 82 — 61 t1(62 — 81) tb—1t1
- %2—a - . 7.10
28 = s one—5 29T -5 T s—a (7.10)

It is clear that dg{X(s)]"1T1(S)T2(s)} # 0 at thepointss = 81, 8, and the new matrix is analytic
at these points. The last zero of the determinant of the mpxri®)] 1, the points = 83, can be
eliminated by the matrix

(83 — 31)(d3 — 82) 0

(52 - 51)(5 - 53) (7_11)

Ts(s) = 83 — 61 62 — 83 1 ’
3 — o — 11 1
§o — 61 82 — 81 S— 43
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wheretz = (v3 — I3)m§l. Therefore, the matrixX(s)]~1T(s) is not singular at the point, >
andés. Here we introduce the notation

Z 0
U$=Tﬂ9bsﬁd$=<2§§1>, (7.12)
where
63 —81)(63 — 6
51(8) = (03 — 81)(83 — 82) ’
(5—00(5— (5 —83)
_ (B3—681)(03—62) ( U -1 83 — 01 82 — 43 1
““”‘(s—&ﬂs—&)(s—m 52—&)+<h_62—&b_®2—&1)s—&'

(7.13)

At the next stage, we remove the poles of the mdiXis)] 1, the pointso1, o2, 03. The solution
of the Riemann—Hilbert problem (3.1) has three zeros on the suRatet the zera(o;, wy) lie on
the sheeCj (r =1,2,3; j =1,2). Then

S — 0 ~ X
F(S,ul;) =F +0(s—o0r), (ssw)— (or,wr) €Cj, Fj=const£0,
S—oy O(s ), (s ) — ( yeC (7.14)
e — — Oy), , —W Oy, —W L .
F(s, —w) r r r 3—j

The behaviour of the matrigX (s)] 1T (s)(s — o1) at the points = o7 is defined by

X1 T(s)(s — o)

. ) . 1 RN
F1<1+—1>+F11(S—61)+... F1—1+F12(S—01)+...
1 w1 w1
=3 . i , (7.15)
~ N A A A
F1—1+F21(S—01)-I-... F1<1——1>+F22(S—61)+...
w1 w1
Wherelfjr #0(j,r =1, 2) are constants and
wj.lj. M. A = . l.mn)e)) (j=123 and wf=I%+mjn;. (7.16)

Doubtless, the above algorithm leads to a new matrix,[¥a) ]~ *R(s) which is not singular at all
the six pointss = §;, s = oy (r = 1, 2, 3). The following chain of formulae determines the matrix
of transformatiorR(s):

(7.17)

R(S) = (S — 01)(S — 02)(S — 03) <Z4(S) 0) 7

(8 1
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where

’ r=172a37

Z11(S) = (Zr (S) — z (or) +f>

Z (or) ") s— Or
(03 — 81)(03 — 82) (03 — 83)(03 — 01) (03 — 02)
(s—81)(s—82)(S—83)(S— 01)(S— 02)(S—03)
(02 — 81)(02 — 82) (02 — 83)(02 — 01)
(S—81)(S—82)(s—83)(S—o01)(S—02)
(01 — 81)(01 — 82) (01 — 83)
(s—381)(sS—82)(s— 83)(S—01)

andf, = —(wr + )My 1, r = 1, 2, 3. Without loss of generality; # 0. The matrixX(s)]~1R(s)

is analytic in any finite part of the complex plane, its columns are solutions of the homogeneous
problem (7.3) and the determinant of the matrix does not vanish everywhere in a finite plane. By
the definition,[X(s)]~1R(s) is a normal matrix of solutions.

24(9) =

z3(s) =

2(s) =

(7.18)

7.3 The canonical matrix

To construct the canonical matrix of solutions, we have to reduce the normal Pais =
[X(s)]~R(s) to normal form at infinity. For definiteness, we fix the behaviour of the polynomials
[(s), m(s) andn(s) at infinity:

I(s)~s*, ms)~m, n@)~n, S— oo, (7.19)

wherem, n are constants. The choice (7.19) is determined by the behaviour of the corresponding
polynomials in the matrix arising in the problem of scattering by a perforated panel in section 8.
Then the matriXX(s)]~1 can be represented at infinity as follows:

_ Fol+ 0™ Im(Fyt — Fos™ 4 0(s79)
X 1_ 0 2 0
X©)] (%n(Fo_l — Fos 4+ 0(s9) Fo+ O(sY) ST
(7.20)
whereFp # 0 isthe leading term in the expansion of the functi(s, w) at infinity:
(=it -1 :
F(s,w) ~ F, +0O(s™), (8, w)— (00, 00j). (7.21)

Since the functiongs(s) and z4(s) decay at infinity: 24(s) = O(s %) andz(s) = O(s™}) as
s — oo, it follows that the expansion of the normal matkx(s) at infinity is given by
D) — (2) — [¢))
X..(S) = (alls Zrafs3+...  ap

-1 (2) -2
S+ S+
(D2 [#3) 3 a%zz) 2 , S— 00, (7.22)
a1 s t+ays+... a,s+ays +...

where

ayy =fsFo, a5, = Fo. (7.23)
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Clearly, the other coefficients can be written down as well. It is seen that the orders of the columns
at infinity are—2 and—3. At the same time, the order of the determinant at infinity equals 0. The
matrix is not in normal form at infinity. Multiplying the matriX .. (s) from the right by a polynomial
matrix with a constant determinant enables us to increase the order of the second colum2up to
One of the matrices that does this is

(D
U(s) = <1 "1S>, by =22 (7.24)
0 1 (D
8
The above choice of the parameterguarantees the relations
ajm+az =0 j=12 (7.25)
Therefore, the new matriX,, (s)U1(s) admits the following expansion at infinity:
D2 (2 (22
S a a,5)s
X.(9)Ui(s) = (P T (B a)S The) g o (7.26)
a8 +... (nay) +a5;)s"+ ...

The sum of the orders of the columns at infinity equads However, it still does not coincide with
the order of the determinant, that is, 0. At the next stage, we multiply the métt®yU1(s) from
the right by the matrix

1)
1 0
R S T e (7.27
"2 V1dyy + 83
and find that the orders at infinity of the mati. (s)U1(s)U2(s) are different, namely-1 and
—2. The order of the determinant is still the same and is equal to zero. The leading terms of the
expansion at infinity of the new matrix are given by

X, (s)U1(s)U2(s)
_ (@ +vomad +ad)s 4. (naf +al)s 4. 708
=\ o EIINE) ® | O\ , S—> o0 (7.28)
{ay] +va(viayy) +ay)is+... (viayy +a55)s"+ ...

We carry on reducing the normal matrix to canonical form. Multiply successively from the right the
matrix X, (s)U1(s)U2(s) by the matricedJz(s), U4(s) andUs(s), where

' _ 1 VS - _ 1 O
Uj(s) = (0 1) (j =3,5 and Ua(s) = <v4 1). (7.29)
The coefficientsss, v4, vs are chosen as follows:
(2) (2)
by = — V181 + 85
ayy + 201y +a5;)
e A el e
valasd + va(v1aly + as)] + vias) +aly
_ valagy + va(uialy + i)l + mafy +af) 730
=70 @ @, @, "

851 + vy + 853) + valvalagy +va(viag] +a)] +viagy +ag)
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Now we have achieved the desired behaviour of the matrix at infinity:

A -1 A
a; s+ ... ajp+ ...
X:(5)U(s) = X A , S . 7.31
«(SU(s) ( o1+ ... a22+...) - e (7.31)
Here&j # 0 (r, j = 1, 2) are constants and

5
Ues) =[]Uuje
j=1

_ (14 v1v2S8+ vaS(v1 + v3 +v1v2v3s)  [vs(1+ v1v2S) + (1 + vavsS) (V1 + v3 + v1v2v3s)]s
- V2 + v4(1 + vov3S) vousS + (1 + vov3S) (1 + vavsS) '
(7.32)
The constructed matrix
Xo(s) = X9 RS)U(S) (7.33)

possesses the following properties:

(i) itis a normal matrix of solutions;

(i)) lim s, o detXo(s) = —a12821 # 0;
(i) the orders of both columns at infinity are equal to zero.
Hence the matrixX(s) is the canonical matrix of solutions and the partial indices«are= 0,
k2 = 0. By the stability criterion, the partial indices are stable. The total index of the vector

Riemann—Hilbert problem (2.1) is= ind detG(t) = ind A1 (t) 4+ ind A2(t) = 0. At the same time,
it is the sum of the partial indices, and therefore, agais; k1 + x2 = 0.

8. Scattering by a perforated sandwich panel
8.1 Formulation

As an illustration of the proposed technique, we find an exact solution of the problem of scattering
of sound waves by the edges of a sandwich panel. The panel consists of two thin semi-infinite elastic
plates. The first plate—oco < x < 0, y = £0} is arigid screen. The second ofte< X < oo, y =
40} is a perforated panel with acoustically rigid walls (Fig. 5). The two plates are clamped in such
a way that the displacement and gradient are zero at the pein®, y = 0.

Let the primary source be an incident plane wave of potemigl = exp{ik(xsing +
ycosh)}, y < 0, wherek = wp/cp is the acoustic wave numbebg is an angular frequency,
Co is the sound speed in the fluid. The total velocity potential can be represented in the form

(Pinc + Pref + ¢0)e_iwot (y<0), ¢le_iw0t (y>0), (8.1)

wheregyes is the potential of a reflected wavges = exp{ik(xsind — ycosh)}, y < 0, and the
potentialspg, ¢1 are solutions of the Helmholtz equation

(A+Kk)po=0, |x|<oo, y<D0,

(A+k?p1 =0, |x| <oo, y>0, (8.2)
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by
rigid screen perforated plate
[N N N N R R B B
0 X

e

Fig. 5 Geometry of the physical problem

with A = 92/0x% + 9°/3y?. The suffices 0 and 1 refer respectively to the unperforated and
perforated sides of the plate. On the rigid screen, the potentials satisfy the boundary conditions

dgo _ 1 _
oy 9y
On the perforated panel, the Leppington boundary conditions are impé®ed (

0, —-o0o<x<0, y=0. (8.3)

1 9* 3 N
<FW_1>aiyo‘HX(d)l—qbo):Zae'kxs'ng, 0O<x<oo, y=0,

%—%—rk¢1zo, O<X<oo, Yy=0, (8.4)

wherep® = Mpw3/Bp, a = p/Mp, p is the mean fluid density, is the mass per unit area of
the plate andBy, is the bending stiffness of the plateis the Leppington parameter:

kd

Herer, is the aperture radiu¥ is the cell volumed is the plate separation of the panel. In addition,
the edge conditions are stipulated as

3o _ %90

This problem was stated and reduced to a vector Riemann—Hilbert problem by 3dhed\e
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write down those intermediate relations that are essential for the further analysis. Assume that
k=k+ik” (0 <k” <k andk” < Im(sy),s1 = poexplid1}). Letu = ' +iun” (0 < u’ <« w).
Applying the Laplace transform

00 ) 0 )
(Dj+(Y§S)=/O é; (x, y)Fdx, <I>,-_(y;s>=/ s yETdx (j=01) (8.7

to the boundary-value problem (8.2), (8.3), (8.4) reduces it to a new problem for the ordinary
differential equation

2
(dd_yz_y2>[¢j—(Y;S)+q’j+(Y;S)]=0» j=0if y<0 and j=1 if y>0

d d
—®g_(0;8) = —P1_(0;8) =0,
dy

dy
d 2iau’
4 a0 . 4 LQy Pt A
(s"—n )dyfbo+(0, S) +au [P14(0; 8) — o1 (0; 9)] ST ksing N(s)
d d
d—y¢0+(o; S) — d—yq’1+(0; S) — tk®1.(0;8) =0, (8.8)
where
y2=5%—K%, N(S) = i5Ppy (0, 0) — Phyyx (0, 0) (8.9)
and
93¢0 %o
¢6XX(O’ 0) = m(o’ 0)7 ¢6XXX(O’ 0) = m(o’ O) (810)

are constants to be determined. The problem (8.8) is reducible to the following Riemann—Hilbert
problem:

GH)® M) +® (1) =9gt), tel, (8.11)
where
+er [ ®0+(0;9) + 2i(s+ksing) ™t + Nis+ Ny o [ ®0-(0; )
e = ( 1,(0: 5) )  EO= <<I>1_(0; s)) :
Gt = <y(t)<t4 = —apt apt )
yO* — 1) au () — k@t — put —ap®)”
.
git) = (m + N1t + NZ) J, J= <é> ,
Ny = 000 @0 Ty 900a(0.9) (8.12)
ap au

Here and subsequently tiseplane is cut along the straight lines frdm= k' + ik” toik” + oo
and from—k = —k’ — ik” to —ik” — c0o. Whenk” — 0, the contour. becomes the real axis,
passing above the branch pointsat= —k, below the branch point & = k and above the point
s = —ksin#. The branch of the functiop(s) is chosen such that(0) = —ik.
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8.2 Solution by quadratures

It is seen that the matrix coefficie@®(s) possesses the structure (2.2). Indeed, if we put

() — tk/2)t* — put) — ap? ot) tk
y (4 — %) ’ 2y ()4 — ud’

b(t) =

2apt

tk ’

then the matrix (8.12) coincides with (2.2). The characteristic polynomial becomes

() =t*— % m@t) =nt) = (8.13)

2
f(t) =12t) + m)nt) = t& — 2ut* + 8 (1 + %) . (8.14)

Lettingk” = 40, u” = +0, we achieve

4 8 4o 2
My =u™ Mo=pu l+m > M7, (8.15)

that is, the condition (2.4) is satisfied. Since the functions
A = b) +ct) F2(t), Aa(t) = b(t) — c(t) f 2(t) (8.16)

are even with respect tgit follows that the indices of the functiong (t), A2(t) are zero and come
to agree with the conditions (2.5). The integrals (3.17) admit the following simplification:

1 () tv1
do=—— |ogﬂl—dt, v=13 dg=0, (8.17)
il Jy+ Ao(1) f2(t)

with LT = {Re(s) € (0, k), Im(s) = O} U {Re(s) e (k’, 00), Im(s) = —0}. The factorization of the
matrix G(t) is given by formulae (2.10), (2.11), (3.5), (3.13).
We note that ifk” = +0andu” = +0 then the first integral in (3.13)

1 dt
Ao(S) = 4—/ log{A1(D)A2(t)}—— (8.18)
7l JL t—s
has singularities at the poirgs= —k, —pu, k, u. Indeed, from (8.13), (8.16) we get

AM)ra(t) = [y O ®) -tk — u? — 20y (1) + apck].  (8.19)

(t2 = kA (t* - uh

Let us select a branch of the function {(sg+ k) on the upper side of the cut-oo, —k) and pick up
abranch of logs — k) on the lower side of the cyk, co). Then

log(t + k) = [log(t + k)1*, [log(t + k)]~ = log(t + k) — 2i,
log(t — k) = [log(t —k)]~, [log(t —k)]" = log(t — k) + 2ri. (8.20)
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For the chosen branches we obtads)

1 _ +
Ao(S) = 5 log(s + a) + Q1(s), s — —a, SGC,’
Q1(S), s— —a, seC,
Ao(S) = Qa(s), s—a, seC™H, (8.21)
0= —2log(s—a) + (), s—a seC, '
wherea = k, u and Q1(s), Q2(s) are analytic in the vicinity of the points = —a,s = a,

respectively. Next, by substituting formulae (8.21) into (3.13), in virtue of relations (2.11), (2.12)
we get the behaviour of the matric¥s (s) at the singular points

Xts) ~s+a)t?, s——a (a=k, uw),
X“(s)~(s—a) 2, s—>a (a=k,pn (8.22)

and the matriceX ™ (s) andX ~(s) are analytic at the points= a ands = —a, respectively.

In the particular case (8.11) of the vectyit) there is no need to introduce the Cauchy integral
(6.3). As before, in section 6, to construct the solution of the non-homogeneous boundary-value
problem (8.11), instead of the canonical maiXiy(s) that possesses rather cumbersome form, we
use the factorization matriX(s). Eliminating the pole at the poirg = —k sing and substituting
the factorization (2.10) into the boundary condition (8.11) we obtain

2i
VBTt — L
XT()P™ (1) t+ksin9x (—ksing)J

= X" ()P (t) + X~ (t)(Nat + Np)J + [X~(t) — X~ (—ksing)]Jd- (8.23)

t + ksing

Observe now that the functiarn(s, w) defined by (3.13) satisfies the conditions (3.16) and therefore
the functionF (s, w) is bounded at infinity:

F(ssw)=Fo+0(s™), s— oo, (s w)eCy,
F(s,—w) = Fyt+0(s™), s— oo, (s —w)eCy

1S [ e Bt
Fo=expy—= —— +mMjAsgj +njByj 8.24
° Xp{ 2;(/@,%) g MR B )T ©29

with A4j defined by (5.46) an@,j given by
i

) e2i9
B4 = ——f ————df, Bsr»= —-2B41, Bsz= —By1. 8.25
8./ g, 150(0)] (8.29)

Therefore, the behaviour of the factorization maifigs) at infinity becomes
XE(s) ~ diag(Fo, Fy 1}, s— 00, seC*. (8.26)

Then we follow the scheme of section 6 and use iats) = Nis+ N + O(s™1), s — co. The
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desired solution is given by

+ +(qy1-1 . Cj 1 +
(s =[XT (S| W)+ ) ., seC',
j=1

S—6j \gj
& (s) = —[X" (91| W(s +23: G (1
(®) = —[X"©1I | ¥ jzls—81<ﬁ)
2i -
where
2i _ .

and the constant€1, Cy, Cg are defined by (6.18) with the elementg(s), W2 (s) of the vector
(8.28). Finally, we find the two unknown constamMs and N,. These constants should be fixed
from the two conditions

2i N(s)

STksnd  al 0 as s=pu,ipeCt (8.29)

b0 (0;8) — P14.(0;5) +

which follow from the definition of the functiod ®o4 (0; s)/dy:

d wra
d—yCDOJr(O; S) = m |:<DO+(0§ S) — ®14+(0;8) +

2i N(s)] (8.30)

s+ksing  au?

and ensure the analyticity of the right-hand side in (8.30) at the psiatg:, i 1. The definition of
the constantgy,, (0, 0) andgy,,, (0, 0) from (8.12) completes the solution of the problem.

9. Concluding remarks

This paper has derived a closed-form solution of a vector Riemann—Hilbert boundary-value
problem when the matrix coefficient admits the Chebotarev—Khrapkov form and the corresponding
polynomial f (s) is of degree eight. The procedure involves reducing the vector problem to a scalar
Riemann—Hilbert boundary-value problem on a hyperelliptic surface of genus 3. A meromorphic
solution has been constructed in terms of Weierstrass and abelian integrals. The upper limits of some
abelian integrals are arbitrary points of the Riemann surface. In addition, the solution possesses six
arbitrary integers. An algebraic behaviour of the solution at infinity has been achieved by stipulating
three conditions for the three points of the surface and the six integers which gives rise to the
classical Jacobi inversion problem. A solution of this problem was found in terms of the zeros of
Riemann’s®-function. The zeros have been determined by quadratures for the surface of genus
h = 3. Itis clear that the zeros are evaluated easier if the gemikess than 3. In the general case,
whenh > 3 the zeros of Riemann'®-function can be found either from an algebraic equation
of degreeh, or by implementing the direct numerical procedure proposed in Appendix B. Both
approaches find the zeros with any accuracy.

Three factorizations of the matrix coefficient have been constructed. The first is commutative:
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G@t) = XTOX- ML = X1 IX*T(t), t € L. It was explicitly shown that the matrix
X(s) is bounded at infinity. In a finite complex plane, the matixs) has three simple poles
and three points where it is singular: &&t) = 0. By the generalized Liouville’s theorem, this
factorization leads to exact formulae for the solution of the original vector Riemann—Hilbert problem
and three arbitrary constants. The constants were easily found from a linear algebraic system of
three equations eliminating the poles of the solution. The second factorization relates to the problem
®T(t) + [GM)] 1@ (1) = go(t), t € L, wherego(t) = [G(t)]1g(t). The factorization is not
commutative and is given by the normal matfi(s)]~1R(s), whereR(s) is a special rational
matrix. The normal matrix does not have poles and is not singular in any finite part of the complex
plane. However, it is not in normal form at infinity. We needed the normal matrix to construct
the third factorization provided by the canonical matrix of the vector Riemann—Hilbert problem:
Xo(s) = [X(s)]7IR(s)U(s), whereU(s) is a specified polynomial matrix. The mateig(s) is in
normal form at infinity, does not have poles and is not singular in a finite part of the complex plane.
The orders of its columns at infinity are equal to 0. The canonical matrix gives rise to the partial
indices of the vector boundary-value problem, which@are= 0 and«, = 0. This circumstance
indicates the stability of the vector Riemann—Hilbert problem (8.11).

The problem of scattering by a semi-infinite perforated sandwich panel has been solved by
quadratures for any range of the parameters involved in the matrix coefficient.

To summarize, we list the main steps of the algorithm building the closed-form solution to the
vector Riemann—Hilbert problem corresponding to the analysed scattering problem.

1. Factorizing the matrixs(t) by (2.10), (2.11) in terms of the solution (3.5), (3.13) to the scalar
Riemann—Hilbert problem on the surfaRe

2. Eliminating the essential singularity at infinity of the factorizing matrix by setting Jacobi’s
inversion problem (3.20) for three unknown poirits, wj) € R and six integersj, m;
(j=1273).

3. Evaluating theA- and B-periods of the abelian integrals by (5.17). Normalizing the basis of
these integrals by (5.36) and computing Bwperiods of the canonical basis by (5.30).

4. Deriving the cubic equation (5.45) for the unknowns(j = 1,2, 3). Finding Riemann’s
constants by (5.62) and the residues (5.44) by (5.77) that are crucial for constructing the
coefficients of the cubic equation.

. Determining the six integers;, m; (j = 1, 2, 3) by (5.78).

6. Constructing a solution of the vector Riemann—Hilbert problem by (6.12). This solution

possesses three simple polessat= o and three arbitrary constan@; (j = 1,2, 3).
Removing these poles fixes the constants by (6.18) and completes the procedure.

(631

At the next stage, the authors aim

(i) to analyse how the order of Jacobi’s inversion problem reflects the symmetry of the Riemann
surface and properties of the characteristic functions;

(ii) tofind a closed-form solution of the problem on scattering by a perforated sandwich panel with
acoustically transparent walls. In this case, the second boundary condition is replagadyl by (

a4 2)] (291 _ %0 201 —
[1 NG(A+k)}<ay ay>+d(A+k)¢1—O,

whereA is the Laplace operatad,is the plate separatiof is the number of apertures per unit
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area andr is the complex conductivity of an aperture. The corresponding vector Riemann—
Hilbert problem is equivalent to a scalar Riemann—Hilbert problem on a hyperelliptic surface
of genus 5.
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APPENDIX A
Derivation of the quadric equation for genus 4

We describe the proceduTrf reduction of the system (4.25) far= 4

o] +05 +o03+o0) =6, v=1234, (A1)

! Essentially, this device is employed by A. Y. Zemlyanova.
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to the quadric equation

ot — 0103 + C202

—C3o0+Cc4=0 (A.2)
with the coefficientg; (j =1, ..., 4) to be determined. The derivation will use thé& theorem:

o1 +o02+ 03+ 04 =0Cq,

0102 + 0103 + 0104 + 0203 + 0204 + 0304 = C2,

010203 + 010204 + 010304 + 020304 = C3,

01020304 = C4. (A3)

By comparing (A.1) fon = 1 andv = 2 with (A.3) we get
Ci=¢1, (0o1+o02+03+ 04)2 =&+ 20 (A.4)
and therefore, = %(sf — g2). To find c3 we notice that
(01 + 02 + 03+ 04)3 — (01 + 02 + 03 + 04) (0102 + 6103 + 0104 + 0203 + 6204 + 0304)
= £3 + 2Cpe1 — 3C3. (A.5)

On the other hand, the left-hand side of (A.5) equ%l& cpe1. Comparing these results gives

3
& €162 | €3
c3:€1—7+§. (A.6)

Finally, the findcs. Consider the expression

S= (01 + 02+ 03+ 0n)*
—(01 + 0 + 03+ 04)%(0107 + 0103 + 0104 + 0203 + 0904 + 0302)
+(01 + 02 + 03 + 04) (010203 + 010204 + 010304 + 020304). (A7)

Opening the brackets enables us to exp&ssterms ofe,, andc, (v = 1, 2, 3, 4):
S=¢4+ 3e1(Coe1 — C3) — 2C§ + 4cy. (A.8)

In addition to this result, use of (A.3) yiel®= ¢ — e2c; + e1C3. Therefore,

4 2 2

&1 £1€2 £1€3 &5 &4
=_1_ 712 *153, "2 4 A9
“=24""4 T3 T8 2 (A.9)

Clearly, this technique can be extended for Any 4.

APPENDIX B
Alternative numerical procedure for Jacobi’s problem

We have shown that the nonlinear algebraic system (4.25) is equivalent to an algebraic equation dfi.degree
Obviously, forh < 4 this equation is solvable by radicals. If the genus of the surfaée higher than 4, we

are unlikely to find the roots of the system by radicals. We propose an alternative way to define the zeros of
the Riemanrg-function which provide the solution to the Jacobi inverse problem. This is a direct numerical
procedure based on the argument principle for an analytic function and on analysing the real and imaginary
parts of the functiorg(q). This function is analytic and single-valued #h It has precisel) zeros orR (see

section 4.1). Let the two sheets of the surf@®e glued crosswise along arcs of the cirllg, of radiuspg,

centred at the origin as, for instance, in section 3 (Fig. 1). Then the zeros of the fugi@iocan be found by
executing the following steps.
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1. Find the zeros of the functidg(q) which lie inside of the circle ,, on the first sheet. Start with the

origin and verify whether the functiofi(q) vanishes at the poirdg = (0, f%(O)) € Cq. If F(qp) = 0O,
define the order of the zero. Let the ordemige Obviously,ng = 0 if F(qg) # 0. Choosing a sufficiently
small positiver <« pg evaluate the increment of the argument of the funcfi@n) (q = (s, w), s =

r exp(y)) whenq traverses the circl&; of radiusr, centred at the origin. It is clear that there exists
such a number = ¢ that[argg(q)]x, = 27ng. This means that the only zero of the functigtr)
inside of the circleX is the pointg = gg. Next, increase and define such a number=r,. € (¢, pg)
providing [arg§(Q)]x, > 2mng asr = r,. This means that the circlEr, has ‘jumped’ over the next
zero of the function, and in the interior of the circle there is a zero different fignBy varyingr we
find suchr = r1 when the graph of the parametrically defined func{@qg) on the plangdRe(F), Im(F)}

(q depends ony, r is fixed) passes through the point@®@e = 0, Im(F) = 0. The corresponding value
Y = Y1 defines the next zere; = riexp(iyy). Repeating the process, evaluate all the zeros of the
function(q) inside of the circlex,; € C;. Note thatr may not coincide withpg. In other words, the
contourZ; must avoid collision with the cross-sectioaig ay, .. ., an through which the functio(q)

is discontinuous.

2. Verify whether the infinite poim]c%) = (00, 001) € Cq is a zero of the functioF(q) and if it is, find its
ordernss (Noo = O if g(qé%)) # 0). After that fix such a sufficiently large numbBr>>> pg providing
[argF(@)]xg = —27Neo. This test indicates that the only zero of the funcigig) outside the circl&r
IS 0oo- NOw, by successively decreasing the radiRsthe same machinery as before gives all the zeros of
the functiong (q) in the exterior of the circle&,, on the first sheet;.

3. Find those zeros lying on the arcs of the citElg, on the shee€; outside the junction slits.

4 to 6. Repeat the procedure for the second sliget

The process is over if the number of the zeros is equh] tehere in determining the numbbr the orders
of the zeros are counted. Note that in the case of the problem (3.20) by varying the location of the initial points
(6j,vj) (J =1,2,3) itis always possible to avoid implementing steps 3 and 6 and achieve a situation when
the zeros lie neither oB,, € C1 noronx,, € Co.

We emphasize the rapid convergence of the series representation (4.7¥®fthetion. This circumstance
guarantees efficiency of the numerical procedure. It is clear that if the junction lines of the SRréaeenot
arcs of the same circle, the above procedure remains valid if the cglese appropriately replaced by closed
simple curves crossing neither each other nor the junction lines of the surface.



