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Vector functional-difference equation in electromagnetic
scattering

Y. A. A NTIPOV†
Department of Mathematics, Louisiana State University, Baton Rouge LA 70803, USA

AND

V. V. SILVESTROV‡
Department of Mathematics, Chuvash State University, Cheboksary 428015, Russia

[Received on 12 April 2002]

A vector functional-difference equation of the first order with a special matrix coefficient
is analysed. It is shown how it can be converted into a Riemann–Hilbert boundary-value
problem on a union of two segments on a hyper-elliptic surface. The genus of the surface
is defined by the number of zeros and poles of odd order of a characteristic function in a
strip. An even solution of a symmetric Riemann–Hilbert problem is also constructed. This
is a key step in the procedure for diffraction problems. The proposed technique is applied
for solving in closed form a new model problem of electromagnetic scattering of a plane
wave obliquely incident on an anisotropic impedance half-plane (all the four impedances
are assumed to be arbitrary).
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vector difference equation.

1. Introduction

The most powerful and general methods for exact solution of model problems in acoustic
and electromagnetic scattering are those of Wiener & Hopf (1931) and Maliuzhinets
(1958). The former method leads to the Riemann–Hilbert boundary-value problem on an
infinite straight lineL (it splits the complex plane into two half-planesD+ andD−):

Φ+(t) = G(t)Φ−(t) + g(t), t ∈ L , (1.1)

where the unknown vectors (functions)Φ±(t) are analytic inD±. The matrix (function)
G(t) and the vector (function)g(t) are given. The Maliuzhinets method gives rise to a
functional-difference equation (a particular case of the Carleman boundary-value problem
of the theory of analytic functions):

Φ(σ ) = G(σ )Φ(σ − h) + g(σ ), σ ∈ Ω = {Re(s) = ω}, (1.2)

whereΦ(σ ) is an unknown vector (function) analytic in the stripΠ = {ω − h < Re(s) <

ω}. The matrix (function)G(σ ) and the vector (function)g(σ ) are supposed to be known.
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The method of exact solution of (1.1), (1.2) rests on our ability to factorize the
coefficientG of the problems, i.e. to split the matrix (function)G into two factors:

G(t) = X+(t)[X−(t)]−1, t ∈ L , (1.3)

in the case of (1.1), and

G(σ ) = X(σ )[X(σ − h)]−1, σ ∈ Ω , (1.4)

for (1.2). HereX±(z) are analytic and non-singular in the domainsD±, andX(s) is analytic
and non-singular in the stripΠ .

If the aforementioned equations are scalar, then in either case there is an exact device
for factorisation which is, essentially, based on the Sokhotski–Plemelj formulae. Thus,
practically all conceivable scalar equations (1.1), (1.2) corresponding to applied problems
can be solved exactly (for a survey see Noble, 1988; Osipov & Norris, 1999).

It is known that for a system of functional equations (1.1) or (1.2) such a general
procedure is not available. In comparison with the difference matrix factorisation (1.4),
there are significantly more studies on the Wiener–Hopf matrix factorisation (1.3). We
mention the papers by Khrapkov (1971), Jones (1984) and Moiseyev (1989). The paper
by Jones also provides some references to other results on the Wiener–Hopf matrix
factorisation and their applications to physical models.

As for the vector functional-difference equation (1.2), to the best of the authors’
knowledge, classes of matrices which admit the constructive difference factorisation (1.4)
have not been studied. We, of course, discard those cases when the matrix coefficientG
can be diagonalized by multiplying the left- and right-hand sides of (1.2) by a constant
matrix.

In this paper, we study the vector functional-difference equation (1.2) with the matrix
coefficient of the form

G(σ ) =
(

a1(σ ) + a2(σ ) f1(σ ) a2(σ )

a2(σ ) f2(σ ) a1(σ ) − a2(σ ) f1(σ )

)
, σ ∈ Ω , (1.5)

wherea1(σ ), a2(σ ) are arbitrary Ḧolder functions on every finite segment of the contour
Ω , f1(σ ), f2(σ ) are arbitrary single-valued meromorphic functions in the stripΠ such
that f j (σ ) = f j (σ − h), σ ∈ Ω , j = 1, 2. It is assumed that the functionf1(s) and the
characteristic functionf (s) = f 2

1 (s) + f2(s) have finite numbers of poles in the stripΠ .
The number of zeros of the functionf (s) in the stripΠ is also finite.

Wepropose a procedure for exact solution of the vector functional-difference equation
(1.2) with the matrix coefficient (1.5). The method consists of the following steps:

(i) reducing the initial equation (1.2) to two separate functional-difference equations of
the first order and a system of boundary conditions for the unknown functions on a system
of cuts. The cuts join the branch points in the strip of the functionf 1/2(s);

(ii) converting the problem to a vector Riemann–Hilbert problem on a system of open
curves;

(iii) setting up a Riemann–Hilbert problem on the contourL = L1 ∪ L2, L j =
(−1, 1) ⊂ C j , on a hyper-elliptic surfaceR formed from the two copiesC1 andC2 of
the cut complex plane;
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(iv) constructing a solution of the Riemann–Hilbert problem on the surface growing at
infinity;

(v) solving the Jacobi inversion problem (Springer, 1956; Zverovich, 1971; Farkas &
Kra, 1991; Antipov & Silvestrov, 2002) and removing the growth at infinity of the solution;

(vi) writing down the general solution of the Riemann–Hilbert problem on the surface
and, afterwards, the general solution of the vector functional-difference equation (1.2).

If the function f 1/2(s) has no branch points in the stripΠ , then one can find a
closed-form solution of the vector equation (1.2) by analysing a standard Riemann–Hilbert
problem on the segment(−1, 1) of the complex plane. In general, however, it is necessary
to formulate and solve a Riemann–Hilbert problem on a two-sheeted surface of genusρ,
with 2ρ+2 being the number of the branch points of the functionf 1/2(s) in the stripΠ (the
number of these points is always even). If the functionf 1/2(s) has only two branch points
in the stripΠ , then the genus of the surface is zero and the solution of the Jacobi inversion
problem can be bypassed. Forρ � 1, the analysis of the Riemann–Hilbert problem requires
solving the Jacobi inversion problem in terms of either the Riemannθ -function (see, for
instance, Farkas & Kra, 1991) ifρ � 2, or elliptic functions (see, for example, Hancock,
1968) ifρ = 1.

It turns out that applying the Maliuzhinets technique to problems of diffraction needs a
special solution which meets the symmetry condition:

Φ(ω + iτ) = Φ(ω − h − iτ), −∞ < τ < ∞. (1.6)

The above relation not only narrows the class of solutions but also imposes some necessary
conditions on the matrixG(σ ) and the vectorg(σ ). If those conditions are satisfied, then
one needs to seek an even solution of the Riemann–Hilbert problem on a surface of genus
ρ′ = [ρ/2] ([a] is the entire part of a numbera). Therefore, in this case, there is no need
to solve Jacobi’s problem if the number of the branch points in the stripΠ is not greater
than 4. Otherwise, for the number of the branch points not greater than 8, the problem is
solvable in terms of elliptic functions. We note that the number of the branch points of
the function f 1/2(s) is a topological characteristics of the problem. To decrease the genus
of the corresponding surface we need an additional symmetry of the problem. Recently,
Senior & Legault (2000) analysed a second-order scalar functional-difference equation in
the case when it is solvable by elliptic functions. Although their method is different, it also
uses some elements of the theory of Riemann surfaces (a torus in their case).

To show how the proposed technique works, we choose a new canonical problem
of electromagnetic scattering by an anisotropic impedance half-plane. Senior (1978)
formulated the problem for four different impedance parameters using both Wiener–Hopf
and Maliuzhinets methods. The Wiener–Hopf formulation leads to a 1×4 vector Riemann–
Hilbert boundary-value problem for an infinite contour on a plane. The particular case,
when the impedances meet the restrictionη+

j = η−
j ( j = 1, 2), was analysed by Hurd

& L üneberg (1985). They chose the Wiener–Hopf formulation and found a closed-form
solution of the corresponding 1× 2 vector Riemann–Hilbert problem on the real axis in
terms of elliptic functions. On the other hand, the Maliuzhinets formulation of the general
problem gives a second-order functional-difference equation. As it was pointed out by
Senior (1978), it was beyond known techniques.

In this paper, we present a closed-form solution of this most general case of the
scattering problem. Mathematically, it converts into a Riemann–Hilbert problem on a
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hyper-elliptic surface of genus three that is solvable in terms of the Riemannθ -function
of genus three (Antipov & Silvestrov, 2002).

The paper is organized as follows. In Section 2, we define sufficient conditions for
the matrix coefficientG(σ ) to be imposed in order that the proposed method works. We
reduce the initial functional-difference equation (1.2) to a scalar Riemann–Hilbert problem
on an open contour of a Riemann surface in Section 3. A canonical solution of this problem
is constructed in Section 4. The general solution of the Riemann–Hilbert problem on the
surface is written down in Section 5. In Section 6, we construct and analyse a closed-form
solution of the vector functional-difference equation (1.2). We also specify it for the case
when all the poles are simple.

For problems of scattering, it is crucial to know how to construct a solution that meets
the symmetry condition (1.6). This is the main aim of Section 7.

Section 8 is devoted to the problem of diffraction by an anisotropic impedance half-
plane (all the four impedances are assumed to be arbitrary). In Section 8.1, we reduce the
problem to a vector functional-difference equation of the first order. The general case (the
corresponding surface is of genus three) is analysed in Section 8.2. Finally, in Section 8.3,
a special case, when there are no branch points, is considered. We emphasize that in this
case the impedances are not necessarily the same, and the solution of the Jacobi inversion
problem is bypassed.

2. Vector functional-difference equation of the first order

Let Π be a strip in the plane of a complex variables: Π = {s ∈ C : ω − h < Re(s) < ω},
whereω is real andh > 0. LetΩ , Ω−1 be the boundaries of the strip:Ω = {Re(s) = ω},
Ω−1 = {Re(s) = ω − h}. Consider the following boundary-value problem of the theory of
analytic functions.

Given a 2 × 2 matrix G(σ ) and a vector g(σ ) find a vector Φ(s) analytic in the
strip Π , continuous up to the boundary Ω ∪ Ω−1 apart from a finite number of poles
β1, β2, . . . , βt ∈ Π of orders τ1, τ2, . . . , τt and satisfying the boundary condition

Φ(σ ) = G(σ )Φ(σ − h) + g(σ ), σ ∈ Ω . (2.1)

At the ends of the strip, i.e. as Im(s) → ±∞, Φ(s) = O(eb± Im(s)) with b± being real,
finite and prescribed. The matrix G(σ ) and the vector g(σ ) satisfy the Hölder condition
on every finite segment of Ω . At infinity, i.e. as σ → ω ± i∞, the components of the G(σ )

and g(σ ) may have a finite exponential growth not necessarily the same. The matrix G(σ )

is also nonsingular on Ω .
This problem is a vector generalization of Carleman’s boundary-value problem

(Carleman, 1932, p.148)Φ(σ ) = G(σ )Φ(α(σ )) + g(σ ), σ ∈ Ω ∪ Ω−1 with the shift
function α(σ) = σ − h on Ω and α(σ) = σ + h on Ω−1. Obviously, the function
α meets the Carleman conditionα(α(σ )) = σ , σ ∈ Ω ∪ Ω−1. The other Carleman
conditionsG(α(σ ))G(σ ) = 1 andG(σ )g(α(σ )) + g(σ ) = 0, σ ∈ Ω ∪ Ω−1 are satisfied
identically if we putG(σ ) = G(σ ), g(σ ) = g(σ ), σ ∈ Ω , andG(σ ) = [G(σ + h)]−1,
g(σ ) = −[G(σ + h)]−1g(σ + h) σ ∈ Ω−1.

Note that, at the same time, the boundary condition (2.1) can be regarded as a vector
functional-difference equation.
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Let λ1(σ ), λ2(σ ) be the eigenvalues of the matrixG(σ ) and letλ1(σ ) �= λ2(σ ). In this
section we define a class of matrices representable in the form

G(σ ) = T(σ )Λ(σ )[T(σ − h)]−1, σ ∈ Ω , (2.2)

whereΛ(σ ) = diag{λ1(σ ), λ2(σ )}, and the matrixT(σ ) admits a two-valued analytical
continuation from the contourΩ into the strip apart from a finite number of poles, branch
points and points where detT(s) = 0. It is also required thatT(σ ) = T(σ − h), σ ∈ Ω .
The eigenvalues of the matrix

G(σ ) =
(

G11(σ ) G12(σ )

G21(σ ) G22(σ )

)
(2.3)

are given by

λ1(σ ) = 1
2[G11(σ ) + G22(σ ) + ∆1/2(σ )], λ2(σ ) = 1

2[G11(σ ) + G22(σ ) − ∆1/2(σ )],
(2.4)

where

∆(σ ) = [G11(σ ) − G22(σ )]2 + 4G12(σ )G21(σ ). (2.5)

Take the diagonalising matrixT(σ ) in the form

T(σ ) =
(

1 1
G22(σ )−G11(σ )+∆1/2(σ )

2G12(σ )
G22(σ )−G11(σ )−∆1/2(σ )

2G12(σ )

)
, σ ∈ Ω , (2.6)

with detT(σ ) = −∆1/2(σ )[G12(σ )]−1. In order for the matrixT(σ ) to be meromorphic
and two-valued, it is sufficient that the functions

G22(s) − G11(s)

G12(s)
and

∆(s)

G2
12(s)

, s ∈ Π , (2.7)

are single-valued meromorphic functions. Clearly, if the functions (2.7) are meromorphic,
then the functionG21(s)/G12(s) is also meromorphic. To clarify the structure of the matrix
G(s) that meets the above conditions, introduce the functions

f1(s) = G11(s) − G22(s)

2G12(s)
, f2(s) = G21(s)

G12(s)
, s ∈ Π , (2.8)

which are single-valued meromorphic functions inΠ . Then the original matrix has the
form

G(σ ) =
(

G11(σ ) G12(σ )

f2(σ )G12(σ ) G11(σ ) − 2 f1(σ )G12(σ )

)
, σ ∈ Ω . (2.9)

Note that, the elementsGi j (σ ) are not required to be meromorphic in the stripΠ . Finally,
we transform the matrixG(σ ) into the form

G(σ ) = a1(σ )

(
1 0
0 1

)
+ a2(σ )

(
f1(σ ) 1
f2(σ ) − f1(σ )

)
, σ ∈ Ω , (2.10)
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where

a1(σ ) = 1
2[G11(σ ) + G22(σ )], a2(σ ) = G12(σ ). (2.11)

In the new notation, the eigenvaluesλ1, λ2 and the matrix of transformationT become

λ1(σ ) = a1(σ ) + a2(σ ) f 1/2(σ ), λ2(σ ) = a1(σ ) − a2(σ ) f 1/2(σ ), (2.12)

T(s) =
(

1 1
− f1(s) + f 1/2(s) − f1(s) − f 1/2(s)

)
, (2.13)

where f (s) = f 2
1 (s) + f2(s). Here a1(σ ), a2(σ ) are arbitrary Hölder functions on Ω

(although they may bediscontinuous at infinity), and f1(s), f2(s) are arbitrary single-
valued meromorphic functions in the strip Π . They do not have poles onΩ . In the strip
Π , the functionsf1(s), f (s) have finite numbers of poles. It is assumed that the number of
zeros of the functionf (s) in the stripΠ is also finite. We emphasize that the elements of
the matrixT(s) areh-periodic or, equivalently, the functionsf1(s), f 1/2(s) areh-periodic.

Formula (2.10) can be treated as an analogue of the Chebotarev–Khrapkov matrix
(Chebotarev, 1956; Khrapkov, 1971) for the functional-difference equation (2.1).

3. Scalar Riemann–Hilbert problem on a hyper-elliptic surface

In this section we reduce the vector functional-difference equation (2.1) with the matrix
coefficient (2.10) to a scalar Riemann–Hilbert problem on a Riemann surface. First,
substitute the relation (2.2) into (2.1):

[T(σ )]−1Φ(σ ) = Λ(σ )[T(σ − h)]−1Φ(σ − h) + [T(σ )]−1g(σ ), σ ∈ Ω , (3.1)

and introduce a new vector function

φ(s) = [T(s)]−1Φ(s), s ∈ Π , (3.2)

with the components

φ1(s) =
(

f1(s)

2 f 1/2(s)
+ 1

2

)
Φ1(s) + Φ2(s)

2 f 1/2(s)
,

φ2(s) =
(

− f1(s)

2 f 1/2(s)
+ 1

2

)
Φ1(s) − Φ2(s)

2 f 1/2(s)
, s ∈ Π .

(3.3)

These formulae indicate that the functionsφ1(s) andφ2(s) are multi-valued. They have
branch points at the zeros and poles of odd order of the functionf (s).

Among these points there can also be the two infinite points at the upper and lower ends
of the strip. From the theory of periodic meromorphic functions, by definition, the upper
endx + i∞ (ω − h � x � ω) of the strip is called a zero of orderν of a function f (s) if
f (s) ∼ Ae2π isν/h as Im(s) → +∞ (A =const�= 0). The pointx + i∞ is a pole of order
ν if f (s) ∼ Ae−2π isν/h as Im(s) → +∞. The lower endx − i∞ is treated similarly. It is
known (Hancock, 1968) that anyh-periodic meromorphic function has the same number
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of poles and zeros in the strip of the periods (the poles and zeros including the upper and
lower infinite points are counted according to the multiplicity). Indeed, by the conformal
mappingz = e−2π is/h , the stripΠ is transformed intōC = C ∪ {∞}, and anh-periodic
function in thes-plane becomes a rational function in the extendedz-plane with the same
number of poles and zeros in̄C.

Therefore, the functionf 1/2(s) has an even number of the branch points (the infinite
pointsx ± i∞ can be branch points as well). Let the branch points bes0, s1, . . . , s2ρ+1. In
the caseρ = −1, the functionf (s) is either a constant, or all its poles and zeros are of even
order. Henceforth, it is assumed thatρ � 0. Apart from the branch pointss0, s1, . . . , s2ρ+1,
the functionsφ1(s) andφ2(s) admit a finite number of poles in the stripΠ . In addition to
the prescribed polesβ1, β2, . . . , βt of the vector functionΦ(s), the functionsφ1 andφ2
have new poles. Their multiplicity and location are entirely defined by the poles of the
function f1(s) and the zeros of even order of the functionf (s). Let all the poles of the
functionsφ1(s) andφ2(s) bea1, a2, . . . , am of ordersν1, ν2, . . . , νm .

By using (3.2) the coupled difference equation (3.1) reduces to two separate equations:

φ1(σ ) = λ1(σ )φ1(σ − h) + g◦
1(σ ), σ ∈ Ω ,

φ2(σ ) = λ2(σ )φ2(σ − h) + g◦
2(σ ), σ ∈ Ω ,

(3.4)

g◦
1(σ ) =

(
f1(σ )

2 f 1/2(σ )
+ 1

2

)
g1(σ ) + g2(σ )

2 f 1/2(σ )
,

g◦
2(σ ) =

(
− f1(σ )

2 f 1/2(σ )
+ 1

2

)
g1(σ ) − g2(σ )

2 f 1/2(σ )
, σ ∈ Ω .

(3.5)

andλ1, λ2 being the functions (2.12). To fix a branch of the functionf 1/2(s) we cut the
stripΠ by smooth curvesΓ j ⊂ Π ( j = 0, 1, . . . , ρ) which do not intersect each other and
join the branch points so thatΓ j = s2 j s2 j+1 ( j = 0, 1, . . . , ρ). The positive direction of
Γ j is chosen froms2 j to s2 j+1. Denote the limit value of the fixed branch on the left and the
right sides of the cut as[ f 1/2(σ )]+ and[ f 1/2(σ )]−, respectively. Clearly,[ f 1/2(σ )]+ =
−[ f 1/2(σ )]−, σ ∈ Γ j .

Since the vector functionΦ(s) must be single-valued in the stripΠ , from (3.2), in
addition, we get the following boundary condition on the system of curvesΓ j ( j =
0, 1, . . . , ρ):

T+(σ )φ+(σ ) = T−(σ )φ−(σ ), σ ∈ Γ j . (3.6)

This requirement recovers the linear relations between the limit values of the functionsφ1
andφ2 on the curvesΓ j :

φ+
1 (σ ) = φ−

2 (σ ), φ−
1 (σ ) = φ+

2 (σ ),

σ ∈ Γ j ( j = 0, 1, . . . , ρ). (3.7)

Therefore, the original vector functional-difference equation (2.1) with the matrix
coefficient (2.10) is equivalent to the system of two separate difference equations (3.4)
and the two relations of Riemann–Hilbert type (3.7).
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To reduce this new problem to a vector Riemann–Hilbert problem on a system of open
contours, we map thes-stripΠ onto az-plane cut along the segment[−1, 1]. The mapping
function and the inverse map are defined by

z = −i tan
π

h
(s − ω), s = ω + ih

2π
log

1 + z

1 − z
. (3.8)

The contourΩ is mapped onto the upper side of the cut[−1, 1] (the left bank with respect
to the positive direction), the second side of the strip,Ω−1, is mapped onto the lower side
of the cut. The images of the upper and the lower infinite points of the stripΠ , x − i∞ and
x + i∞ (ω − h � x � ω), are the pointsz = −1 andz = 1, respectively. The function
log[(1+ z)(1− z)−1] is real on the upper side of the cut. Introduce the following functions:

Fj (z) = φ j

(
ω + ih

2π
log

1 + z

1 − z

)
, z ∈ C,

l j (t) = λ j

(
ω + ih

2π
log

1 + t

1 − t

)
, t ∈ [−1, 1], (3.9)

g∗
j (t) = g◦

j

(
ω + ih

2π
log

1 + t

1 − t

)
, t ∈ [−1, 1], j = 1, 2,

and also the notation for the images of the branch pointss j and the polesak :

z j = −i tan
π

h
(s j − ω), j = 0, 1, . . . , 2ρ + 1,

αk = −i tan
π

h
(ak − ω), k = 1, 2, . . . , m.

(3.10)

Let the cutsΓ j be mapped onto curvesΓ ∗
j ( j = 0, 1, . . . , ρ). The curvesΓ ∗

j ⊂ C and do
not intersect each other and the segment[−1, 1].

Thus, the system of equations (3.4), (3.7) is equivalent to the following vector
Riemann–Hilbert problem:

F+
1 (t) = l1(t)F−

1 (t) + g∗
1(t), t ∈ (−1, 1),

F+
2 (t) = l2(t)F−

2 (t) + g∗
2(t), t ∈ (−1, 1),

F+
1 (t) = F−

2 (t), t ∈ Γ ∗
j ,

F+
2 (t) = F−

1 (t), t ∈ Γ ∗
j , j = 0, 1, . . . , ρ.

(3.11)

Finally, we reduce this vector problem on the complex plane to a scalar problem on a
Riemann surface. LetR be the two-sheeted surface of the algebraic equation

w2 = q(z), q(z) = (z − z0)(z − z1) · · · (z − z2ρ+1), (3.12)

formed by gluing two copiesC1 andC2 of the extended complex planeC ∪ ∞ cut along
the system of the curvesΓ ∗

j ( j = 0, 1, . . . , ρ). The positive (left) sides of the cutsΓ ∗
j on
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C1 are glued with the negative (right) sides of the curvesΓ ∗
j on C2, and vice versa. This

gives rise to a two-sheeted Riemann surfaceR of genusρ. Then the functionw, defined
by (3.12), becomes single-valued on the surfaceR:

w =
{

q1/2(z), z ∈ C1

−q1/2(z), z ∈ C2,
(3.13)

whereq1/2(z) is the branch chosen such thatq1/2(z) ∼ zρ+1, z → ∞.
Denote a point of the surfaceR with affix z on C1 by the pair(z, q1/2(z)), and its

counterpart onC2 by the pair(z, −q1/2(z)). Introduce a function on the surfaceR,

F(z, w) =
{

F1(z), (z, w) ∈ C1
F2(z), (z, w) ∈ C2.

(3.14)

Because of the third and fourth conditions in (3.11), the functionF(z, w) is meromorphic
everywhere on the surface except for the contourL = L1 ∪ L2, whereL1 = (−1, 1) ⊂ C1
andL2 = (−1, 1) ⊂ C2. Therefore, the system (3.11) is equivalent to a scalar Riemann–
Hilbert problem on the surfaceR,

F+(t, ξ) = l(t, ξ)F−(t, ξ) + g∗(t, ξ), (t, ξ) ∈ L, (3.15)

where

l(t, ξ) =
{

l1(t), (t, ξ) ∈ L1
l2(t), (t, ξ) ∈ L2,

g∗(t, ξ) =
{

g∗
1(t), (t, ξ) ∈ L1

g∗
2(t), (t, ξ) ∈ L2,

(3.16)

andξ = w(t).
Without loss of generality, the Ḧolder functionl(t, ξ) does not vanish on the contour

L and has definite limits at the end-pointst = ±1. The functiong∗(t, ξ) is also a Ḧolder
function onL except possibly the ends:

|g∗(t, ξ)| � A(µ)
0 |t ∓ 1|−ν̃±

µ , (t, ξ) ∈ Lµ, µ = 1, 2, t → ±1, (3.17)

where A(µ)
0 = const. The parameters̃ν±

µ are defined from (3.5) by the behaviour at the
pointsω ± i∞ of the functionsf1(σ ), f 1/2(σ ), g1(σ ) andg2(σ ).

4. Canonical solution to the Riemann–Hilbert problem on a hyper-elliptic surface

4.1 Class of solutions

First, describe a class of solutions for the problem (3.15). Clearly, the functionF(z, w)

admits poles at the points(αk, q1/2(αk)) and (αk, −q1/2(αk)) of orders νk (k =
1, 2, . . . , m). In addition, this function may have poles at the branch pointsz j of order,
say,µ j � 0 ( j = 0, 1, . . . , 2ρ + 1). If one of these pointsz j is a removable singularity,
thenµ j = 0. Obviously, ifµ j > 0, thenµ j is odd. Recall (Springer, 1956) that a branch
point z j of a Riemann surface is called a pole of orderµ j for a function F(z, w) if
F(z, w) ∼ Aζ−µ j , ζ → 0, A = const, andζ = (z − z j )

1/2 is a local uniformizing
parameter of the pointz j .



36 Y. A. ANTIPOV AND V. V. SILVESTROV

Formulae (3.3), (3.9) and (3.14) indicate that at the end-points of the contourL, the
function F(z, w) may have singularities:

|F(z, w)| � A(µ)
1 |z ∓ 1|−ν±

µ , (z, w) ∈ Cµ, µ = 1, 2, z → ±1, (4.1)

where A(µ)
1 = const, andν±

µ � ν̃±
µ . The numbersν±

µ are defined by the parametersν̃±
µ ,

by the prescribed growth at the ends of the strip of the functionsΦ1(s),Φ2(s), i.e. by the
numbersb±, and also by the behaviour of the functionsf1(s) f −1/2(s)+1, f1(s) f −1/2(s)−
1 and f −1/2(s) ass → x ± i∞ (ω − h � x � ω).

The key step of the solution technique is to factorize the functionl(t, ξ) or to construct
a special, canonical function. We say that the functionX (z, w) is acanonical solution of
the problem (3.15) if it provides a solution to the following homogeneous problem on an
open contour of the surfaceR.

Find a function X (z, w) which is meromorphic on R\L, admits a finite number of poles
and zeros and has non-zero boundary values X±(t, ξ) satisfying the boundary condition

X+(t, ξ) = l(t, ξ)X−(t, ξ), (t, ξ) ∈ L ⊂ R, (4.2)

where the contour L consists of the contours L1 = (−1, 1) ⊂ C1 and L2 = (−1, 1) ⊂ C2.
At the ends of the contours Lµ,

|X (z, w)| � A(µ)
2 |z ∓ 1|−ν±

µ , (z, w) ∈ Cµ, z → ±1, A(µ)
2 = const, µ = 1, 2.

(4.3)

4.2 Solution to the problem growing at infinity

We start with constructing a system of canonical cross-sections of the surfaceR:
a1, a2, . . . , aρ andb1, b2, . . . , bρ . If ρ = 0, then the surfaceR is topologically equivalent
to a sphere, and there are no cross-sections. Letρ > 0. The cross-sectiona j is a closed
smooth curve built up from the banks of the cutΓ ∗

j = z2 j z2 j+1. As a j is traced in the
positive direction, the first sheetC1 is to the left (Fig. 1).

The cross-sectionb j is a smooth closed curve that consists of two parts. The first one
(the solid line in Fig. 1) lies on the first sheetC1, its starting point isz2 j , and the ending
point is z1. The second part lies on the second sheet (the dashed line in Fig. 1), starts at
the pointz1 (it belongs to both sheetsC1 andC2) and goes to the pointz2 j at which it
returns to the first sheet. The contourb j crosses the cross-sectiona j from right to the left
and does not cross the other sectionsak andbk (k �= j) and the contourL. We mention
that the choice of the system of the cross-sections is not unique. Another possibility, that
under some circumstances can be more convenient, is to take the cross-sectionbρ as a loop
joining the pointsz2ρ+1 andz0 and passing through the infinite points of both sheets of the
surface (Fig. 2).

Choose Weierstrass’ kernel (Zverovich, 1971)

dW = w + ξ

2ξ

dt

t − z
, w = w(z), ξ = w(t), (4.4)
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FIG. 1. Canonical cross-sectionsa j , b j ( j = 1, 2, . . . , ρ). The loopbρ joins the pointsz1 andz2ρ .
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FIG. 2. Canonical cross-sectionsa j , b j ( j = 1, 2, . . . , ρ). The loopbρ joins the pointsz2ρ+1 andz0.

as an analogue of the Cauchy kernel on the surfaceR. We next show that the function

X (z, w) = exp{χ(z, w)}, (z, w) ∈ R (4.5)

provides a partial solution of the problem (4.2). Here

χ(z, w) = 1

2π i

∫
L

log l(t, ξ) dW +
2∑

µ=1


sgnκ+

µ

|κ+
µ |∑

j=1

p′
µj∫

p′
µ0

dW + sgnκ−
µ

|κ−
µ |∑

j=1

p′′
µj∫

p′′
µ0

dW




+
ρ∑

j=1




r j∫
p j

dW + m j

∮
a j

dW + n j

∮
b j

dW


 , (4.6)
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where

p′
10 = (1, q1/2(1)), p′

20 = (1, −q1/2(1)),

p′′
10 = (−1, q1/2(−1)), p′′

20 = (−1, −q1/2(−1)),

p j = (δ j , v j ) ∈ C1, v j = q1/2(δ j ), j = 1, 2, . . . , ρ,

p′
µj = (δ′

µj , (−1)µ−1v′
µj ) ∈ Cµ, v′

µj = q1/2(δ′
µj ), j = 1, 2, . . . , |κ+

µ |, µ = 1, 2,

p′′
µj = (δ′′

µj , (−1)µ−1v′′
µj ) ∈ Cµ, v′′

µj = q1/2(δ′′
µj ), j = 1, 2, . . . , |κ−

µ |, µ = 1, 2,

(4.7)

are arbitrary fixed distinct points of the surfaceR which do not lie on the contourL and the
canonical cross-sections. Also, they coincide with none of the branch points of the surface
R and the poles of the functionF(z, w). The final formulae for the solution do not depend
upon the choice of the pointsp′

µj , p′′
µj and p j .

As far as the pointsr j = (σ j , w j ) (w j = w(σ j ), j = 1, 2, . . . , ρ) are concerned, they
are unknown and may lie on either sheet of the surface. The pointsr j are also assumed to be
different from the branch pointsz0, z1, . . . z2ρ+1 and the poles with affixesα1, α2, . . . , αm .
The numbersκ±

1 , κ±
2 , m j andn j ( j = 1, 2, . . . , ρ) are unknown integers. Branches of the

function logl(t, ξ) on the contoursL1 and L2 are chosen in an arbitrary way and will
be fixed afterwards. The pointsr j and the integersκ±

1 , κ±
2 , m j , n j will be chosen later

to make the functionX (z, w) bounded at infinity and to satisfy the condition (4.3) at the
ending points of the contourL. The integrals in (4.6), apart from the integrals overL and
arounda j , b j , are taken over smooth curves joining the end-points and which do not cross
the cross-sectionsa j , b j and the contourL. The values of these integrals are independent
of the shape of the path. The first integral in (4.6),

χ0(z, w) = 1

2π i

∫
L

log l(t, ξ) dW, (4.8)

is discontinuous through the contourL with the jump logl(t, ξ). The other integrals are
also discontinuous through the curves of integration. However, the corresponding jumps
are 2π ik (k is an integer), and therefore, the functionX (z, w) satisfies the homogeneous
boundary condition (4.2).

The second and the third terms in (4.6) are taken to achieve the prescribed behaviour
(4.3) of the canonical solution at the endsz = ±1 of the contoursL1 andL2 (see Section
4.3). Analysis of the term exp{χ(z, w)} in the vicinity of the pointsp′

µj shows that the
function X (z, w) has simple poles at these points ifκ+

µ < 0 and simple zeros ifκ+
µ > 0.

Clearly, forκ+
µ = 0 there is no singularity at the pointp′

µj . The same rule is applicable to
the integrals over the curves with the ending pointp′′

µj .
Weemphasize that, in general, the function (4.5) has an essential singularity at infinity

for the Weierstrass kernel having the algebraic growth at infinity. To eliminate the essential
singularity, the last sum in (4.6) is added (see Section 4.4). At the starting pointsp j , the
function X (z, w) possesses simple poles, and at the ending pointsr j , it has simple zeros.
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4.3 Choice of a branch of log l(t, ξ) and integers κ±
1 , κ±

2

Let us fix a branch of the function logl(t, ξ) such that

−π < arglµ(0) � π, µ = 1, 2. (4.9)

Then

log lµ(1) = log lµ(0) + i∆′
µ, log lµ(−1) = log lµ(0) − i∆′′

µ, µ = 1, 2, (4.10)

where∆′
µ and∆′′

µ are the increments of the arguments of the functionslµ(t) ast traces the
contours[0, 1] and[0, −1], respectively, witht = 0 as astarting point.

With a view towards recovering the property (4.3) of the functionX (z, w) in
neighbourhoods of the end-points, we choose the integersκ±

1 andκ±
2 . To do this, first,

rewrite the integral (4.8) in the form

χ0(z, w) = 1

4π i

1∫
−1

[log l1(t) + log l2(t)] dt

t − z

+w(z)

4π i

1∫
−1

[log l1(t) − log l2(t)] dt

q1/2(t)(t − z)
(4.11)

and analyse its behaviour atz = ±1. The first term in (4.11) has the logarithmic singularity
B± log(z ∓ 1) at the pointsz = ±1 of both sheets of the surface, where

B± = ± 1

4π i
[log l1(±1) + log l2(±1)]. (4.12)

As for the second integral, its behaviour depends on whether or not the pointsz = ±1
coincide with the branch points of the surface. Ifz = ±1 are not the branch points, then
the second integral has the logarithmic singularityB±

µ log(z ∓ 1) on the sheetCµ, where

B±
µ = ∓ (−1)µ

4π i
[log l1(±1) − log l2(±1)], µ = 1, 2. (4.13)

If z = 1 or z = −1 is abranch point, then the second integral is bounded asz → 1 or
z → −1 on both sheetsC1 andC2.

Wethus obtain that ifz = 1 is abranch point, regardless of which sheet the pointz = 1
belongs to, the functionχ0(z, w) behaves as

χ0(z, w) ∼ log l1(1) + log l2(1)

4π i
log(z − 1), (z, w) ∈ R, z → 1. (4.14)

In the vicinity of the second end-point, if it is a branch point, then

χ0(z, w) ∼ − log l1(−1) + log l2(−1)

4π i
log(z + 1), (z, w) ∈ R, z → −1. (4.15)
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If z = ±1 are regular points of the surface,

χ0(z, w) ∼ ± log lµ(±1)

2π i
log(z ∓ 1), (z, w) ∈ Cµ, z → ±1, µ = 1, 2. (4.16)

Substituting formulae (4.14), (4.15), (4.16) into (4.5), (4.6) yields

X (z, w) = O(|z ∓ 1|β±
µ ), (z, w) ∈ Cµ, z → ±1, µ = 1, 2, (4.17)

where

β±
µ = ± 1

2π
arglµ(±1) − κ±

µ , µ = 1, 2. (4.18)

This is true if z = ±1 are regular points of the surface. If, however,z = 1 or z = −1
coincides with a branch point, then

X (z, w) = O(|z − 1|β+
), (z, w) ∈ R, z → 1 (4.19)

or

X (z, w) = O(|z + 1|β−
), (z, w) ∈ R, z → −1, (4.20)

with

β± = ± 1

4π

[
argl1(±1) + argl2(±1)

] − κ±
1 . (4.21)

In this case we putκ+
2 = 0 orκ−

2 = 0. Obviously, the functionX (z, w) meets the condition
(4.3) if the numbersβ±

1 , β± satisfy the inequalities

−ν±
µ � β±

µ < 1 − ν±
µ (µ = 1, 2), −ν±

1 � β± < 1 − ν±
1 . (4.22)

Hence, ifz = ±1 are regular points of the surfaceR, then

κ±
µ = ν±

µ +
[
± 1

2π
arglµ(±1)

]
, µ = 1, 2. (4.23)

Here [a] is the entire part of a numbera. If z = 1 or z = −1 is abranch point of the
surface, then

κ+
1 = ν+

1 +
[

1

4π
(argl1(1) + argl2(1))

]
, κ+

2 = 0 (4.24)

or

κ−
1 = ν−

1 +
[
− 1

4π
(argl1(−1) + argl2(−1))

]
, κ−

2 = 0. (4.25)
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4.4 Jacobi’s inversion problem

If the genusρ of the surfaceR is zero, then the last sum in (4.6) vanishes, and the function
X (z, w) given by (4.5) is a solution (bounded asz → ∞) to the homogeneous problem
(4.2). The choice (4.23) or (4.24), (4.25) provides the prescribed behaviour of the solution
to the original vector functional equation at the endsx ± i∞ (h − ω � x � ω) of the strip.

Let us concentrate on the elliptic (ρ = 1) and hyper-elliptic (ρ � 2) cases. In general,
for arbitraryr j , m j , n j , because of the pole of orderρ of the Weierstrass kernel at infinity,
the functionX (z, w) has an essential singularity at infinity. The presence of the points
r j and the integersm j , n j makes it possible to eliminate this singularity. To do this, we
rewrite the representation (4.6) for the functionχ(z, w) as follows:

χ(z, w) = χ1(z) + w(z)χ2(z), (4.26)

where

χ1(z) = 1

4π i

1∫
−1

[log l1(t) + log l2(t)] dt

t − z

+ 1

2

2∑
µ=1


sgnκ+

µ

|κ+
µ |∑

j=1

δ′
µj∫

1

dt

t − z
+ sgnκ−

µ

|κ−
µ |∑

j=1

δ′′
µj∫

−1

dt

t − z


 + 1

2

ρ∑
j=1

σ j∫
δ j

dt

t − z
,

χ2(z) = 1

4π i

1∫
−1

[log l1(t) − log l2(t)] dt

q1/2(t)(t − z)

− 1

2

2∑
µ=1

(−1)µ


sgnκ+

µ

|κ+
µ |∑

j=1

δ′
µj∫

1

dt

q1/2(t)(t − z)
+ sgnκ−

µ

|κ−
µ |∑

j=1

δ′′
µj∫

−1

dt

q1/2(t)(t − z)




+ 1

2

ρ∑
j=1




(σ j ,w j )∫
(δ j ,v j )

+m j

∮
a j

+n j

∮
b j


 dt

ξ(t)(t − z)
. (4.27)

By use of the identity

1

t − z
= −1

z
− t

z2
− . . . − tρ−1

zρ
+ tρ

zρ(t − z)
(4.28)

we obtain the following asymptotic expansion of the functionχ(z, w) at infinity:

χ(z, w) = −1

2

ρ∑
ν=1


 1

2π i

1∫
−1

[log l1(t) − log l2(t)] tν−1dt

q1/2(t)
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−
2∑

µ=1

(−1)µ


sgnκ+

µ

|κ+
µ |∑

j=1

δ′
µj∫

1

tν−1dt

q1/2(t)
+ sgnκ−

µ

|κ−
µ |∑

j=1

δ′′
µj∫

−1

tν−1dt

q1/2(t)




+
ρ∑

j=1




(σ j ,w j )∫
(δ j ,v j )

+m j

∮
a j

+n j

∮
b j


 tν−1dt

ξ(t)




w(z)

zν
+ O(1), z → ∞. (4.29)

The functionχ(z, w) is bounded at infinity if and only if the followingρ conditions hold:

ρ∑
j=1




(σ j ,w j )∫
(δ j ,v j )

dων + m j

∮
a j

dων + n j

∮
b j

dων


 = d◦

ν , ν = 1, 2, . . . , ρ, (4.30)

where

d◦
ν = − 1

2π i

1∫
−1

[log l1(t) − log l2(t)] tν−1dt

q1/2(t)

+
2∑

µ=1

(−1)µ


sgnκ+

µ

|κ+
µ |∑

j=1

δ′
µj∫

1

tν−1dt

q1/2(t)
+ sgnκ−

µ

|κ−
µ |∑

j=1

δ′′
µj∫

−1

tν−1dt

q1/2(t)


 ,

dων = tν−1dt

ξ(t)
. (4.31)

The differentials dω1, dω2, . . . , dωρ form a basis of Abelian differentials of the first kind
on the surfaceR. The integrals

Aν j =
∮
a j

tν−1dt

ξ(t)
, Bν j =

∮
b j

tν−1dt

ξ(t)
(4.32)

are theA- andB-periods of the Abelian integrals (Springer, 1956):

ων = ων(z, w) =
(z,w)∫

(z0,0)

tν−1dt

ξ(t)
, ν = 1, 2, . . . , ρ. (4.33)

By use of the notation (4.32) and (4.33), equation (4.30) becomes

ρ∑
j=1

[ων(σ j , w j ) + m j Aν j + n j Bν j ] = d∗
ν , ν = 1, 2, . . . , ρ, (4.34)
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where

d∗
ν = d◦

ν +
ρ∑

j=1

ων(δ j , v j ). (4.35)

The nonlinear system (4.34) with respect to the points(σ j , w j ) ∈ R and the integers
m j , n j ( j = 1, 2, . . . , ρ) is the classical Jacobi inversion problem (Springer, 1956;
Zverovich, 1971; Farkas, 1992). It is known that its solution always exists.

In the elliptic case,ρ = 1, the problem is equivalent to the inversion of the elliptic
integral

(σ1,w1)∫
(z0,0)

dt√
(t − z0)(t − z1)(t − z2)(t − z3)

+ m1A11 + n1B11 = d∗
1. (4.36)

This is solvable in terms of elliptic functions (Hancock, 1968). In the hyper-elliptic case,
ρ � 2, the inversion problem gives rise to a system ofρ algebraic equations (Zverovich,
1971) that is equivalent to one algebraic equation of orderρ (Antipov & Silvestrov, 2002).
To provide a guideline to the reader, we describe the main steps of the procedure for the
inversion problem (Antipov & Silvestrov, 2002):

(i) normalizing the basis of the Abelian integrals of the first kind (4.33);
(ii) setting up Jacobi’s inversion problem for the normalised basis;
(iii) reducing the problem to an algebraic equation of orderρ;
(iv) evaluating the coefficients of the algebraic equation in terms of Riemann’sθ -

function.
The functionX (z, w) defined by (4.5), (4.26) is a canonical solution of the problem

(3.15) provided the continuous branches of the functions logl1(t), log l2(t) are chosen
as in (4.9); the integersκ±

1 , κ±
2 are fixed by (4.23) to (4.25). The points(δ j , v j ) ∈ R

( j = 1, 2, . . . , ρ) are fixed in an arbitrary manner. The points(σ j , w j ) ∈ R and the
integersm j , n j ( j = 1, 2, . . . , ρ) should be found from the Jacobi inversion problem
(4.34). We note that it is always possible to avoid (by changing the location of the points
(δ j , v j )) the case when either some of the points(σ j , w j ) coincide, or some of them fall
on the poles(αk, ±q1/2(αk)), or on the branch points of the surfaceR.

5. Non-homogeneous Riemann–Hilbert problem

Use of the canonical solution enables us to find the general solution of the non-
homogeneous problem (3.15). First, by splitting the function

l(t, ξ) = X+(t, ξ)

X−(t, ξ)
, (t, ξ) ∈ L, (5.1)

we obtain

F+(t, ξ)

X+(t, ξ)
− F−(t, ξ)

X−(t, ξ)
= g∗(t, ξ)

X+(t, ξ)
, (t, ξ) ∈ L. (5.2)
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It follows from (3.17), (4.17), (4.19), (4.20), (4.22) that the function[X+(t, ξ)]−1g∗(t, ξ)

may have integrable singularities at the endst = ±1 of the contourR:

∣∣∣∣ g∗(t, ξ)

X+(t, ξ)

∣∣∣∣ � A′|t ∓ 1|−δ, A′ = const, 0 � δ < 1, t → ±1. (5.3)

Hence a partial solution of the problem (3.15) is the functionX (z, w)Ψ(z, w), where

Ψ(z, w) = ψ1(z) + w(z)ψ2(z),

ψ1(z) = 1

4π i

∫
L

g∗(t, ξ)

X+(t, ξ)

dt

t − z
, ψ2(z) = 1

4π i

∫
L

g∗(t, ξ)

ξ(t)X+(t, ξ)

dt

t − z
. (5.4)

Then the general solution of the problem (3.15) becomes

F(z, w) = X (z, w)[Ψ(z, w) + R(z, w)], (5.5)

whereR(z, w) is the meromorphic function onR whose poles are defined by the class of
solutions described in Section 4.1 and, also, by the properties of the canonical function
X (z, w). The functionR(z, w) has poles of ordersν1, ν2, . . . , νm at the points with the
affixesα1, α2, . . . αm on both sheets of the surface. It also has simple poles at the points
r j = (σ j , w j ) ( j = 1, 2, . . . , ρ) and poles of ordersµ0, µ1, . . . , µ2ρ+1 (µ j are either
zero, or odd positive numbers) at the branch pointsz0, z1, . . . , z2ρ+1, respectively.

If κ+
µ > 0 (µ = 1 or µ = 2), then at the pointsp′

µj = (δ′
µj , (−1)µ−1v′

j ) ∈ Cµ

( j = 1, 2, . . . , κ+
µ ) the canonical solution has simple zeros, and, therefore, the function

R(z, w) may have simple poles at these points. In the caseκ+
µ < 0, the canonical function

X (z, w) has simple poles at the pointsp′
µj ( j = 1, 2, . . . , −κ+

µ ). Eventually, this causes
the presence of inadmissible poles of the functionF(z, w). In order for the solution to be
bounded at the pointsp′

µj it is necessary and sufficient that the functionΨ(z, w)+ R(z, w)

vanish at these points. Analysis of the structure of the functionR(z, w) at the pointsp′′
µj =

(δ′′
µj , (−1)µ−1v′′

µj ) ∈ Cµ ( j = 1, 2, . . . , |κ−
µ |) is employed similarly.

In addition, the functionΨ(z, w)+R(z, w) has simple zeros at the pointsp j = (δ j , v j )

( j = 1, 2, . . . , ρ) and has to be bounded at infinity on both sheets (if of course none of the
above poles coincides with one of the two infinite points of the surface). The meromorphic
function R(z, w) with the described poles has the form

R(z, w) = R1(z) + w(z)R2(z), (5.6)
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where

R1(z) = C0 +
ρ∑

j=1

C jw j

z − σ j
+

m∑
k=1

νk∑
j=1

D′
k j

(z − αk) j

+
2ρ+1∑
k=0

(µk−1)/2∑
j=1

E ′
k j

(z − zk) j
−

2∑
µ=1

(−1)µ


 κ ′

µ∑
j=1

H ′
µjv

′
µj

z − δ′
µj

+
κ ′′
µ∑

j=1

H ′′
µjv

′′
µj

z − δ′′
µj


 ,

R2(z) =
ρ∑

j=1

C j

z − σ j
+

m∑
k=1

νk∑
j=1

D′′
k j

(z − αk) j

+
2ρ+1∑
k=0

(µk+1)/2∑
j=1

E ′′
k j

(z − zk) j
+

2∑
µ=1


 κ ′

µ∑
j=1

H ′
µj

z − δ′
µj

+
κ ′′
µ∑

j=1

H ′′
µj

z − δ′′
µj


 .

(5.7)

Hereκ ′
µ = max{κ+

µ , 0}, κ ′′
µ = max{κ−

µ , 0} (µ = 1, 2), v′
µj = q1/2(δ′

µj ), v′′
µj = q1/2(δ′′

µj ),
w j = w(σ j ). If the upper index is less than the lower one, then the corresponding
sum is assumed to be zero. The constantsC j ( j = 0, 1, . . . , ρ), D′

k j , D′′
k j (k =

1, 2, . . . , m; j = 1, 2, . . . , νk), E ′
k j (k = 0, 1, . . . , 2ρ + 1; j = 1, 2, . . . , (µk − 1)/2),

E ′′
k j (k = 0, 1, . . . , 2ρ+1; j = 1, 2, . . . , (µk +1)/2), H ′

µj ( j = 1, 2, . . . , κ ′
µ; µ = 1, 2)

andH ′′
µj ( j = 1, 2, . . . , κ ′′

µ; µ = 1, 2) are arbitrary. The same choice of the constantsC j

in the representations for the rational functionsR1(z) and R2(z) is explained by the fact
that the canonical functionX (z, w) has simple poles at the pointsr j = (σ j , w j ) which lie
either on the first sheetC1 or on the second one. The constantsD′

k j and D′′
k j are not the

same because the general solution has to have poles at the pointsα1, α2, . . . , αm , and the
functions 1, w(z) are linearly independent. For the same reason the constantsE ′

k j , E ′′
k j and

H ′
mj , H ′′

mj are different for the functionsR1(z) andR2(z).
The procedure of solution of the Riemann–Hilbert problem (3.15) will be accomplished

if the conditions

lim
z→∞ zk[ψ2(z) + R2(z)] = 0, k = 1, 2, . . . , ρ, (5.8)

Ψ(δk, vk) + R(δk, vk) = 0, k = 1, 2, . . . , ρ, (5.9)

are satisfied. In addition,

Ψ(δ′
µj , (−1)µ−1v′

µj ) + R(δ′
µj , (−1)µ−1v′

µj ) = 0, j = 1, 2, . . . , −κ+
µ , µ = 1, 2,

(5.10)

and

Ψ(δ′′
µj , (−1)µ−1v′′

µj ) + R(δ′′
µj , (−1)µ−1v′′

µj ) = 0, j = 1, 2, . . . , −κ−
µ , µ = 1, 2,

(5.11)

are effective if the upper bounds are positive. Condition (5.8) provides the boundness of
the functionΨ(z, w) + R(z, w) at infinity. The next group of the conditions lends itself
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to eliminating the poles at the points(δk, vk). The relations (5.10), (5.11) guarantee the
boundness of the functionF(z, w) at the points(δ′

µj , (−1)µ−1v′
µj ) and(δ′′

µj , (−1)µ−1v′′
µj )

whenκ+
µ < 0 andκ−

µ < 0, respectively.
Remark. Formulae (5.7) are written down under the assumption that the polesαk and

the branch pointszk lie in a finite part of the complex plane. Otherwise these formulae
and the conditions (5.8) should be corrected in the appropriate manner. Alternatively, the
conformal mapping (3.8) can be changed by another mapping of the stripΠ into the
complex plane with a cut different from[−1, 1] to make all the pointsαk andzk finite.

6. Exact solution to the vector functional-difference equation

6.1 General case

Now we define the solution to the initial equation (2.1) with the matrixG(σ ) given by
(2.10). Use of the relations (3.2), (2.13), (3.9) and (3.14) gives

Φ1(s) = F(z, w) + F(z, −w),

Φ2(s) = − f1(s)[F(z, w) + F(z, −w)] + f 1/2(s)[F(z, w) − F(z, −w)], s ∈ Π ,

(6.1)

where

z = −i tan
π

h
(s − ω), f (s) = f 2

1 (s) + f2(s),

w = q1/2(z), q(z) = (z − z0)(z − z1) . . . (z − z2ρ+1).
(6.2)

The functionsf1(s), f2(s) are defined by (2.8). To analyse the behaviour of the solution
at the singular points, let us transform formulae (6.1). First, by making use of relations
(5.4)–(5.6), (4.5) and (4.26), the solution to the Riemann–Hilbert problem (3.15) becomes

F(z, w) = eχ1(z)+w(z)χ2(z)[Y1(z) + w(z)Y2(z)], (6.3)

where

Y1(z) = ψ1(z) + R1(z), Y2(z) = ψ2(z) + R2(z), (6.4)

and the functionsχ1, χ2, ψ1, ψ2 and R1(z), R2(z) are defined by (4.27), (5.4) and (5.7).
Substituting the expression (6.3) into (6.1) gives the resulting formulae for the solution:

Φ1(s) = 2eχ1(z)[cosh{w(z)χ2(z)}Y1(z) + w(z) sinh{w(z)χ2(z)}Y2(z)],

Φ2(s)=− f1(s)Φ1(s)

+2 f 1/2(s)eχ1(z)[sinh{w(z)χ2(z)}Y1(z) + w(z) cosh{w(z)χ2(z)}Y2(z)]. (6.5)

The functions (6.5) satisfy (2.1). However, for arbitrary chosen constants in (5.7), they
have poles in the stripΠ . Indeed, the functionF(z, w) has poles at the points of both
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sheets of the surface with affixesα1, α2, . . . αm andz0, z1, . . . , z2ρ+1. Their images in the
strip Π , the pointsa1, a2, . . . am , and s0, s1, . . . s2ρ+1, respectively, are the poles of the
functionsΦ1(s),Φ2(s). The factors f1(s) and f 1/2(s) may change the order of poles or
add new ones to the set of poles of the functionΦ2(s). The conditions of analyticity of the
functionsΦ1(s), Φ2(s) at their superfluous singular points provide additional conditions
which together with (5.8)–(5.11) are used to fix some of the arbitrary constants in (5.7).

6.2 The case of simple poles

Let all the polesαk (k = 1, 2, . . . , m) and the branch pointszk (k = 0, 1, . . . , 2ρ + 1)
be simple, i.e.νk = 1 (k = 1, 2, . . . , m), andµk = 1 (k = 0, 1, . . . , 2ρ + 1). Then,
obviously,

R1(z) = C0 +
ρ∑

j=1

C jw j

z − σ j
+

m∑
j=1

D′
j

z − α j
−

2∑
µ=1

(−1)µ


 κ ′

µ∑
j=1

H ′
µjv

′
µj

z − δ′
µj

+
κ ′′
µ∑

j=1

H ′′
µjv

′′
µj

z − δ′′
µj


 ,

R2(z) =
ρ∑

j=1

C j

z − σ j
+

m∑
j=1

D′′
j

z − α j
+

2ρ+1∑
j=0

E j

z − z j
+

2∑
µ=1


 κ ′

µ∑
j=1

H ′
µj

z − δ′
µj

+
κ ′′
µ∑

j=1

H ′′
µj

z − δ′′
µj


.

(6.6)

Therefore, the solution (6.5) possesses 3ρ+2m +κ ′
1+κ ′

2+κ ′′
1 +κ ′′

2 +3 arbitrary constants.
Now we write down all the conditions for the functionsΦ1(s),Φ2(s) to be within the
prescribed class. Assume that the point(σk, wk) ∈ C1. Then from (6.6) the function
F(z, −w) is analytic at this point. Because of the simple zero forX (z, w) at (σk, wk),
the functionF(z, w) has a removable singularity at this point. A similar result follows
for (σk, wk) ∈ C2. The 2ρ conditions (5.8), (5.9) provide the required behaviour of the
solution at infinity and remove the simple poles of the canonical functionX (z, w) at the
points(δk, vk) ∈ C1 (k = 1, 2, . . . , ρ). Letα1, α2, . . . , αt (t � m) bethe prescribed poles
of the solution. Then to eliminate the other polesαt+1, . . . , αm , we require

res
z=αk

Φ1(s) = 0, res
z=αk

Φ2(s) = 0 (k = t + 1, t + 2, . . . , m) (6.7)

where

s = ω + ih

2π
log

1 + z

1 − z
. (6.8)

The above relations provide the additional 2(m − t) conditions. As for the polesz = zk

(k = 0, 1, . . . , 2ρ+1) of the functionR2(z), they become removable points of the solution.
This is because the functions

w(z) sinh{w(z)χ2(z)}, f 1/2(z) sinh{w(z)χ2(z)}, f 1/2(z)w(z) cosh{w(z)χ2(z)}
(6.9)
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have simple zeros at the pointsz = zk . The relations (5.10), (5.11) givêκ1 + κ̂2 + κ̃1 +
κ̃2 conditions, wherêκµ = max{0, −κ+

µ }, κ̃µ = max{0, −κ−
µ } (µ = 1, 2). Finally, the

functionΦ2(s) defined from (3.3) by

Φ2(s) = [− f1(s) + f 1/2(s)]φ1(s) − [ f1(s) + f 1/2(s)]φ2(s) (6.10)

may have inadmissible poles at the poles of the functionsf1(s) and f 1/2(s). Let these
poles bes◦

1, s◦
2, . . . , s◦

n◦ . Assuming that all the poles are simple, write down the regularity
conditions for the functionΦ2(s) at these points

res
s=s◦

j

Φ2(s) = 0, j = 1, 2, . . . , n◦. (6.11)

Therefore, the total number of additional conditions providing the functionsΦ1(s),Φ2(s)
to belong to the prescribed class, is 2ρ + 2m − 2t + n◦ + κ̂1 + κ̂2 + κ̃1 + κ̃2. Thus,
the difference between the number of the arbitrary constants in (6.6) and the number of
conditions for them isρ + 2t − n◦ + κ+

1 + κ+
2 + κ−

1 + κ−
2 + 3. Note thatρ is the genus

of the surfaceR (the number of the branch points of the functionf 1/2(s) in the stripΠ
is 2ρ + 2); t is the number of the prescribed poles of the solution in the stripΠ ; n◦ is the
number of the inadmissible poless◦

j ; the integersκ±
1 andκ±

2 are defined by (4.23)–(4.25)
and depend on the elements of the matrixG(σ ).

7. Even solution of the Riemann–Hilbert problem

In this section we aim to analyse a particular case of the Riemann–Hilbert problem (3.15)
when its solution is even, i.e. satisfies the condition

Fµ(z) = Fµ(−z), z ∈ Cµ\[−1, 1], µ = 1, 2. (7.1)

Since the pointss and 2ω − h − s of thes-plane correspond to the pointsz and−z of the
plane, respectively, the relation (7.1) holds, if simultaneously

Φµ(s) = Φµ(2ω − h − s), µ = 1, 2,

f1(s) = f1(2ω − h − s), f 1/2(s) = f 1/2(2ω − h − s), s ∈ Π . (7.2)

Wealso describe an algorithm for this case. To construct such an even solution is a crucial
step in solving problems of electromagnetic scattering (see Section 8).

7.1 Formulation

Assume that the polesαk (k = 1, 2, . . . , 2m′; m = 2m′) of the functionsF1(s), F2(s)
and the branch pointszk (k = 0, 1, . . . , 2ρ + 1) of the surfaceR are simple and located
symmetrically with respect to the origin:

αm′+k = −αk, k = 1, 2, . . . , m′,
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zρ+1+k = −zk, k = 0, 1, . . . , ρ. (7.3)

Let also the pointsz = ±1 not coincide with the branch points.
Define a class of the Riemann–Hilbert problems (3.15) with additional condition of

symmetry (7.1) which have a solution. The relation (7.1) implies

F+
µ (−t) = F−

µ (t), F−
µ (−t) = F+

µ (t), t ∈ (−1, 1), µ = 1, 2. (7.4)

Replacingt for −t in the equation

F+
µ (t) = lµ(t)F−

µ (t) + g∗
µ(t), t ∈ (−1, 1), µ = 1, 2, (7.5)

that follows from (3.15), and using formulae (7.4) gives

F+
µ (t) = 1

lµ(−t)
F−

µ (t) − g∗
µ(−t)

lµ(−t)
, t ∈ (−1, 1), µ = 1, 2. (7.6)

By comparison of relations (7.5) and (7.6) we get the following necessary conditions for a
solution of the problem (3.15), (7.1) to exist:

lµ(t)lµ(−t) = 1, g∗
µ(t) + lµ(t)g∗

µ(−t) = 0, t ∈ (−1, 1), µ = 1, 2. (7.7)

Note that the above conditions are equivalent to the relations

λµ(σ)λµ(σ̄ ) = 1, g◦
µ(σ ) + λµ(σ)g◦

µ(σ̄ ) = 0, σ ∈ Ω , µ = 1, 2. (7.8)

This is because the pointsσ andσ̄ of the contourΩ correspond to the pointst and−t on
the segment[−1, 1], respectively.

Thus, we have two possibilities:lµ(0) = 1 and lµ(0) = −1. We will henceforth
assume that the functionslµ(t) andg∗

µ(t) meet the conditions (7.7). By the relation (7.1),
the functionsFµ(z) have the same singularities at the pointsz = ±1, and the inequality
(4.1) becomes

|Fµ(z)| � A(µ)
1 |z ∓ 1|−νµ, z → ±1, A(µ)

1 = const (µ = 1, 2). (7.9)

7.2 Even canonical function

Choose a branch of the functions loglµ(t), t ∈ [−1, 1] (µ = 1, 2) such that−π <

arglµ(0) � π (µ = 1, 2). Then, because of the conditions (7.7)

log lµ(−t) = − log lµ(t) + 2π iεµ, t ∈ [−1, 1], µ = 1, 2, (7.10)

where

εµ =
{

0 if lµ(0) = 1
1 if lµ(0) = −1,

(7.11)

and also sinceq1/2(−t) = q1/2(t), t ∈ [0, 1], the integral (4.11) has the form

χ0(z, w) = 1

2π i

1∫
0

[log l1(t) + log l2(t)] t dt

t2 − z2
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+ w(z)

2π i

1∫
0

[log l1(t) − log l2(t)] t dt

q1/2(t)(t2 − z2)
+ χ̃0(z, w), (7.12)

where

χ̃0(z, w) = −ε1 + ε2

2

1∫
0

dt

t + z
− w(z)

ε1 − ε2

2

1∫
0

dt

q1/2(t)(t + z)
. (7.13)

The functionχ̃0(z, w) is continuous everywhere on the surfaceR apart from the segments
[−1, 0] ⊂ Cµ, µ = 1, 2. On these segments, for the functionχ̃0(z, w), the following
boundary condition holds:

χ̃+
0 (t, ξ) − χ̃−

0 (t, ξ) = 2π iεµ. (7.14)

Hence the function exp{χ̃0(z, w)} is continuous everywhere on the surfaceR. So, without
loss of generality, we can take the functionχ0(z, w) without the last term̃χ0(z, w), i.e. as

χ0(z, w) = 1

2π i

1∫
0

[log l1(t) + log l2(t)] t dt

t2 − z2

+ w(z)

2π i

1∫
0

[log l1(t) − log l2(t)] t dt

q1/2(t)(t2 − z2)
. (7.15)

Introduce, next, a new algebraic function

p(ζ ) = (ζ − ζ0)(ζ − ζ1) . . . (ζ − ζρ), ζ j = z2
j , j = 0, 1, . . . , ρ. (7.16)

Then, in view of the symmetry (7.3) of the branch pointsz j ,

q(z) = (z2 − z2
0)(z

2 − z2
1) . . . (z2 − z2

ρ) = p(z2). (7.17)

Rewrite now formula (7.15) as follows:

χ0(z, w)= 1

4π i

1∫
0

[log l1(
√

τ) + log l2(
√

τ)] dτ

τ − ζ

+u(ζ )

4π i

1∫
0

[log l1(
√

τ) − log l2(
√

τ)] dτ

p1/2(τ )(τ − ζ )
(7.18)

= 1

2π i

∫
L∗

log l∗(τ, η) dU = χ0∗(ζ, u),
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whereζ = z2, L∗ = L∗
1 ∪ L∗

2, L∗
1 = [0, 1] ⊂ C1, L∗

2 = [0, 1] ⊂ C2, log l∗(τ, η) =
log lµ(

√
τ) on the contourL∗

µ (µ = 1, 2), and

dU = u + η

2η

dτ

τ − ζ
(7.19)

is the Weierstrass kernel on a Riemann surfaceR′ of the algebraic functionu2 = p(z).
Hereu(ζ ) = w(

√
ζ ), η = u(τ ).

On the other hand, the function expχ0∗(ζ, u) is a particular solution of the
homogeneous Riemann–Hilbert problem

expχ+
0∗(τ, η) = l∗(τ, η) expχ−

0∗(τ, η), (τ, η) ∈ L∗ (7.20)

on the surfaceR′ of genusρ′ = [ρ/2] with the branch pointsζ0, ζ1, . . . , ζρ . This solution
is bounded at the points(0, ±p1/2(0)). It may have a power singularity at the points
(1, ±p1/2(1)) and an essential singularity at infinity. By the device proposed in Section
4, remove these singularities by adding a new function that does not affect the boundary
condition (7.20):

χ∗(ζ, u) = χ0∗(ζ, u) +
2∑

µ=1

sgnκµ

|κµ|∑
j=1

p∗
µj∫

p∗
µ0

dU +
ρ′∑

j=1




r∗
j∫

p∗
j

dU + m j

∮
a∗

j

dU + n j

∮
b∗

j

dU


 .

(7.21)

Herea∗
j , b∗

j ( j = 1, 2, . . . , ρ′) are the canonical cross-sections of the surfaceR′ which
are the images of theρ′ cross-sectionsa j , b j ( j = 1, 2, . . . , ρ′) of the surfaceR by
mappingζ = z2. The integersκµ and the pointsp∗

µ0 are given by

κµ = νµ +
[

1

2π
arglµ(1)

]
= νµ +

[
1

2π
∆∗

µ

]
, µ = 1, 2,

p∗
µ0 = (1, (−1)µ−1 p1/2(1)) = (1, (−1)µ−1q1/2(1)) ∈ Cµ, µ = 1, 2, (7.22)

where∆∗
µ is the increment of the argument of the functionlµ(t) as t traces the contour

[0, 1] with t = 0 as astarting point. The other pointsp∗
µj and p∗

j are arbitrary, distinct and
fixed:

p∗
µj = (γ 2

µj , (−1)µ−1vµj ) ∈ Cµ, vµj = p1/2(γ 2
µj ) = q1/2(γµj ),

j = 1, 2, . . . , |κµ|, µ = 1, 2,

p∗
j = (δ2

j , v j ) ∈ C1, v j = p1/2(δ2
j ) = q1/2(δ j ), j = 1, 2, . . . , ρ′.

(7.23)

The integersm j , n j ( j = 1, 2, . . . , ρ′) and the points

r∗
j = (σ 2

j , u j ) ∈ R′, u j = u(σ 2
j ) = w(σ j ) = w j , j = 1, 2, . . . , ρ′, (7.24)
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are defined from the following Jacobi inversion problem on the Riemann surfaceR′:
ρ′∑

j=1

[ω∗
ν(σ

2
j , u(σ 2

j )) + m j A∗
ν j + n j B∗

ν j ] = d∗
ν , ν = 1, 2, . . . , ρ′, (7.25)

where

ω∗
ν = ω∗

ν(ζ, u) =
(ζ,u)∫

(ζ0,0)

τ ν−1dτ

η(τ)
= 2

(z,w)∫
(z0,0)

t2ν−1dt

ξ(t)
= 2ω2ν(z, w),

A∗
ν j =

∮
a∗

j

dω∗
ν = 2A2ν j , B∗

ν j =
∮
b∗

j

dω∗
ν = 2B2ν j , j = 1, 2, . . . , ρ′,

d∗
ν = 2

ρ′∑
j=1

ω2ν(δ j , v j ) − 1

π i

1∫
0

[log l1(t) − log l2(t)] t2ν−1dt

q1/2(t)

+2
2∑

µ=1

(−1)µ sgnκµ

|κµ|∑
j=1

γµj∫
1

t2ν−1dt

q1/2(t)
, ν = 1, 2, . . . , ρ′.

(7.26)

Weemphasize that the new Jacobi problem (7.25) related to the symmetric problem (3.15),
(7.1) consists ofρ′ = [ρ/2] non-linear algebraic equations, and can be reduced to an
algebraic equation of degreeρ′ (Antipov & Silvestrov, 2002). Recall that in the general
non-symmetric case, there areρ equations.

Next, by replacing in (7.18), (7.19), (7.21)ζ andτ for z2 andt2 respectively, we obtain
the even canonical function in the form (4.26), where

χ1(z) = 1

2π i

1∫
0

[log l1(t)+log l2(t)] t dt

t2 − z2
+

2∑
µ=1

sgnκµ

|κµ|∑
j=1

γµj∫
1

t dt

t2 − z2
+

ρ′∑
j=1

σ j∫
δ j

t dt

t2 − z2
,

χ2(z) = 1

2π i

1∫
0

[log l1(t) − log l2(t)] t dt

q1/2(t)(t2 − z2)

−
2∑

µ=1

(−1)µ sgnκµ

|κµ|∑
j=1

γµj∫
1

t dt

q1/2(t)(t2 − z2)

+
ρ′∑

j=1




(σ j ,w j )∫
(δ j ,v j )

+m j

∮
a j

+n j

∮
b j


 t dt

ξ(t)(t2 − z2)
.

(7.27)

7.3 General even solution

By use of the functionχ(z, w) we can find the general solution of the even problem (3.15),
(7.1). Let us write it down in the case of simple poles (analysed in Section 6.2):

F(z, w) = χ(z, w) {ψ1(z) + R1(z) + w(z)[ψ2(z) + R2(z)]} , (7.28)



VECTOR FUNCTIONAL-DIFFERENCE EQUATION 53

where

ψ1(z) = 1

2π i

∫
L∗

g∗(t, ξ)

X+(t, ξ)

t dt

t2 − z2
,

ψ2(z) = 1

2π i

∫
L∗

g∗(t, ξ)

ξ(t)X+(t, ξ)

t dt

t2 − z2
,

R1(z) = C0 +
ρ′∑

j=1

C jw j

z2 − σ 2
j

+
m′∑
j=1

D′
j

z2 − α2
j

+
κ ′∑

j=1

H ′
jv1 j

z2 − γ 2
1 j

−
κ ′′∑
j=1

H ′′
j v2 j

z2 − γ 2
2 j

,

R2(z) =
ρ′∑

j=1

C j

z2 − σ 2
j

+
m′∑
j=1

D′′
j

z2 − α2
j

+
ρ∑

j=0

E j

z2 − z2
j

+
κ ′∑

j=1

H ′
j

z2 − γ 2
1 j

+
κ ′′∑
j=1

H ′′
j

z2 − γ 2
2 j

,

κ ′ = max{κ1, 0}, κ ′′ = max{κ2, 0}, w j = w(σ j ), vµj = q1/2(γµj ).
(7.29)

Here we used formulae (5.4), (7.7) and also

X+(−t, ξ) = X−(t, ξ) = X+(t, ξ)/ l(t, ξ), (t, ξ) ∈ L. (7.30)

The solution (7.28) possessesρ + ρ′ + 2m′ + κ ′ + κ ′′ + 2 arbitrary constants, and it has to
meet the 2ρ′ conditions

lim
z→∞ z2 j [ψ2(z) + R2(z)] = 0, j = 1, 2, . . . , ρ′, (7.31)

ψ1(δ j ) + R1(δ j ) + v j [ψ2(δ j ) + R2(δ j )] = 0, j = 1, 2, . . . , ρ′, (7.32)

which follow from (5.8), (5.9). As in the general case, it should also satisfy the relations

ψ1(γ1 j ) + R1(γ1 j ) + v1 j [ψ2(γ1 j ) + R2(γ1 j )] = 0, j = 1, 2, . . . , −κ1 (if κ1 < 0)

(7.33)

ψ1(γ2 j ) + R1(γ2 j ) − v2 j [ψ2(γ2 j ) + R2(γ2 j )] = 0, j = 1, 2, . . . , −κ2 (if κ2 < 0)

(7.34)

and the conditions (6.7), (6.11). Therefore, in total, we get 2ρ′ + m − t + n◦ + κ̂1 + κ̂2
relations for arbitrary constants. Hereκ̂µ = max{0, −κµ} (µ = 1, 2), andn◦ is the number
of equations (6.11).

7.4 Odd solution

Finally, we notice that the even canonical function can be used for finding the general
solution of the problem (3.15) subject to the conditionFµ(z) = −Fµ(−z) (µ = 1, 2). We
write down the solution in case such a problem might arise in other applications:

F(z, w) = zχ(z, w) {ψ3(z) + R1(z) + w(z)[ψ4(z) + R2(z)]} , (7.35)
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where

ψ3(z) = 1

2π i

∫
L∗

g∗(t, ξ)

X+(t, ξ)

dt

t2 − z2
,

ψ4(z) = 1

2π i

∫
L∗

g∗(t, ξ)

ξ(t)X+(t, ξ)

dt

t2 − z2
. (7.36)

It should be pointed out that the odd solution of the problem (3.15) exists only under the
conditions

lµ(t)lµ(−t) = 1, g∗
µ(t) − lµ(t)g∗

µ(−t) = 0, t ∈ (−1, 1), µ = 1, 2. (7.37)

8. Diffraction by an anisotropic impedance half-plane

8.1 Physical problem

To illustrate the technique of the paper, we consider scattering of an electromagnetic wave
at skew incidence by an anisotropic half-plane with different impedances. Let the primary
source be a plane wave incident obliquely whosez-components are

Ei
z = eze

ikρ sinβ cos(θ−θ0)−ikz cosβ,

Z0Hi
z = hze

ikρ sinβ cos(θ−θ0)−ikz cosβ, (8.1)

where(ρ, θ, z) are cylindrical coordinates,k is the wave number (Im(k) � 0), Z0 is the
intrinsic impedance of free space,β is the angle of incident (0< β < π/2), andez, hz are
prescribed parameters. In the most general case in which the impedance is anisotropic and
differs on the upper and lower sides of the half-planes{0 < ρ < ∞, θ = ±π∓0, |z| < ∞},
the boundary conditions are (Senior, 1978)

Eρ = ∓η±
2 Z0Hz, θ = ±π ∓ 0,

Ez = ±η±
1 Z0Hρ, θ = ±π ∓ 0, (8.2)

whereη±
1 , η±

2 are the surface impedances of the upper (θ = π − 0) and lower (θ =
−π + 0) half-planes, respectively. The surface impedances are assumed to be real. The
ρ-componentsEρ andHρ are expressed in terms ofEz andHz as follows:

Eρ = 1

ik sin2 β

[
cosβ

∂ Ez

∂ρ
+ 1

ρ

∂(Z0Hz)

∂θ

]
,

Z0Hρ = 1

ik sin2 β

[
cosβ

∂(Z0Hz)

∂ρ
− 1

ρ

∂ Ez

∂θ

]
. (8.3)
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Therefore, equivalently, the boundary conditions (8.2) can be written as

1

ρ

∂ Ez

∂θ
− cosβ

∂(Z0Hz)

∂ρ
± ik sin2 βEz

η±
1

= 0, θ = ±π ∓ 0,

1

ρ

∂(Z0Hz)

∂θ
+ cosβ

∂ Ez

∂ρ
± ikη±

2 sin2 βZ0Hz = 0, θ = ±π ∓ 0. (8.4)

Represent the total field in the form of the Sommerfeld integral (Maliuzhinets, 1958)

Ez(ρ, θ, z) = e−ikz cosβ

2π i

∫
γ

eikρ sinβ cosαse(α + θ) dα,

Z0Hz(ρ, θ, z) = e−ikz cosβ

2π i

∫
γ

eikρ sinβ cosαsh(α + θ) dα, (8.5)

whereγ is the Sommerfeld contour, the functionsse(α) andsh(α) are analytic everywhere
in the strip−π < Re(α) < π apart from the pointα = θ0, where they have a simple pole
with the residues defined by the incident field (8.1). At the infinite pointsα = x ± i∞
(|x | < ∞), the functionsse(α) andsh(α) are bounded. The boundary conditions (8.4) are
satisfied if and only if (Maliuzhinets, 1958)(

sinα ± 1

η±
1

sinβ

)
se(α ± π) − cosα cosβsh(α ± π)

=
(

− sinα ± 1

η±
1

sinβ

)
se(−α ± π) − cosα cosβsh(−α ± π),

(
sinα ± η±

2 sinβ
)

sh(α ± π) + cosα cosβse(α ± π)

= (− sinα ± η±
2 sinβ

)
sh(−α ± π) + cosα cosβse(−α ± π). (8.6)

Next, following Senior & Legault (1998) introduce the two functions

Φ1(α + π) =
(

sinα + 1

η+
1

sinβ

)
se(α + π) − cosα cosβsh(α + π),

Φ2(α + π) = (
sinα + η+

2 sinβ
)

sh(α + π) + cosα cosβse(α + π).

(8.7)

Inverting these relations gives

se(α + π) = 1

Γα(1/η+
1 , η+

2 )
[(sinα + η+

2 sinβ
)
Φ1(α + π) + cosα cosβΦ2(α + π)],

sh(α + π) = 1

Γα(1/η+
1 , η+

2 )

[(
sinα + 1

η+
1

sinβ

)
Φ2(α + π) − cosα cosβΦ1(α + π)

]
,

(8.8)
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where

Γα(a, b) = (sinα + a sinβ)(sinα + b sinβ) + cos2 α cos2 β. (8.9)

Because of the identities

Φ j (α + π) = Φ j (−α + π), Φ j (−α − π) = Φ j (α + 3π), j = 1, 2, (8.10)

the system of equations for the functionsse, sh can be reduced to the system for the new
functionsΦ1,Φ2:

1

Γα(−1/η+
1 , −η+

2 )

[
Γα

(
1

η−
1

, −η+
2

)
Φ1(α + 3π) − 1

η1
cosα sin 2βΦ2(α + 3π)

]

= 1

Γα(1/η+
1 , η+

2 )

[
Γα

(
− 1

η−
1

, η+
2

)
Φ1(α − π) − 1

η1
cosα sin 2βΦ2(α − π)

]
,

1

Γα(−1/η+
1 , −η+

2 )

[
Γα

(
− 1

η+
1

, η−
2

)
Φ2(α + 3π) + η2 cosα sin 2βΦ1(α + 3π)

]

= 1

Γα(1/η+
1 , η+

2 )

[
Γα

(
1

η+
1

, −η−
2

)
Φ2(α − π) + η2 cosα sin 2βΦ1(α − π)

]
,

(8.11)

where

1

η1
= 1

2

(
1

η+
1

+ 1

η−
1

)
, η2 = η+

2 + η−
2

2
. (8.12)

If now expressΦ1(α + 3π), Φ2(α + 3π) in terms of the valuesΦ1(α − π), Φ2(α − π) and
putσ = 3π + α, then, onΩ = {Re(σ ) = 3π},

Φ(σ ) = G(σ )Φ(σ − 4π), σ ∈ Ω , (8.13)

where

Φ(σ ) =
(

Φ1(σ )

Φ2(σ )

)
, G(σ ) =

(
G11(σ ) G12(σ )

G21(σ ) G22(σ )

)
, (8.14)
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with

G11(σ ) = Γσ (1/η−
1 , −η+

2 )Γσ (1/η+
1 , −η−

2 ) + η2η
−1
1 cos2 σ sin2 2β

D(σ )
,

G22(σ ) = Γσ (−1/η−
1 , η+

2 )Γσ (−1/η+
1 , η−

2 ) + η2η
−1
1 cos2 σ sin2 2β

D(σ )
,

G12(σ ) = −η−
0 sinβ sin 2β sin 2σ

η1D(σ )
, G21(σ ) = η+

0

η−
0

η1η2G12(σ ),

D(σ ) = Γσ (−1/η+
1 , −η+

2 )

Γσ (1/η+
1 , η+

2 )
[Γσ (−1/η−

1 , η+
2 )Γσ (1/η+

1 , −η−
2 ) + η2η

−1
1 cos2 σ sin2 2β],

η+
0 = η+

2 − 1

η−
1

, η−
0 = η−

2 − 1

η+
1

.

(8.15)

8.2 Arbitrary impedances: a surface of genus ρ′ = 3

Equation (8.13) is a vector functional-difference equation of the first order with the shift
h = 4π subject to the additional condition of symmetry

Φ(σ ) = Φ(2π − σ), σ ∈ Π = {−π < Re(s) < 3π}. (8.16)

In this section we show how to reduce the problem (8.13), (8.16) to a particular case of the
even Riemann–Hilbert problem (3.15), (7.1) analysed in Section 7, and also how to solve
it.

8.2.1 Analysis of a Riemann–Hilbert problem on a surface. It is seen that the matrix
(8.14) has the structure (2.10) required for the method to be applied. Indeed, in the notation
of Section 2,

a1(σ ) = 1
2[G11(σ ) + G22(σ )], a2(σ ) = G12(σ ),

f1(s) = η1(η
+
0 + η−

0 )

2η−
0 sin 2β coss

(cos2 s cos2 β + sin2 s − e0 sin2 β),

f2(s) = η+
0

η−
0

η1η2,

(8.17)

where

e0 = 1

η+
0 + η−

0

(
η+

0

η−
2

η+
1

+ η−
0

η+
2

η−
1

)
. (8.18)
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Clearly, the functions (8.17) meet the conditions fora1(σ ), a2(σ ), f1(s) and f2(s) imposed
in Section 2. The key function of the method is

f (s) = f 2
1 (s) + f2(s) =

[
η1(η

+
0 + η−

0 ) tanβ

4η−
0 coss

]2

f ∗(s), (8.19)

where

f ∗(s) =
(

cos2 s − 1 − e0 sin2 β

sin2 β

)2

+ 16e1 cos2 s cot2 β,

e1 = η2η
+
0 η−

0

η1(η
+
0 + η−

0 )2
.

(8.20)

In the stripΠ = {−π < Re(s) < 3π}, the function f (s) has four poles of the second
order:−1

2π ,1
2π , 3

2π and5
2π . Define the branch points of the functionf 1/2(s). From (8.19),

(8.20), they are the roots of the equations

cos 2s = Aν, s ∈ Π (ν = 1, 2), (8.21)

where

Aν =−1+ 2

sin2 β

[
1−e0 sin2 β−8e1 cos2 β+4i(−1)ν cosβ

√
e1(1−e0 sin2 β−4e1 cos2 β)

]
.

(8.22)

In the above formula,√. . . is one of the branches of the square root. From the whole set
of the roots

π j + i

2
log(Aν ±

√
A2

ν − 1) (ν = 1, 2; j = 0, ±1, ±2, . . . ), (8.23)

one needs to choose those roots which lie in the stripΠ . Wenote that the expression

d0 = e1(1 − e0 sin2 β − 4e1 cos2 β) (8.24)

can be positive, negative and, also, equal to zero. Ifd0 = 0, then, obviously, the function
f 1/2(s) does not have branch points at all. The roots of (8.21) become zeros of the function
f 1/2(s). This case is reported in Section 8.3. Henceforward we assume thatd0 �= 0 and,
therefore, in the stripΠ , the function f 1/2(s) has 16 branch points:s0, s1, . . . , s15.

For example, forβ = 1
4π , η+

2 /η+
1 = 2, η−

1 /η+
1 = 3 andη−

2 /η+
1 = 4, the branch points

are

s0 = −1·57080− i1·70392, s1 = s0,

s2 = −1·57080− i0·05375, s3 = s2,

s j = s j−4 + π ( j = 4, 5, . . . , 15).

(8.25)
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Analysis of formulae (8.17), (8.19) reveals that the functionsf1(s) f −1/2(s) and f −1/2(s)
are free of poles in the stripΠ (all their singular points are the branch pointss0, s1, . . . s15).
Since the functionsse(α), sh(α) have the prescribed pole at the pointα = θ0 and because
of the relation (8.16) the functionsΦ1(s), Φ2(s) have simple poles at the pointss = θ0,
s = 2π − θ0. Therefore, the functionsφ1(s), φ2(s), defined by (3.3), have simple poles at
the same points:a1 = θ0, a2 = 2π − θ0.

As for the behaviour at the ends of the strip, because of the presence of the functions
sinα and cosα in (8.7), the functionsΦ1(s), Φ2(s), grow exponentially ass → x ± i∞
(−π � x � 3π ): Φ j (s) = O(e|s|). The functionsf1(s) f −1/2(s) ± 1 and f −1/2(s) make
different the principal term in the expansions of the functionsφ1(s) andφ2(s) ass → ∞,
s ∈ Π . To show this, choose a branch of the functionf 1/2(s) such that

f 1/2(s) ∼ − η1

2 sin 2β

∣∣∣∣∣η
+
0

η−
0

+ 1

∣∣∣∣∣ sin2 β coss, s → x ± i∞, −π � x � 3π . (8.26)

Then

f1(s)

f 1/2(s)
= sgn

(
η+

0

η−
0

+ 1

)
+ O(e−2|s|), s → x ± i∞. (8.27)

Formulae (3.3) and (8.26) indicate that one of the functionsφ1(s), φ2(s) grows at the ends
of the strip, and the other is bounded:

η+
0

η−
0

+ 1 > 0 : φ1(s) = O(e|s|), φ2(s) = O(1), s → x ± i∞, (8.28)

η+
0

η−
0

+ 1 < 0 : φ1(s) = O(1), φ2(s) = O(e|s|), s → x ± i∞. (8.29)

From the relations (8.8), it is clear that the functionsse(α), sh(α) have inadmissible
poles at the zeros of the functionΓα(−1/η+

1 , −η+
2 ) which lie in the strip−π < Re(α) <

π . Let these zeros beε j , j = 1, 2, 3, 4 (Re(ε j ) ∈ (−π, π)). The pointsε j become
removable points of the functionsse(α), sh(α), if the following conditions hold:

(− sins + η+
2 sinβ)Φ1(s) − coss cosβΦ2(s) = 0, s = ε j ,

(
− sins + 1

η+
1

sinβ

)
Φ2(s) + coss cosβΦ1(s) = 0, s = ε j , j = 1, 2, 3, 4. (8.30)

Since the determinant of this systemΓε j (−1/η+
1 , −1/η+

2 ) is equal to 0, the above
conditions are equivalent to the following four equations:

(− sinε j + η+
2 sinβ)Φ1(ε j ) − cosε j cosβΦ2(ε j ) = 0, j = 1, 2, 3, 4. (8.31)
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Following the procedure of Section 3 we reduce the vector functional-difference
equation (8.13) to the scalar Riemann–Hilbert problem (3.15) (g∗(t, ξ) ≡ 0) on the two-
sheeted Riemann surfaceR of genusρ = 7 (the number of the branch points is 16). In the
example (8.25) the branch points become

z0 = −0·45822− 0·33792i, z2 = −0·01574− 0·41413i,

z4 = −1·41358− 1·04246i, z6 = −0·09165− 2·41124i,

z j = −z j−1 ( j = 1, 3, 5, 7), z j = z j−4 ( j = 8, 9, 10, 11),

z j = z j−12 ( j = 12, 13, 14, 15).

(8.32)

It turns out that in all possible cases the branch pointsz j are symmetric with respect to the
origin. Since the functionz = −i tan s−3π

4 maps the pointss and 2π − s into the pointsz
and−z, respectively, and because the functionsΦ1(s),Φ2(s) and f1(s), f 1/2(s) meet the
relation (8.16), the functionsFµ(z), µ = 1, 2 are even. It is also clear that they have simple
poles at the pointsα1 = −i cot π−θ0

4 andα2 = −α1.
Define the behaviour of the functionsFµ(z) at the endsz = ±1. Let, first,η+

0 /η−
0 +1 >

0. Because of formulae (8.28), the numbersν±
µ in inequalities (4.1) becomeν±

1 = 2,
ν±

2 = 0. Indeed, forF1(z), for instance, we have

F1(z) = φ1

(
3π + 2i log

1 + z

1 − z

)
∼ A◦

1e|s| ∼ A◦
1 exp

{
2

∣∣∣∣log
1 + z

1 − z

∣∣∣∣
}

∼ A◦
1|z ± 1|−2,

z → ∓1 (s → x ± i∞, −π � x � 3π), A◦
1 = const. (8.33)

Forη+
0 /η−

0 + 1 < 0, the same argument givesν±
1 = 0, ν±

2 = 2.
Next, analysing formulae (8.15) asσ → 3π ± i∞ and asσ = 3π we get

G j j (σ ) ∼ 1, G jm(σ ) = O(e−2|σ |) ( j �= m), σ → 3π ± i∞, j, m = 1, 2,

G12(3π) = 0, G11(3π) = G22(3π) = 1,

(8.34)

and therefore

λ j (3π) = λ j (3π ± i∞) = 1, j = 1, 2. (8.35)

8.2.2 Even Riemann–Hilbert problem. We have already shown that the polesα1, α2
and the branch pointsz j ( j = 0, 1, . . . , 15) are simple and symmetric with respect to
the origin. The end-pointsz = ±1 are not branch points of the surface. In order that the
functions Fµ(z) are even, it is necessary for the functionslµ(t) to satisfy the condition
(7.7), i.e.lµ(t)lµ(−t) = 1, t ∈ (−1, 1). To check this relation, notice that forσ = 3π + iξ
(−∞ < ξ < ∞)

cosσ̄ = cosσ, sinσ̄ = − sinσ, Γσ̄ (a, b) = Γσ (−a, −b). (8.36)
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Then from (8.15), (8.17), (8.19) and (2.8), (2.11)

G11(σ̄ ) = G22(σ )
D(σ )

D(σ̄ )
, G22(σ̄ ) = G11(σ )

D(σ )

D(σ̄ )
, G12(σ̄ ) = −G12(σ )

D(σ )

D(σ̄ )
,

a1(σ̄ ) = a1(σ )
D(σ )

D(σ̄ )
, a2(σ̄ ) = −a2(σ )

D(σ )

D(σ̄ )
, f 1/2(σ̄ ) = f 1/2(σ ), σ ∈ Ω .

(8.37)

So, for the characteristic functionsλ1(σ ), λ2(σ ) we obtain

λµ(σ̄ ) =
[
a1(σ ) + (−1) j a2(σ ) f 1/2(σ )

] D(σ )

D(σ̄ )
, µ = 1, 2. (8.38)

Then

λµ(σ)λµ(σ̄ ) = [G11(σ )G22(σ ) − G12(σ )G21(σ )]D(σ )

D(σ̄ )
, µ = 1, 2. (8.39)

It is directly verified that

[(G11(σ )G22(σ ) − G12(σ )G21(σ )]D(σ ) − D(σ̄ )

= η2 cos2 σ sin2 2β

η1D(σ )

{
[Γσ (1/η−

1 , −η+
2 ) − Γσ (−1/η−

1 , η+
2 )][Γσ (1/η+

1 , −η−
2 )

−Γσ (−1/η+
1 , η−

2 )] − 4η+
0 η−

0 sin2 β sin2 σ
}

= 0. (8.40)

For this reason,

λµ(σ)λµ(σ̄ ) = 1, σ ∈ Ω , (8.41)

and

lµ(t)lµ(−t) = 1, t ∈ (−1, 1), µ = 1, 2. (8.42)

As for the quantities arglµ(t), we get

lµ(−1) = lµ(0) = lµ(1) = 1. (8.43)

Choose arglµ(0) = 0. Then, by formula (8.42), arglµ(−1) = − arglµ(1). Numerical
results for different sets of the parameters of the problem show that as the pointt traverses
from 0 to 1, the point{Relµ(t), Im lµ(t)} always passes once round the origin in the
negative direction (see Figs 3 and 4 forβ = π/4, η+

2 /η+
1 = 0·001, η−

1 /η+
1 = 10,

η−
2 /η+

1 = 2). This means that the increments∆∗
µ of the arguments of the functionslµ(t),

as the contoursL∗
µ = [0, 1] ∈ Cµ are traversed by the pointt in the positive direction, are

equal to−2π :

1

2π
∆∗

µ = −1. (8.44)

Wehave verified all the conditions for the Riemann–Hilbert problem (3.15) to have an even
solution. Thus, to construct it, we may follow the scheme of Section 7.
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8.2.3 Closed-form solution. Weseek an even solution of the Riemann–Hilbert problem
(3.15) in the class of functions

|Fµ(z)| � Aµ|z − 1|−νµ, z → 1, µ = 1, 2, (8.45)

with

ν1 =
{

2, η+
0 /η−

0 > −1
0, η+

0 /η−
0 < −1

, ν2 =
{

0, η+
0 /η−

0 > −1
2, η+

0 /η−
0 < −1

. (8.46)

The integersκ1, κ2 are defined from (7.22)

κ1 =
{

1, η+
0 /η−

0 > −1
−1, η+

0 /η−
0 < −1

, κ2 =
{ −1, η+

0 /η−
0 > −1

1, η+
0 /η−

0 < −1
. (8.47)

The Riemann surfaceR′ introduced in Section 7 becomes a surface of genusρ′ = 3. The
even canonical functionχ(z, w) has been constructed in Section 7.2, and it is defined by
the relations (4.26), (7.27). The points(σ 2

j , u j ) ∈ R′ and the integersm j , n j ( j = 1, 2, 3)
should be found by solving the Jacobi inversion problem (7.25).

We next specify formulae (7.27), (7.28) which describe the solution of the Riemann–
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Hilbert problem (3.15), (7.1) relevant to the physical problem under consideration:

F(z, w) = χ(z, w)[R1(z) + w(z)R2(z)],

R1(z) = C0 +
3∑

j=1

C jw j

z2 − σ 2
j

+ D1

z2 − α2
1

+ H1v11δ−κ1,1

z2 − γ 2
11

− H2v21δ−κ2,1

z2 − γ 2
21

,

R2(z) =
3∑

j=1

C j

z2 − σ 2
j

+ D2

z2 − α2
1

+ H1δ−κ1,1

z2 − γ 2
11

+ H2δ−κ2,1

z2 − γ 2
21

+
7∑

j=0

E j

z2 − z2
j

,

(8.48)

with C j ( j = 0, 1, 2, 3), D1, D2, H1, H2 E j ( j = 0, 1, . . . , 7), being arbitrary constants,
δm,n being Kronecker’s symbol, and

α1 = −i cot
π − θ0

4
, z j = −i tan

s j − 3π

4
( j = 0, 1, . . . , 7). (8.49)

Thus, the functions (8.48) possess 15 arbitrary constants. Define the number of additional
conditions for them. Equations (7.31), (7.32) yield the first six conditions

lim
z→∞ z2 j R2(z) = 0, j = 1, 2, 3,

R1(δ j ) + v j R2(δ j ) = 0, j = 1, 2, 3. (8.50)



64 Y. A. ANTIPOV AND V. V. SILVESTROV

From (7.33), (7.34) we get either

R1(γ11) + v11R2(γ11) = 0 for κ1 = −1, κ2 = 1, (8.51)

or

R1(γ21) − v21R2(γ21) = 0 for κ1 = 1, κ2 = −1. (8.52)

We also have the four equations (8.31) and the two regularity conditions (6.11) of the
functionΦ2(s) at the points−1

2π , 1
2π

res
s=±π/2

{[− f1(s) + f 1/2(s)]φ1(s) − [ f1(s) + f 1/2(s)]φ2(s)} = 0. (8.53)

Note that then, because of the symmetry conditionΦ2(s) = Φ2(2π −s), the functionΦ2(s)
will be regular at the pointss = 3

2π ands = 5
2π automatically. These conditions follow

from (3.2) and (2.13). Finally, to reproduce the incident field, the solution has to meet the
two conditions

res
α=θ0

se(α) = ez, res
α=θ0

sh(α) = eh . (8.54)

The number of the constants is 15, and to fix them, we have the same number of linear
equations.

The solution of the vector functional equation (8.13) is defined by (6.5). The
constructed solution meets the symmetry condition (8.16). The closed-form solution of
the scattering problem is given by formulae (8.5) and (8.8).

REMARK 1 If η+
µ = η−

µ (µ = 1, 2), then the initial vector functional-difference equation
can be simplified to a new one withh = 2π (see Senior, 1978, p.212). Following the
above procedure reduces the problem to a Riemann–Hilbert problem on a surface of genus
ρ′ = 1 (a torus). The corresponding Jacobi inversion problem is solvable in terms of
elliptic functions. This symmetric case was analysed by Hurd & Lüneberg (1985). They
used the Wiener–Hopf formulation and the Daniele (1984) technique and found a closed-
form solution in terms of elliptic functions.

REMARK 2 The above technique may be extended for the case of the complex impedances
if the single branch of the functionf 1/2(s) is chosen such that

f 1/2(s) ∼ − η1

2 sin 2β

(
η+

0

η−
0

+ 1

)
sin2 β coss, s → x ± i∞, −π � x � 3π . (8.55)

We leave this interesting case and also physical and numerical analysis of the problem for
future research.

8.3 Case ρ = −1: no branch points

By the convention of Section 3, if the functionf 1/2(s) does not have branch points in the
strip Π , thenρ = −1. This is a very important case since the matrix of transformation
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(2.13) becomes single-valued, and the solution of the Riemann–Hilbert problem on the
Riemann surfaceR can be bypassed. In Fig. 5 we present those angles of incidentβ for
some values of the impedances when there are no branch points off 1/2(s) in the strip
Π . Such cases can be used as a test for numerical computations for arbitrary values of
the impedances. In this section we give a closed-form solution of the vector functional-
difference equation (8.13) forρ = −1. In addition, we show that for the isotropic case
η±

1 = η±
2 = η, the integerρ is also equal to−1.

Instead of the Riemann–Hilbert problem on the surfaceR, we get two separate
problems on a plane:

F+
1 (t) = l1(t)F−

1 (t), t ∈ (−1, 1),

F+
2 (t) = l2(t)F−

2 (t), t ∈ (−1, 1).
(8.56)

Weare looking for a solution of the above problems subject to the conditions

Fµ(z) = Fµ(−z), z /∈ [−1, 1]. (8.57)

Then the limit values of the functionsFµ(z) satisfy the relationsF+
µ (t) = F−

µ (−t), t ∈
(−1, 1).

Let η+
0 /η−

0 > −1. In this case, as it was shown in Section 8.2,

F1(z) = O(|z ± 1|−2), F2(z) = O(1), z → ∓1. (8.58)
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Wealso get

∆(1)
L = ∆(2)

L = −4π, lµ(±1) = 1. (8.59)

Choose arglµ(0) = 0. Then, immediately, arglµ(−1) = 2π and arglµ(1) = −2π .
Factorize the functionslµ(t):

lµ(t) = X+
µ (t)

X−
µ (t)

, t ∈ (−1, 1), (8.60)

where

Xµ(z) = (z2 − 1)rµ exp


 1

2π i

1∫
−1

log lµ(t)

t − z
dt


 (8.61)

with rµ to be determined. Analysis of the Cauchy integral gives

1

2π i

1∫
−1

log lµ(t)

t − z
dt = − log(z ± 1) + Ωµ∓(z), z → ∓1, (8.62)

where the functionsΩµ±(z) are bounded asz → ±1. Therefore,

Xµ(z) ∼ A±
µ(z ∓ 1)rµ−1, z → ±1, A±

µ = const. (8.63)

The class of solutions (8.58) indicates that

r1 = −1, r2 = 1. (8.64)

The Sokhotski–Plemelj formulae and the identities (8.42) imply

Xµ(z) = Xµ(−z), z /∈ (−1, 1); X+
µ (t) = X−

µ (−t), t ∈ (−1, 1). (8.65)

The functionsF1(z), F2(z) must be bounded at infinity (the pointz = ∞ corresponds to
the regular points = π of the functionsΦ1(s), Φ2(s)). They may have simple poles at the
points±z j ( j = 0, 1, 2, 3) and±α1, where

z j = −i cot
π − s∗

j

4
, α1 = −i cot

π − θ0

4
, (8.66)

ands∗
j ( j = 0, 1, 2, 3) are the simple zeros in the strip{−π < Re(s) < π} of the function

f 1/2(s) = η1(η
+
0 + η−

0 ) tanβ

4η−
0 coss

(cos2 s + 4e1 cot2 β). (8.67)

The general solution of the Riemann–Hilbert problems (8.56), (8.57) becomes

F1(z) = X1(z)

[
d1 + d2z2 + D1

z2 − α2
1

+
3∑

j=0

C j

(z2 − z2
j )X1(z j )

]
,

F2(z) = X2(z)

[
D2

z2 − α2
1

−
3∑

j=0

C j

(z2 − z2
j )X2(z j )

]
,

(8.68)
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whered1, d2, D1, D2, C0, C1, C2, C3 are arbitrary constants. Here we used the relation

res
z=±z j

F1(z) = − res
z=±z j

F2(z), j = 0, 1, 2, 3, (8.69)

that follows from (3.3). Clearly, sinceX1(z) = O(z−2), X2(z) = O(z2), z → ∞, the
functionsF1(z), F2(z) are bounded at infinity.

To fix the eight constants in (8.68), we have the same number of equations (8.31),
(8.53) and (8.54).

Finally, notice that in the isotropic case we get

η±
1 = η±

2 = η1 = η2 = η, η±
0 = η − 1

η
,

e0 = 1, e1 = 1
4, d0 = 0,

(8.70)

and the functionf 1/2(s) does not have branch points:

f 1/2(s) = η tanβ

2coss
(cos2 s + cot2 β). (8.71)

Thus, this is a particular case of the above problem forρ = −1.

9. Conclusion

In this paper we have analysed a class of vector functional-difference equations. It has
been shown that a vector functional-difference equation of the first order, in a stripΠ of a
complex plane subject to certain restrictions, is equivalent to a scalar Riemann–Hilbert
boundary-value problem on a two-sheeted Riemann surface of genusρ. The genusρ
is defined through the numberN of the poles and zeros of odd order in the strip of a
characteristic function of the matrix coefficient by the formulaρ = (N − 2)/2 (N is
always even). In contrast with the Riemann–Hilbert problem on a union of two real axes of
a hyper-elliptic surface considered by Antipov & Silvestrov (2002), in the present case, the
corresponding Riemann–Hilbert problem is formulated on a union of two finite segments.
We have constructed a closed-form solution of that new problem of the theory of analytic
functions. The conditions quenching the pole of orderρ at infinity of the Weierstrass kernel
give rise to the classical Jacobi inversion problem.

Motivated by applications to diffraction theory, in addition to the general case, we have
studied a special symmetric case of the vector functional-difference equation. It has been
revealed that in this case the Riemann–Hilbert problem is reducible to a new problem on a
surface of genusρ′ = [ρ/2].

To convince the reader of the applicability and the viability of the technique proposed,
we have solved a new model problem for an anisotropic half-plane with imperfect
interfaces (the impedancesη±

1 , η±
2 are arbitrary) which are illuminated by a plane

electromagnetic wave at oblique incidence. To solve this problem, we started with the
Maliuzhinets formulation or, equivalently, with a vector functional-difference equation of
the first order. It turns out that the matrix coefficient of the equation meets the restrictions
for the method to be applied. The genus of the corresponding Riemann surface is equal
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to three. To complete the procedure of solution, one needs to solve the Jacobi inversion
problem for a surface of genus three. A device for its exact solution has already been
reported (Antipov & Silvestrov, 2002). We have also analysed a particular case when the
characteristic function does not have poles and zeros of odd order, and the solution of the
Jacobi inversion problem has been avoided. Numerical results will be reported elsewhere.

The proposed technique has a potential to be successfully applied to a variety of
diffraction problems that have been considered insoluble. The complexity of the approach
depends on the genus of the corresponding Riemann surface. From the numerical point
view the only portion which becomes more complicated is the solution of the Jacobi
inversion problem.
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