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A vector functional-difference equation of the first order with a special matrix coefficient
is analysed. It is shown how it can be converted into a Riemann—Hilbert boundary-value
problem on a union of two segments on a hyper-elliptic surface. The genus of the surface
is defined by the number of zeros and poles of odd order of a characteristic function in a
strip. An even solution of a symmetric Riemann—Hilbert problem is also constructed. This
is a key step in the procedure for diffraction problems. The proposed technique is applied
for solving in closed form a new model problem of electromagnetic scattering of a plane
wave obliquely incident on an anisotropic impedance half-plane (all the four impedances
are assumed to be arbitrary).
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vector difference equation.

1. Introduction

The most powerful and general methods for exact solution of model problems in acoustic
and electromagnetic scattering are those of Wiener & Hopf (1931) and Maliuzhinets
(1958). The former method leads to the Riemann—Hilbert boundary-value problem on an
infinite straight lineL (it splits the complex plane into two half-plan®s” andD™):

dTt) =GP (1) +gt), tel, (1.1)

where the unknown vectors (functiong)* (t) are analytic inD*. The matrix (function)

G(t) and the vector (functiong(t) are given. The Maliuzhinets method gives rise to a
functional-difference equation (a particular case of the Carleman boundary-value problem
of the theory of analytic functions):

®P(0) =G(o)P(c —h)+g(o), o€ ={RelS) =uw} (1.2)

where @ (o) is an unknown vector (function) analytic in the stiip= {&w — h < Re(s) <
w}. The matrix (function)5(o) and the vector (functiorg(o) are supposed to be known.
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The method of exact solution of (1.1), (1.2) rests on our ability to factorize the
coefficientG of the problems, i.e. to split the matrix (functioB@)into two factors:

G@t) =XTMOX~®I L, tel, (1.3)
in the case of (1.1), and
G(o) = X(@)[X(e -], oen, (1.4)

for (1.2). HereX*(z) are analytic and non-singular in the domalpis, andX (s) is analytic
and non-singular in the striff .

If the aforementioned equations are scalar, then in either case there is an exact device
for factorisation which is, essentially, based on the Sokhotski—-Plemelj formulae. Thus,
practically all conceivable scalar equations (1.1), (1.2) corresponding to applied problems
can be solved exactly (for a survey see Noble, 1988; Osipov & Norris, 1999).

It is known that for a system of functional equations (1.1) or (1.2) such a general
procedure is not available. In comparison with the difference matrix factorisation (1.4),
there are significantly more studies on the Wiener—Hopf matrix factorisation (1.3). We
mention the papers by Khrapkov (1971), Jones (1984) and Moiseyev (1989). The paper
by Jones also provides some references to other results on the Wiener—Hopf matrix
factorisation and their applications to physical models.

As for the vector functional-difference equation (1.2), to the best of the authors’
knowledge, classes of matrices which admit the constructive difference factorisation (1.4)
have not been studied. We, of course, discard those cases when the matrix co@ficient
can be diagonalized by multiplying the left- and right-hand sides of (1.2) by a constant
matrix.

In this paper, we study the vector functional-difference equation (1.2) with the matrix
coefficient of the form

_ (ai(o) +ax(o) f1(o) a(o)

whereas (o), ax(o) are arbitrary Hlder functions on every finite segment of the contour
02, f1(0), f2(o) are arbitrary single-valued meromorphic functions in the sffiguch
that fj (o) = fj(c —h),o € 2, ] =1, 2. Itis assumed that the functioin(s) and the
characteristic functiorf (s) = flz(s) + f2(s) have finite numbers of poles in the stip.
The number of zeros of the functidin(s) in the stripiI is also finite.

We propose a procedure for exact solution of the vector functional-difference equation
(1.2) with the matrix coefficient (1.5). The method consists of the following steps:

(i) reducing the initial equation (1.2) to two separate functional-difference equations of
the first order and a system of boundary conditions for the unknown functions on a system
of cuts. The cuts join the branch points in the strip of the funcfidff(s);

(i) converting the problem to a vector Riemann—Hilbert problem on a system of open
curves;

(iii) setting up a Riemann-Hilbert problem on the contalir= L; U Lp, L; =
(=1, 1) c Cj, on a typer-elliptic surfaceR formed from the two copie€; andC; of
the cut complex plane;
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(iv) constructing a solution of the Riemann—Hilbert problem on the surface growing at
infinity;

(v) solving the Jacobi inversion problem (Springer, 1956; Zverovich, 1971; Farkas &
Kra, 1991; Antipov & Silvestrov, 2002) and removing the growth at infinity of the solution;

(vi) writing down the general solution of the Riemann—Hilbert problem on the surface
and, afterwards, the general solution of the vector functional-difference equation (1.2).

If the function f%2(s) has no branch points in the strifi, then one can find a
closed-form solution of the vector equation (1.2) by analysing a standard Riemann—Hilbert
problem on the segmert-1, 1) of the complex plane. In general, however, it is necessary
to formulate and solve a Riemann—Hilbert problem on a two-sheeted surface of genus
with 2p+2 being the number of the branch points of the functfdf?(s) in the stripI7 (the
number of these points is always even). If the functfdf?(s) has only two branch points
in the stripII, then the genus of the surface is zero and the solution of the Jacobi inversion
problem can be bypassed. FoE 1, the analysis of the Riemann—Hilbert problem requires
solving the Jacobi inversion problem in terms of either the Riengafumction (see, for
instance, Farkas & Kra, 1991) if > 2, or elliptic functions (see, for example, Hancock,
1968) if p = 1.

It turns out that applying the Maliuzhinets technique to problems of diffraction needs a
special solution which meets the symmetry condition:

P(w+it) = P(w—h—it), —o00o<71T <00 (1.6)

The above relation not only narrows the class of solutions but also imposes some necessary
conditions on the matri (o) and the vectog(o). If those conditions are satisfied, then
one needs to seek an even solution of the Riemann—Hilbert problem on a surface of genus
o' = [p/2] ([a] isthe entire part of a numbe). Therefore, in this case, there is no need
to solve Jacobi’s problem if the number of the branch points in the &trip not greater
than 4. Otherwise, for the number of the branch points not greater than 8, the problem is
solvable in terms of elliptic functions. We note that the number of the branch points of
the functionf /2(s) is a topological characteristics of the problem. To decrease the genus
of the corresponding surface we need an additional symmetry of the problem. Recently,
Senior & Legault (2000) analysed a second-order scalar functional-difference equation in
the case when it is solvable by elliptic functions. Although their method is different, it also
uses some elements of the theory of Riemann surfaces (a torus in their case).

To show how the proposed technique works, we choose a new canonical problem
of electromagnetic scattering by an anisotropic impedance half-plane. Senior (1978)
formulated the problem for four different impedance parameters using both Wiener—Hopf
and Maliuzhinets methods. The Wiener—Hopf formulation leads te4vector Riemann—
Hilbert boundary-value problem for an infinite contour on a plane. The particular case,
when the impedances meet the restrictiq‘n =nj (j = 1,2), was analysed by Hurd
& L Uneberg (1985). They chose the Wiener—Hopf formulation and found a closed-form
solution of the corresponding xt 2 vector Riemann—Hilbert problem on the real axis in
terms of elliptic functions. On the other hand, the Maliuzhinets formulation of the general
problem gives a second-order functional-difference equation. As it was pointed out by
Senior (1978), it was beyond known techniques.

In this paper, we present a closed-form solution of this most general case of the
scattering problem. Mathematically, it converts into a Riemann—Hilbert problem on a
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hyper-elliptic surface of genus three that is solvable in terms of the Riedinnction
of genus three (Antipov & Silvestrov, 2002).

The paper is organized as follows. In Section 2, we define sufficient conditions for
the matrix coefficienG(o) to be imposed in order that the proposed method works. We
reduce the initial functional-difference equation (1.2) to a scalar Riemann—Hilbert problem
on an open contour of a Riemann surface in Section 3. A canonical solution of this problem
is constructed in Section 4. The general solution of the Riemann—Hilbert problem on the
surface is written down in Section 5. In Section 6, we construct and analyse a closed-form
solution of the vector functional-difference equation (1.2). We also specify it for the case
when all the poles are simple.

For problems of scattering, it is crucial to know how to construct a solution that meets
the symmetry condition (1.6). This is the main aim of Section 7.

Section 8 is devoted to the problem of diffraction by an anisotropic impedance half-
plane (all the four impedances are assumed to be arbitrary). In Section 8.1, we reduce the
problem to a vector functional-difference equation of the first order. The general case (the
corresponding surface is of genus three) is analysed in Section 8.2. Finally, in Section 8.3,
a special case, when there are no branch points, is considered. We emphasize that in this
case the impedances are not necessarily the same, and the solution of the Jacobi inversion
problem is bypassed.

2. Vector functional-difference equation of thefirst order

Let I7 be a strip in the plane of a complex variaBlel = {s€ C : w — h < Re(S) < w},
wherew is real anch > 0. Let (2, {2_; be the boundaries of the strif. = {Re&(s) = w},
2_1 = {Re&(s) = w — h}. Consider the following boundary-value problem of the theory of
analytic functions.

Given a 2 x 2 matrix G(o) and a vector g(o) find a vector &(s) analytic in the
strip II, continuous up to the boundary 2 U 2_; apart from a finite number of poles
B1, B2, ..., Bt € II of orderst1, 12, ... , 7y and satisfying the boundary condition

®P(0) =G(0)P(c —h)+g(o), o€l (2.1)

At the ends of the strip, i.e. as Im(s) — oo, #(s) = O M) with b* being real,
finite and prescribed. The matrix G(o) and the vector g(o) satisfy the Holder condition
on every finite segment of (2. At infinity, i.e. aso — w % i 0o, the components of the G (o)
and g(o) may have a finite exponential growth not necessarily the same. The matrix G(o)
isalso nonsingular on {2.

This problem is a vector generalization of Carleman’s boundary-value problem
(Carleman, 1932, p.148p(c) = G(o) P(a(o)) + 9(0), o € 2 U N_1 with the shift
functiona(oc) = o — hon 2 anda(oc) = o + h on £2_;. Obviously, the function
a meets the Carleman conditiena (o)) = o, o € 2 U {2_1. The other Carleman
conditionsG(a(c))G(c) = 1 andG(o)g(a(o)) + g(o) = 0,0 € 2 U {2_; are satisfied
identically if we putG(o) = G(o), g(o) = 9(0), ¢ € 2, andG(o) = [G(c + h)]7L,

g(0) = —[G(oc + h)]glo +h) o € 2.

Note that, at the same time, the boundary condition (2.1) can be regarded as a vector

functional-difference equation.
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LetA1(0), A2(0) be the eigenvalues of the matB(o) and leth1(o) # A2(o). Inthis
section we define a class of matrices representable in the form

G(o) =T(©@)A©@)[T(e -] oe, (2.2)

where A(o) = diag{’1(0), A2(0)}, and the matrixT (o) admits a two-valued analytical
continuation from the contou® into the strip apart from a finite number of poles, branch
points and points where déts) = 0. It is also required thaf (o) = T(c — h), o € (2.
The eigenvalues of the matrix

_( Gii(o) Gi2(0)
G(a)_<G21(0) Gzz(o)) 23

are given by
r1(0) = §[G11(0) + G22(0) + AY%(0)],  22(0) = 3[G11(0) + Ga2(0) — AY?(0)],
(2.4)
where
A(o) = [G11(0) — G22(0)]? + 4G12(0) G21(0). (2.5)
Take the diagonalising matriX (o) in the form
1 1
T(0) =| Gu0)-G110)+AY%(0)  Gp0)-C11(0)-AY2() |+ 0 € L2, (2.6)
2G12(0) 2G12(0)
with detT (o) = —AY2(6)[G12(0)]7L. In order for the matrixT (o) to be meromorphic
and two-valued, it is sufficient that the functions
G22(s) — G1i(9) and A(s) sell 2.7)

Gi2(s) G2,(s)’

are single-valued meromorphic functions. Clearly, if the functions (2.7) are meromorphic,
then the functior21(s)/ G12(S) is also meromorphic. To clarify the structure of the matrix
G(s) that meets the above conditions, introduce the functions

G -G G
f1(5) = 11(8) 22(8)’ fo(s) = Gig

2G12(9)
which are single-valued meromorphic functionsiin Then the original matrix has the
form

ell, (2.8)

_ G11(0) G12(0)
o) = ( f2(0)G12(0) Gia(o) — 2f1<a>Glz(a)> Lol (29

Note that, the elements; (o) are not required to be meromorphic in the sttipFinally,
we transform the matri& (o) into the form

1 f 1
G(o) = a1(0) (0 2) +a(0) ( f;g; —h(o)) , e, (2.10)
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where
ai1(0) = i[G11(0) + G22(0)], a(0) = G12(0). (2.11)
In the new notation, the eigenvalues A2 and the matrix of transformatioh become

2(0) = a1(0) + a(0) FY%(0),  ra(o) = a1(0) — ap(o) FV3(0), (2.12)

1 1
T = <—f1(s> + Y25 —fy(s) — fl/z(s>> ’ (2.13)

where f(s) = flz(s) + f2(s). Hereay (o), ax(o) arearbitrary Holder functions on {2

(although they may beliscontinuous at infinity), and f1(s), fa(s) arearbitrary single-

valued meromorphic functions in the strip 7. They do not have poles of2. In the strip

11, the functionsfy(s), f (s) have finite numbers of poles. It is assumed that the number of

zeros of the functiorf (s) in the stripI is also finite. We emphasize that the elements of

the matrixT (s) areh-periodic or, equivalently, the functiorfs(s), f 1/2(s) areh-periodic.
Formula (2.10) can be treated as an analogue of the Chebotarev—Khrapkov matrix

(Chebotarev, 1956; Khrapkov, 1971) for the functional-difference equation (2.1).

3. Scalar Riemann—Hilbert problem on a hyper-€lliptic surface

In this section we reduce the vector functional-difference equation (2.1) with the matrix
coefficient (2.10) to a scalar Riemann—Hilbert problem on a Riemann surface. First,
substitute the relation (2.2) into (2.1):

[T 1d () = A@0)[T(o —h)] 1B —h) +[T() tg(0), o€, (3.1)

and introduce a new vector function

P(s) = [T(S)] 1 B(s), sell, (3.2)
with the components
_ f1(s) 1 D2(9)
¢1(s) = (72f1/2(s) + E) d1(s) + 27172(s)’
(3.3)
p(S) = (——“(S) + 1) oy(9) — 228
2=\ T2tz T 2) Y T 2ty

These formulae indicate that the functiopg(s) and ¢»(s) are multi-valued. They have
branch points at the zeros and poles of odd order of the fundtien

Among these points there can also be the two infinite points at the upper and lower ends
of the strip. From the theory of periodic meromorphic functions, by definition, the upper
endx +ioo (w — h < x < w) of the strip is called a zero of orderof a function f (s) if
f(s) ~ Ae?"sV/N as Im(s) — +oo (A =const£ 0). The pointx + ico is a pole of order
vif f(s) ~ Ae=271s"/N a5 Im(s) — +o0. The lower endk — ico is treated similarly. It is
known (Hancock, 1968) that artyperiodic meromorphic function has the same number
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of poles and zeros in the strip of the periods (the poles and zeros including the upper and
lower infinite points are counted according to the multiplicity). Indeed, by the conformal
mappingz = e 27'/", the stripI] is transformed intdC = C U {co}, and anh-periodic
function in thes-plane becomes a rational function in the extendgdane with the same
number of poles and zeros @

Therefore, the functiorf 1/2(s) has an even number of the branch points (the infinite

pointsx =+ ico can be branch points as well). Let the branch pointsbsy, . .. , S,41. In
the casep = —1, the functionf (s) is either a constant, or all its poles and zeros are of even
order. Henceforth, itis assumed thak: 0. Apart from the branch poings, sy, . .. , S2p+1,

the functionsps(s) and¢2(s) admit a finite number of poles in the strip. In addition to
the prescribed polegs, B2, ... , Bt of the vector function®(s), the functionsp; and ¢,
have new poles. Their multiplicity and location are entirely defined by the poles of the
function f1(s) and the zeros of even order of the functibis). Let all the poles of the
functionsg1(s) andgo(s) beay, ap, ... , am of ordersvy, vo, ..., vm.

By using (3.2) the coupled difference equation (3.1) reduces to two separate equations:

$1(0) = r1(0)g1(oc —h) +gi(0), o €2,

(3.4)
$2(0) = r2(0)g2(0 —h) + g3(0), o €12,
oy (@) 1 _00)

(3.5)

o fho 1 (o)
92(0)—<—m+5)gl(0)—m, o€ (.

andx1, A2 being the functions (2.12). To fix a branch of the functibh2(s) we cut the
strip I by smooth curved’; C I1 (j =0, 1, ..., p) which do not intersect each other and
join the branch points so thdt] = ;541 (j =0,1,..., p). The positive direction of
I'j is chosen fronsp; to sj41. Denote the limit value of the fixed branch on the left and the
right sides of the cut af ¥/2(0)]t and[ f¥/2(0)]~, respectively. Clearly] f 1/2(o)]+ =
~[fY2(0)]", 0 € I7.

Since the vector functio®(s) must be single-valued in the strig, from (3.2), in
addition, we get the following boundary condition on the system of cuiNegj =
0,1,...,p):

THo)pt(0) =T (0)¢p (o), o €. (3.6)

This requirement recovers the linear relations between the limit values of the fungtions
and¢; on the curved'j:

¢7 (0) =¢5(0), ¢;(0)=¢5(0),

celj (j=01,...,p). (3.7)

Therefore, the original vector functional-difference equation (2.1) with the matrix
coefficient (2.10) is equivalent to the system of two separate difference equations (3.4)
and the two relations of Riemann—Hilbert type (3.7).
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To reduce this new problem to a vector Riemann—Hilbert problem on a system of open
contours, we map thestrip /7 onto az-plane cut along the segmgnt1, 1]. The mapping
function and the inverse map are defined by

z=—itan%(s—w), s=w+£logg. (3.8)
The contour? is mapped onto the upper side of the gufl, 1] (the left bank with respect

to the positive direction), the second side of the stfip;, is mapped onto the lower side
of the cut. The images of the upper and the lower infinite points of the Btrip— ico and

X +i0o (w — h < x < w), are the pointg = —1 andz = 1, respectively. The function
log[(1+ 2)(1—2)~1]is real on the upper side of the cut. Introduce the following functions:

ih 1
Fj(z):qu<w+l—log +Z>, zeC,
2

1-z
ih 1+t
(1) = g° LU _ -
gJ(t)_gJ(w+2n|091—t , tel[-11], =12

and also the notation for the images of the branch paingsd the polesy:

zj :—itan%(sj —w), ]=01,...,20+1,
(3.10)
T
akz—itanﬁ(ak—w), k=12 ..., m.

Let the cutsl’; be mapped onto curvelgk (j=0,1,...,p).The curvest”‘ c Cand do
not intersect each other and the segnjert, 1].

Thus, the system of equations (3.4), (3.7) is equivalent to the following vector
Riemann—Hilbert problem:

Fr) =h®OF ®+0git), te(-11,
Fr®)=LOF, ®O+0t), te(-11),
(3.11)
FFo=F ), te ry,
Fry=F 1), te ry, j=01...,p.

Finally, we reduce this vector problem on the complex plane to a scalar problem on a
Riemann surface. LR be the two-sheeted surface of the algebraic equation

w?=q@), 9@ =@2-20)Z-21) - (Z— Z2p11), (3.12)

formed by gluing two copie€; andC; of the extended complex plaf&uU oo cut along
the system of the curveE,j* (j =0,1,..., p). The positive (left) sides of the culﬁ* on
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C, are glued with the negative (right) sides of the cur¥&son C,, and vice versa. This
gives rise to a two-sheeted Riemann surf&cef genusp. Then the functionw, defined
by (3.12), becomes single-valued on the surfRce

12
_ ] avv@, zeCy
whereq'/?(z) is the branch chosen such thigt?(z) ~ z°*1, z - .

Denote a point of the surfac® with affix z on C1 by the pair(z, q/2(z)), and its
counterpart orC, by the pair(z, —q/2(2)). Introduce a function on the surfaée

Fi(2), (z,w) e Cq

Fzw) = { Fo(2), (z,w) € Co. (3.14)

Because of the third and fourth conditions in (3.11), the funckgr w) is meromorphic
ewerywhere on the surface except for the contBut L1 UL, whereL1 = (—1,1) c C;
andL, = (—1,1) c Cs. Therefore, the system (3.11) is equivalent to a scalar Riemann—
Hilbert problem on the surfack,

FHt, &) =1t eF (&) +g°t &), (& eCl, (3.15)
where
), t.5Hels % g, & ely
.6 = { L), €& ely, IOEH= { G(b). (1.6 e Lo, (3.16)
andé = w(t).

Without loss of generality, the &lder functionl (t, £) does not vanish on the contour
L and has definite limits at the end-poits- +1. The functiong*(t, &) is also a Hlder
function onL except possibly the ends:

g I < APt FL T, & el,, p=12 to+1 (3.17)

whereAg‘) = const. The parametef% are defined from (3.5) by the behaviour at the
pointsw + ico of the functionsfi (o), f¥2(c), g1(0) andga(o).

4. Canonical solution to the Riemann—Hilbert problem on a hyper-dliptic surface
4.1 Classof solutions

First, describe a class of solutions for the problem (3.15). Clearly, the funEtianw)
admits poles at the pointguk, q¥/%(ax)) and (ak, —qY%(ak)) of orders vk (k =
1,2,...,m). In addition, this function may have poles at the branch patef order,
say,uj =2 0(j =0,1,...,2p + 1). If one of these pointg; is a removable singularity,
thenuj = 0. Obviously, ifuj > 0, thenu | is odd. Recall (Springer, 1956) that a branch
point zj of a Riemann surface is called a pole of ordgr for a function F(z, w) if
F(z,w) ~ A;™",¢ — 0, A = const, and = (z — z;)¥/? is a local uniformizing
parameter of the poirg;.
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Formulae (3.3), (3.9) and (3.14) indicate that at the end-points of the cot{ahe
function F (z, w) may have singularities:

IFzw)| < APzF1™%, (zw)eC, n=12 z-—+1, (41)

whereA(l“) = const, andF > 7. The numbers;F are defined by the parameters,
by the prescribed growth at the ends of the strip of the functibii(s), #2(s), i.e. by the
numbers®, and also by the behaviour of the functiohgs) f ~1/2(s)+1, f1(s) f ~Y/2(s)—
landf~12(s)ass - x +ico (w — h < x < w).

The key step of the solution technique is to factorize the fundiiptg) or to construct
a special, canonical function. We say that the functio¢z, w) is acanonical solution of
the problem (3.15) if it provides a solution to the following homogeneous problem on an
open contour of the surfadge.

Find a function X (z, w) which ismeromorphic on R\ £, admits a finite number of poles
and zeros and has non-zero boundary values X*(t, £) satisfying the boundary condition

XT(t, &) =1, )X (1, &), (t, & e L CR, (4.2)

where the contour £ consists of thecontoursL; = (—=1,1) c C;and L, = (-1,1) C Co.
At the ends of the contours L ,,,

Xz w) < APzE1 ™%, Zw) eC, z—+1, A =const p=12
(4.3)

4.2 Solution to the problem growing at infinity

We start with constructing a system of canonical cross-sections of the suRace
a, ag,...,a,andbg, by, ..., b,. If p =0, then the surfacR is topologically equivalent
to a sphere, and there are no cross-sectionsplLet0. The cross-sectioa; is a closed
smooth curve built up from the banks of the dit = z,;z2j,1. As a;j is traced in the
positive direction, the first she€} is to the left (Fig. 1).

The cross-sectiohj is a smooth closed curve that consists of two parts. The first one
(the solid line in Fig. 1) lies on the first she€t, its starting point iszj, and the ending
point isz;. The second part lies on the second sheet (the dashed line in Fig. 1), starts at
the pointz; (it belongs to both sheetS; andC;) and goes to the poiry; at which it
returns to the first sheet. The contdyrcrosses the cross-sectiapfrom right to the left
and does not cross the other sectiapandbg (k # j) and the contoul. We mention
that the choice of the system of the cross-sections is not unique. Another possibility, that
under some circumstances can be more convenient, is to take the crossisgesanloop
joining the pointszp, 41 andzg and passing through the infinite points of both sheets of the
surface (Fig. 2).

Choose Weierstrass’ kernel (Zverovich, 1971)

dW = Q= T > w = U)(Z), g = w(t)s (44)
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FiG. 1. Canonical cross-sectiorg, bj (j = 1,2, ..., p). The loopb, joins the pointz; andzp,,.

Fic. 2. Canonical cross-sectiorg, bj (j = 1,2, ..., p). The loopb, joins the pointsz,, 1 andzg.

as an analogue of the Cauchy kernel on the surfacé/e next show that the function
X(z, w) =exp{x(z,w)}, (Z,w)eR (4.5)

provides a partial solution of the problem (4.2). Here

el P \K | P
+
Xz w) =5 flogl(t é)dW+2:l sgnk ;! Zf dW + sgrk,; /dW
L p)/.O ;10

rj

> /dW+mJy§dW+n,7§dW , (4.6)

=1
] Pj aj bj
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where
Plo= (L, qY2(D), ph = (L, —q3(D)),
Plo= (—1,9Y2(=1), pyo= (-1, —q¥2(-1)),

pj = (), vj) €C1, vj=q¥2)), j=12...,p,
P = @ (D M) e Cue vy =0Y26),). =12 050 p=12
pl/ij = ((S,ZJ s (—1)“_11);1]) € CM’ U,ZJ = ql/Z(SI/J/'j)’ J =12 ..., |Kl:|’ w=12,
4.7)

are arbitrary fixed distinct points of the surfaavhich do not lie on the contout and the
canonical cross-sections. Also, they coincide with none of the branch points of the surface
‘R and the poles of the functiof(z, w). The final formulae for the solution do not depend
upon the choice of the points;tj, pﬁj andp;.

As far as the points; = (oj, wj) (wj = w(oj), j =1,2,..., p) are concerned, they
are unknown and may lie on either sheet of the surface. The pgiats also assumed to be
different from the branch poini®, z1, . . . z,+1 and the poles with affixas;, ap, ... , om.
The numberscf, K;:, mj andnj (j =1, 2,..., p) are unknown integers. Branches of the
function logl (t, &) on the contourd.; and Lo are chosen in an arbitrary way and will
be fixed afterwards. The points and the integers", 5", mj, nj will be chosen later
to make the functiorX (z, w) bounded at infinity and to satisfy the condition (4.3) at the
ending points of the contout. The integrals in (4.6), apart from the integrals oyeand
aroundaj, bj, are taken over smooth curves joining the end-points and which do not cross
the cross-sections;, bj and the contoul. The values of these integrals are independent
of the shape of the path. The first integral in (4.6),

xo(z, w) = —l. / logl(t, &) dW, (4.8)
2
L

is discontinuous through the contodrwith the jump lod (t, £). The other integrals are

also discontinuous through the curves of integration. However, the corresponding jumps
are Zrik (k is an integer), and therefore, the functi¥iiz, w) satisfies the homogeneous
boundary condition (4.2).

The second and the third terms in (4.6) are taken to achieve the prescribed behaviour
(4.3) of the canonical solution at the ermdls- 1 of the contourd.; andL» (see Section
4.3). Analysis of the term eXp (z, w)} in the vicinity of the pointsp/’“- shows that the
function X(z, w) has simple poles at these pointsk;ff < 0 and simple zeros vflf > 0.
Clearly, for;c; = O there is no singularity at the poirpl;j . The same rule is applicable to
the integrals over the curves with the ending pg f.

We emphasize that, in general, the function (4.5) has an essential singularity at infinity
for the Weierstrass kernel having the algebraic growth at infinity. To eliminate the essential
singularity, the last sum in (4.6) is added (see Section 4.4). At the starting intise
function X(z, w) possesses simple poles, and at the ending pojnitshas simple zeros.
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4.3 Choice of a branch of logl (t, £) and integers k", 5"
Let us fix a branch of the function ld¢t, £) such that
- <argl,(0) <7, pn=12 (4.9)
Then
logl, (1) = logl,(0) +i4), logl,(=1) =logl,(0) —id}, u=12 (4.10)

whereA), andAJ, are the increments of the arguments of the functipiis ast traces the
contourg0, 1] and[O, —1], respectively, witht = 0 as astarting point.

With a view towards recovering the property (4.3) of the functi¥tiz, w) in
neighbourhoods of the end-points, we choose the inteqérand Kzi. To do this, first,
rewrite the integral (4.8) in the form

1
z _ 1 logli(t) + logla(t dt
XO(7w)—E/[091()+092()]:
]

(4.11)

+@/l[lo [1(t) — logl t]L
= gl1(t) —logla(t) 20— 2)
-1

and analyse its behaviourat= +1. The first term in (4.11) has the logarithmic singularity
B* log(z ¥ 1) at the points = +1 of both sheets of the surface, where

1
BE = :l:ﬂ[logll(:lzl) +logla(£1)]. (4.12)
T
As for the second integral, its behaviour depends on whether or not the poiats-1

coincide with the branch points of the surfacez = +1 are not the branch points, then
the second integral has the logarithmic singulaﬁgllog(z F 1) onthe sheet€,,, where

—1H~
B =+ flogly (+1) — loglo(+D)], 4 =1,2. (4.13)
4rri
If z= 1o0rz = —1 is abranch point, then the second integral is bounded as 1 or

z — —1 on both sheet&; andC,.
Wethus obtain that iz = 1 is abranch point, regardless of which sheet the ppiat 1
belongs to, the functiomo(z, w) behaves as

_ logl1(1) 4 logl2(1)
Arri

x0(Z, w) logiz—1), (Zw)eR, z— 1. (4.14)

In the vicinity of the second end-point, if it is a branch point, then

logl1(—1) + logla(—1)

logz+1), (Zw)eR, z— -1. (4.15)
4ri

xo(z, w) ~ —
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If z= +1 are regular points of the surface,

logl,, (£1)

Z, ~ + -
x0(Z, w) o

log(z¥1), (ZweC, z—+1, pu=12 (4.16)

Substituting formulae (4.14), (4.15), (4.16) into (4.5), (4.6) yields

X(zw)=0(zF 1), (Zw)eCu z—+1, pu=12 (4.17)
where
+ 1 +
Bi = ig argl, (1) —«,, n=12 (4.18)
This is true ifz = +1 are regular points of the surface. If, however= 1 orz = -1

coincides with a branch point, then

Xz w)=0(z-1"), @Zw eR, z—1 (4.19)
or
X(z,w)=0(z+1#), (Zw eR, z— -1, (4.20)
with
gt = i% [argli(£1) + argla(£D)] — &5 (4.21)

In this case we put, = 0ork, = 0. Obviously, the functioiX (z, w) meets the condition
(4.3) if the numberﬁf, B* satisfy the inequalities

—vi < ﬂi <1-— vi (nw=1,2), —vi': <pr<1- vi’:. (4.22)

Hence, ifz = 1 are regular points of the surfa@ then

1
KE=viE+ [ig arglﬂ(jzl)] ., p=12. (4.23)
Here[a] is the entire part of a numbex. If z = 1 orz = —1 is abranch point of the
surface, then
1
K =vi + [E (argla(1) + arglz(l))} , k3 =0 (4.24)

or

1
k; =v; + [_E (argl1(—21) +argI2(—1))], Kk, =0. (4.25)
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4.4 Jacobi’'sinversion problem

If the genusp of the surfaceéR is zero, then the last sum in (4.6) vanishes, and the function
X(z, w) given by (4.5) is a solution (bounded as— o) to the homogeneous problem
(4.2). The choice (4.23) or (4.24), (4.25) provides the prescribed behaviour of the solution
to the original vector functional equation at the erdsioco (h — w < x < w) of the strip.

Let us concentrate on the elliptio & 1) and hyper-elliptic § > 2) cases. In general,
for arbitraryrj, mj, nj, because of the pole of ordgrof the Weierstrass kernel at infinity,
the functionX(z, w) has an essential singularity at infinity. The presence of the points
rj and the integersnj, nj makes it possible to eliminate this singularity. To do this, we
rewrite the representation (4.6) for the functip(e, w) as follows:

x(Z,w) = x1(2) + w(2) x2(2), (4.26)
where
(z)—i/[lo I1(t) + logla(t)] -3
X2 = 4= gl 90—
, » |5// o
1 n “ dt 1& t
+§M2::1 sgnk ! Z/—Jrsgn / —1/:,

8
1

1
xo@ =1 / flogl1(t) — logla(t)]
7T |

-1

dt
qt2M)(t - 2)

|K+| M lic,; | NJ

Z( o4 Sg”"+2[ q1/2<t>(t ) T So ”Z/ ql/z(txt—z)

1 A d
t
— m n _—. 4.27
tal | mdnd) coe— (#.27)
= \eion 8 bj
By use of the identity
11t tP—l+ tr (4.28)
t—z z 22 7z z2r(t—2) '

we obtain the following asymptotic expansion of the functjaia, w) at infinity:

1
1& )1 v~ Ldt
X w>=—§Z[Zm/[logu(t)—loglz(t)] 70

v=1 e
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AR v-1g I |

tv Lot
_Z( l)ﬂ Sgn’(+2/ql/2(t)+ Sgnk 123 Z/ql/Z(t)

(oj,wj)

p v—1
+3 / +m; 7{+n,-7§ tg(t;jt wz(vz) L0, z—oo.  (4.29)
oy

=1\

The functiony (z, w) is bounded at infinity if and only if the following conditions hold:

(UJ w])
P
> / dwv+m17§dw,,+n17§dwv =d°, v=12...,p, (4.30)
=1\
where
tv- ldt
o= —— / log1a() ~ logla()] 7z
Wit ® I ] -1
2 +
+ Z( 1) SgnK Z/ ql/Z(t) +Sgnk 12 Z/ ql/Z(t)
tv~Ldt
dw, = . 4.31
"= D (4.31)
The differentials @y, dwy, ... , dw, form a basis of Abelian differentials of the first kind
on the surfac&. The integrals
tv~Ldt "~ Ldt
vj = P ——, vj = (4.32)
(1) (1)
aj bj
are theA- and B-periods of the Abelian integrals (Springer, 1956):
(zZ,w)
v~ Ldt
= = _— :1,2,..., . 433
wy = wy(Z, w) /~ TR o (4.33)
(20,0)
By use of the notation (4.32) and (4.33), equation (4.30) becomes
P
Z[a)v(oj,w,-)—i—mjAvj+nijJ—]:dj, v=1212...,p, (4.34)

=1
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where

P
df =dg+ ) w85, v)). (4.35)
j=1

The nonlinear system (4.34) with respect to the poiats wj) € R and the integers
mj,nj (j = 1,2,...,p) is the classical Jacobi inversion problem (Springer, 1956;
Zverovich, 1971; Farkas, 1992). It is known that its solution always exists.

In the elliptic casep = 1, the problem is equivalent to the inversion of the elliptic
integral

(01, w1)

dt
V=20t —z)(t — 22)(t — 23)
(20,0

+ miA11 + M B = df. (4.36)

This is solvable in terms of elliptic functions (Hancock, 1968). In the hyper-elliptic case,
o = 2, the inversion problem gives rise to a systenpaflgebraic equations (Zverovich,
1971) that is equivalent to one algebraic equation of opd@ntipov & Silvestrov, 2002).
To provide a guideline to the reader, we describe the main steps of the procedure for the
inversion problem (Antipov & Silvestrov, 2002):

(i) normalizing the basis of the Abelian integrals of the first kind (4.33);

(ii) setting up Jacobi’s inversion problem for the normalised basis;

(iii) reducing the problem to an algebraic equation of order

(iv) evaluating the coefficients of the algebraic equation in terms of Riemahn’s
function.

The functionX (z, w) defined by (4.5), (4.26) is a canonical solution of the problem
(3.15) provided the continuous branches of the functiond;ldg logl2(t) are chosen
as in (4.9); the integersy", x5 are fixed by (4.23) to (4.25). The poinj, vj) € R
(j =1,2,...,p) are fixed in an arbitrary manner. The poirtgs, wj) € R and the
integersmj, nj (j = 1,2,..., p) should be found from the Jacobi inversion problem
(4.34). We note that it is always possible to avoid (by changing the location of the points
(8j, vj)) the case when either some of the poits, w;j) coincide, or some of them fall
on the polegaxk, £q%2(ak)), or on the branch points of the surfade

5. Non-homogeneous Riemann—Hilbert problem

Use of the canonical solution enables us to find the general solution of the non-
homogeneous problem (3.15). First, by splitting the function

X*(t,é)

I(t, &) = X—(t.6)

t.&) el (5.1)

we obtain

Fres  F o _ g'td)
XTLH X GH X

t, &) e L. (5.2)
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It follows from (3.17), (4.17), (4.19), (4.20), (4.22) that the functjott (t, £)]~1g*(t, &)
may have integrable singularities at the ehds +1 of the contourR:

<AItF1% A=const 0<§<1 t— +1. (5.3)

‘ g*(t, )
XF(t, &)

Hence a partial solution of the problem (3.15) is the functaiz, w) ¥ (z, w), where

¥(z, w) = ¥1(2) + w(@y2(2),

1 gr(t, &) dt _ 1 g (t, &) dt
%(Z)_fom,g)m’ Ved =20 | st ot—z (54)
L L

Then the general solution of the problem (3.15) becomes
F(z, w) = X(z, w)[¥(z, w) + R(z, w)], (5.5)

whereR(z, w) is the meromorphic function oR whose poles are defined by the class of
solutions described in Section 4.1 and, also, by the properties of the canonical function
X(z, w). The functionR(z, w) has poles of ordersy, vy, ... , vy at the points with the
affixesas, ao, . .. am on both sheets of the surface. It also has simple poles at the points
ri = (oj,wj) (j =12,...,p)and poles of ordergo, 11, ..., n2p+1 (j are either

zero, or odd positive numbers) at the branch paipigy, . .. , Z2,+1, respectively.

If if > 0 (u = 1oru = 2), then at the pointp; = (8, (—1)/‘*1113) e C,
(j=12... ,/c,j) the canonical solution has simple zeros, and, therefore, the function
R(z, w) may have simple poles at these points. In the @ﬁS& 0, the canonical function
X(z, w) has simple poles at the poings: (j =1,2,..., —/c;j). Eventually, this causes
the presence of inadmissible poles of the functia, w). In order for the solution to be
bounded at the poinqs;”- it is necessary and sufficient that the functignz, w) + R(z, w)

vanish at these points. Analysis of the structure of the fund®on w) at the pointspl’ij =

i (=D ) eCu(j =1,2,..., |k, 1) isemployed similarly.
In addition, the function? (z, w)+ R(z, w) has simple zeros at the poiris = (5j, vj)

(j=1,2,...,p)and has to be bounded at infinity on both sheets (if of course none of the

above poles coincides with one of the two infinite points of the surface). The meromorphic

function R(z, w) with the described poles has the form

R(z, w) = R1(2) + w(2)Rx(2), (5.6)
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where
Wi
R1(2) = ka Siwi
2p+1 (uk—1)/2 E|/<j ,L /jv/j H//J //J
I B _ ;/. Mn) n) o
+ th:) X_: (z—z)! Z( b Zz—s’- +Zz—8” '
=i j=1 u= j=1 j=1 )
0 (5.7)
Ro(2) =
Jzzl Z— 0j Z;le(z—otk)J
2§1(uk+21)/2 EIZ] Xz: i H/j KX;{: H”j
+ —— + L+ L
o O -z S\ Tz mz
Herex/, = maxx, . 0}, k], = max(i;, 0} (n =1,2),v); = ql/z(a/ ), v —ql/z((S”J)
wj = w(oj). If "the upper index is less than the lower one, then the corresponding
sum is assumed to be zero. The consta®is(j = 0,1,..., p), DkJ, D((’I k =
LZH”m;j=LZ””W)ﬁﬂk=QL”.2p+lj_12 QW—DQL
Ei(k=0,1,.. @+1j=tz””wwmya =126 n=12)
andH” (j =1, 2 M =1, 2) are arbitrary. The same ch0|ce of the consténts

in the representatlons for the rational functidRgz) and R2(2) is explained by the fact
that the canonical functioX (z, w) has simple poles at the points= (o, wj) which lie
either on the first shedf, or on the second one. The consta@(gt and D/k’l- are not the
same because the general solution has to have poles at theqoiss. . . , om, and the
functions 1 w(z) are linearly independent. For the same reason the conﬁ@intE((’j and
Hr’nj, Hr’];j are different for the function®(z) and Rx(2).

The procedure of solution of the Riemann—Hilbert problem (3.15) will be accomplished
if the conditions

g&iwﬂa+@anza k=12 ...,p, (5.8)

T8k, vk) + Rk, o) =0, k=12...,p, (5.9)

are satisfied. In addition,

U8, (=D M) + RE (D) =0, j=12... .-« p=12
(5.10)

and

U@, (D) + RE (D) =0, j=12... -k, pn=12
(5.11)

are effective if the upper bounds are positive. Condition (5.8) provides the boundness of
the function¥(z, w) + R(z, w) at infinity. The next group of the conditions lends itself
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to eliminating the poles at the points, vk). The relations (5.10), (5.11) guarantee the
boundness of the functidf(z, w) at the pointgs/,;, (—1)“‘11;//“-) and(s” (—1)M_1UZI-)

wi’
Whenl(;r < Oandk, < 0, respectively.

Remark. Formulae (5.7) are written down under the assumption that the pgplesd
the branch pointgg lie in a finite part of the complex plane. Otherwise these formulae
and the conditions (5.8) should be corrected in the appropriate manner. Alternatively, the
conformal mapping (3.8) can be changed by another mapping of thetiito the
complex plane with a cut different frofn-1, 1] to make all the pointay andz finite.

6. Exact solution to the vector functional-difference equation
6.1 General case

Now we define the solution to the initial equation (2.1) with the ma@i¢) given by
(2.10). Use of the relations (3.2), (2.13), (3.9) and (3.14) gives

®1(8) = F(z, w) + F(z, —w),
By(s) = — f1(S)[F(z, w) + F(z, —w)] + FY%(8)[F(z, w) — F(z, —w)], se I,
(6.1)
where
Z=—itan=(s—w), f(s)= (S + faS),
h (6.2)
w=09"22), 9@ =@-2)Z~21)...(Z— 22p11)-

The functionsfy(s), f2(s) are defined by (2.8). To analyse the behaviour of the solution
at the singular points, let us transform formulae (6.1). First, by making use of relations
(5.4)—(5.6), (4.5) and (4.26), the solution to the Riemann—Hilbert problem (3.15) becomes

F(z, w) = @@ @@y, (2) + w(2)Y2(2)], (6.3)
where
Y1(2) = ¥1(2 + Ru(2), Y2(2) = ¥2(2) + Rx(2), (6.4)

and the functiong(1, x2, ¥1, ¥2 and R1(2), Rx(2) are defined by (4.27), (5.4) and (5.7).
Substituting the expression (6.3) into (6.1) gives the resulting formulae for the solution:

P1(s) = 2e"1@[costw(2) x2(2)} Y1(2) + w(2) sinh{w(2) x2(2)}Y2(2)],
Do(s)=—T1(S) P1(9)
+2112(5)e11@[sinNw (2) x2(2)}Y1(2) + w(2) cosHw (2) x2(2)}Y2(2)]. (6.5)

The functions (6.5) satisfy (2.1). However, for arbitrary chosen constants in (5.7), they
have poles in the strig/. Indeed, the functiorF (z, w) has poles at the points of both
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sheets of the surface with affixes, oo, ...am andzg, zy, ... , z2,4+1. Theirimages in the
strip 1, the pointsay, a, ...am, and sy, Sy, . . . Spp+1, respectively, are the poles of the
functions @1(s), ®»(s). The factorsfi(s) and f/?(s) may change the order of poles or
add new ones to the set of poles of the funct@s). The conditions of analyticity of the
functions @1(s), ¥2(s) at their superfluous singular points provide additional conditions
which together with (5.8)—(5.11) are used to fix some of the arbitrary constants in (5.7).

6.2 The case of simple poles

Let all the polesxk (k = 1,2, ..., m) and the branch pointg (k = 0,1,...,2p + 1)
be simple, ievy =1k =21,2,... , m),andux = 1 (k = 0,1,...,20 + 1). Then,
obviously,

P Ciwi m D’ 2 K[/L H’ H” v //
Ri(2) = C 1™ J _ —1H Ui ,LL] ILJ ,
1(2) o+ZZ_0j+;2_aj ;< ) 2 ; +Z 5/,

"

m // 2p+1 2 ’(;/4 / Ky 1

E; H’. H’”.
Ry(2) = - I M
2 =z JX:Z—a Jz:(:)z—zj ;; Jz:;z—&l’”- ;z—%

(6.6)

Therefore, the solution (6.5) possessps-@m+«; +«5+ k7 + k45 + 3 arbitrary constants.
Now we write down all the conditions for the functior& (s), ¢»(s) to be within the
prescribed class. Assume that the padisg, wx) € Ci. Then from (6.6) the function
F(z, —w) is analytic at this point. Because of the simple zero Xqe, w) at (ok, wg),

the functionF (z, w) has a removable singularity at this point. A similar result follows
for (ok, wk) € Ca. The 20 conditions (5.8), (5.9) provide the required behaviour of the
solution at infinity and remove the simple poles of the canonical functiGn w) at the
points(8k, vk) € C1 (k=1,2,..., p). Letay, a2, ... , ot (t < m) bethe prescribed poles

of the solution. Then to eliminate the other paless, . .. , @m, Werequire
res ¢1(s) =0, resP(s)=0 (k=t+1,t+2,...,m) (6.7)
Z=0 Z=0k
where
ih 142z
S= — lo . 6.8
@+ 2 97, 1-z (6.8)

The above relations provide the addition&h?— t) conditions. As for the polez = z
(k=0,1,...,20+1) of the functionRx(z), they become removable points of the solution.
This is because the functions

w(@ sinhw@)x2(2)}, Y22 sinhw@x22)}, fY?@w(2) coshw(2) x2(2)}
(6.9)
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have simple zeros at the poirts= z¢. The relations (5.10), (5.11) give + k2 + k1 +
k2 conditions, where&,, = max0, —/c;[}, Ky = maxo, —«,} (u = 1,2). Finally, the
function &,(s) defined from (3.3) by

By(s) = [— f1(8) + FY2(8)1p1(s) — [F1(S) + FY2(9)1g2(9) (6.10)

may have inadmissible poles at the poles of the functityis) and f1/2(s). Let these
poles besy, 3, ... , 5. Assuming that all the poles are simple, write down the regularity
conditions for the functiorp,(s) at these points

res ®(s) =0, j=21,2...,n° (6.11)
s=5°
]

Therefore, the total number of additional conditions providing the functiégs), $»(s)

to belong to the prescribed class, is 2 2m — 2t + n° + k1 + k2 + K1 + K2. Thus,

the difference between the number of the arbitrary constants in (6.6) and the number of
conditions for them i® + 2t — n° + k" + k5 + k + k5 + 3. Note thatp is the genus

of the surfaceR (the number of the branch points of the functib®'?(s) in the strip 1T

is 20 + 2); t is the number of the prescribed poles of the solution in the &ftip° is the
number of the inadmissible pols$; the integerskli and/czi are defined by (4.23)—(4.25)

and depend on the elements of the maBix).

7. Even solution of the Riemann—Hilbert problem

In this section we aim to analyse a particular case of the Riemann—Hilbert problem (3.15)
when its solution is even, i.e. satisfies the condition

F.(2)=Fu(—2), zeC\[-11], p=12 (7.1)

Since the points and 2v — h — s of thes-plane correspond to the poirgsand—z of the
plane, respectively, the relation (7.1) holds, if simultaneously

éu(s) = @/L(Zw —h-—ys), nw=12,

fi(s) = f12w —h—s), fY2(s) = fY22w —h—5s), sell. (7.2)

We also describe an algorithm for this case. To construct such an even solution is a crucial
step in solving problems of electromagnetic scattering (see Section 8).

7.1 Formulation

Assume that the polag (k = 1,2,...,2m’; m = 2m') of the functionsF1(s), Fx(s)
and the branch poing (k = 0, 1, ..., 2p + 1) of the surfacéR are simple and located
symmetrically with respect to the origin:

Ak = —ak, k=1,2,... ,m,
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Z,O+l+k = —Z, k= O, l, cee s O (73)

Let also the pointg = 41 not coincide with the branch points.
Define a class of the Riemann—Hilbert problems (3.15) with additional condition of
symmetry (7.1) which have a solution. The relation (7.1) implies

Fr(-t=F 1), F (-H=Ff@®, te(-11, pu=12 (7.4)

Replacingt for —t in the equation

F;L(t) =1L, OF, O+g,1t), te(=L1D, u=12 (7.5)
that follows from (3.15), and using formulae (7.4) gives
1 g, (1)
Frit)= ——F, (t) — -~ te(-11 =12 7.6
. (D IM(—t)"() e €e(-11, wu=1 (7.6)

By comparison of relations (7.5) and (7.6) we get the following necessary conditions for a
solution of the problem (3.15), (7.1) to exist:

Note that the above conditions are equivalent to the relations
Ap(@)A, (o) =1, g;(a) + Au(o)g;(é) =0, oef, u=12 (7.8)

This is because the pointsando of the contourf? correspond to the pointsand—t on
the segment—1, 1], respectively.

Thus, we have two possibilitie$;, (0) = 1 andl,(0) = —1. We will henceforth
assume that the functiohg(t) andgj; (t) meet the conditions (7.7). By the relation (7.1),
the functionsF, (z) have the same singularities at the points: £1, and the inequality
(4.1) becomes

F.@ < APizg1™, z—>+1, AW =const (u=12. (7.9

7.2 Even canonical function

Choose a branch of the functions lpgt), t € [-1,1] (v = 1,2) such that-n <
argl,(0) < 7 (u = 1, 2). Then, because of the conditions (7.7)

logl,(—t) = —logl, (t) + 27ie,, te[-11], pn=12, (7.10)
where
_Jo ifl,0=1
= { 1 if 1,00 =-1, (7.11)

and also sincg'/2(—t) = q/2(t), t € [0, 1], the integral (4.11) has the form
1

_ 1! loglq(t) + logla(t tat
XO(Z’w)_Z_ni/[Og 1(t) + logla( )]m
0
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1

w( td .
?/ logla(t) — |09|2(t)]m + Xo(zZ, w), (7.12)
0
where
; dt ‘ dt
- _ate + €2 €1 — €2
fo(z. w) = O/ i - 0/ THETS (7.13)

The functionyo(z, w) is continuous everywhere on the surf@€apart from the segments
[-1,0] c C,, n = 1,2. On these segments, for the functigs(z, w), the following
boundary condition holds:

Xo (6, &) — 75 (. &) = 27iey,. (7.14)

Hence the function eXgo(z, w)} is continuous everywhere on the surfd¢eSo, without
loss of generality, we can take the functigg(z, w) without the last ternyo(z, w), i.e. as

1 tdt
x0(z, w) = P f[|09|l(t) + |Og|2(t)]t2_—2
0

1
) t ot
0
Introduce, next, a new algebraic function
Then, in view of the symmetry (7.3) of the branch points
W2 =@ -)Z-7)...(2-2) = p@. (7.17)
Rewrite now formula (7.15) as follows:
1
1 dr
x0(Z, w)=rf[|09|1(«/?) +logla(vVT)]l——
4| T—¢
U(g“) /
logl logl —_—— 7.18
llogl1(v/7) —logl2(v/7)] YT )(T 3 (7.18)

:T/Iogl*(r, ndU = xo«(¢, U),
7T
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where¢ = 22, £* = L UL}, L} =[0,1] € C1, Ly =[0,1] C Cp, logl.(z,n) =
logl,(y/7) onthe contout ;; (1 =1,2),and

u+n dr

au =
2n t—¢

(7.19)

is the Weierstrass kernel on a Riemann surfRéef the algebraic functiom?® = p(z).
Hereu(¢) = w(v/7), n = u(v).

On the other hand, the function exp.(¢,u) is a particular solution of the
homogeneous Riemann—Hilbert problem

expxq.(t,m) = L(z, n) expxg.(x, m), (t,n) € L* (7.20)

on the surfac®’ of genusp” = [p/2] with the branch pointso, ¢1, ... , {,. This solution

is bounded at the point®, +p%2(0)). It may have a power singularity at the points

(1, £p¥2(1)) and an essential singularity at infinity. By the device proposed in Section
4, remove these singularities by adding a new function that does not affect the boundary
condition (7.20):

A
X+ (W) = x0x(¢, u)+zsgnm2/du +Z de +m,¢du +n,y§du

l

(7.21)
Herea* b* (j =1,2,...,p) are the canonical cross-sections of the surfatevhich
are the |mages of the’ cross-sectiong;, bj (j = 1,2,...,p") of the surfacer by

mapping¢ = z2. The integers,, and the pointsp;O are given by
1 1 .,
Ky =vu+ [Z arglu(l)] =V, + [ZAH} , uw=12

Pho= (L (D" 'p2) = (L (D" Y1) e Cyy =12 (7.22)

whereA; is the increment of the argument of the functigrit) ast traces the contour
[0, 1] with t = O as astarting point. The other pointsfflj and p]-" are arbitrary, distinct and
fixed:

P = (5, (D" o) € Cuy ug = P72 = a2 (),
=12, k., n=12, (7.23)
pr=%v) eCr v =pY26) =qY%¢), j=12....0.

The integersnj, n; (j =1,2,..., p) and the points

:(ajz,uj)eR/, uj=u(aj2)=w(aj)=wj, i=12...,0, (7.24)
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are defined from the following Jacobi inversion problem on the Riemann suRface

/

Z[w*(UJ ,U(Uz))+mj AvJ +nj ] —d* V :1, 2, ’p/’ (725)
j=1
where
(¢,u) (z,w)
* (2, U) / "~ Lde > / t2—1gt 2y (2, w)
0, =, (¢, U) = = = 2w2,(Z, w),
Lo n(t) £ v
(0,0) (20,0
AjjzfdwjzzAZUj, B;"jzfdwjzzszvj, =12 .,
a]-‘ bT
(7.26)

2v 1d

P 1
d* = 2;@”(3,—, vj) — ;/['09'10) P p— 20

|K/l| t2v ldt
+ZZ( l)“sgn/cMZ/ v=12,...,p.

ql2@t)’

We emphasize that the new Jacobi problem (7.25) related to the symmetric problem (3.15),
(7.1) consists ofe’ = [p/2] non-linear algebraic equations, and can be reduced to an
algebraic equation of degrge (Antipov & Silvestrov, 2002). Recall that in the general
non-symmetric case, there greequations.

Next, by replacing in (7.18), (7.19), (7.24)andz for z% andt? respectively, we obtain
the even canonical function in the form (4.26), where

el ¥ °
K t dt
x1(2) = f llogl1(t) +logla()] 5 —; +ngnf<u2 / e f e

_ 1 logly(t) — logla(t Lot
Xg(z)_ﬁ/[gl()— gz()]m
(7.27)
22: b ‘i‘ tdt
— 2 _(=D"sgnk, /
=1 i= QAT -2
o tdt
(] g its
j=1\ " J i J i O -2
8j.vj) aj bj

7.3 General even solution

By use of the functiory (z, w) we can find the general solution of the even problem (3.15),
(7.1). Let us write it down in the case of simple poles (analysed in Section 6.2):

F(z w) = x(z, w) {¥1(2) + Ri(2) + w(2)[¥2(2) + R(D]}, (7.28)
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where

1 [ g*t, &) tat

M@= o2
L*
1 *(t,€)  tdt
V2@ = =— [ — S
27i ] EOXT(, &) 12—z
E*
roCciw m D < Hvgj £ H vp;
Ri@=Co+y AL +Y Ao+ Lo -y L=
miZ-0f EZ-o HZ-vg H77y
o’ Ci m D7 2 E. K’ H/ K" H”
R@D=Y S 5+) 5 5+) 5t )
SiZ-of T7-of 77 HZ-vy SZ v
' =maxki, 0}, «” =maxkz, 0}, wj=w(oj), vy :ql/z(ym).
(7.29)
Here we used formulae (5.4), (7.7) and also
XF(=t,6) = XT(t, &) = XT(t, §)/1(t,§), (. &) €L (7.30)

The solution (7.28) possesses- o’ + 2m' + «’ + «” + 2 arbitrary constants, and it has to
meet the 2’ conditions

Jim_ P2+ R(@]=0, j=12...,0, (7.31)

Y1(8j) + Ri(8j) + vj[¥2(8) + Re(8))1=0, j=1,2,...,0, (7.32)

which follow from (5.8), (5.9). As in the general case, it should also satisfy the relations

Yi(y1j) + Ri(yij) +vij [W2(r1j) + Re(np)1 =0, j=L12,...,—k1 (ifk1 <0)
(7.33)

V1(y2j) + Ru(y2j) — v2j [Va(y2j) + Re(y2))1 =0, [j=21,2,...,—kz2 (ifxk2<0)
(7.34)

and the conditions (6.7), (6.11). Therefore, in total, we gét2m —t + n° + K1 + K>
relations for arbitrary constants. Hefg = max0, —«,} (1« = 1, 2), andn® is the number
of equations (6.11).

7.4 Odd solution

Finally, we notice that the even canonical function can be used for finding the general
solution of the problem (3.15) subject to the conditign(z) = —F,(—2) (u = 1, 2). We
write down the solution in case such a problem might arise in other applications:

F(z,w) = zx(z, w) {¥3(2) + R1(2) + w(2)[v¥4(2) + R(D]}, (7.35)
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where 1 ©E
_1 (9
O=o0h | roe-2
£*

1 gty
M=o | roxen -2 (739
L*

It should be pointed out that the odd solution of the problem (3.15) exists only under the
conditions

LOLED =1 gi®)—lMOgi(-) =0, te(-11, p=12  (7.37)

8. Diffraction by an anisotropic impedance half-plane
8.1 Physical problem

To illustrate the technique of the paper, we consider scattering of an electromagnetic wave
at skew incidence by an anisotropic half-plane with different impedances. Let the primary
source be a plane wave incident obliquely whas®mmponents are

El — g dkesing cosv—to)—ikzcosp

ZO Hzi _ hzeikp sing cos(()—b‘o)—ikzcosﬂ’ (8.]_)

where(p, 6, z) are cylindrical coordinates is the wave number (Igk) < 0), Zg is the
intrinsic impedance of free spaggjs the angle of incident (& 8 < n/2), ande,, h; are
prescribed parameters. In the most general case in which the impedance is anisotropic and
differs on the upper and lower sides of the half-plajes p < 00,0 = 7 F0, |Z| < o0},

the boundary conditions are (Senior, 1978)

E, = F15Z0H;, 0 =+m F0,

E; = +nyZoH,, 0 =+7F0, (8.2)

where nf, r;zi are the surface impedances of the upger= = — 0) and lower § =
—n + 0) half-planes, respectively. The surface impedances are assumed to be real. The
p-components, andH, are expressed in terms B andH; as follows:

E, = ——|cosp— + — s
P iksint [ Pon T o 00

d(ZoH 10E
cosp L0 Z)———Z].

ZoH = s B [ 9o p 80 6.3)
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Therefore, equivalently, the boundary conditions (8.2) can be written as

19E 3(ZoH,)  iksir? BE
——Z—COS,B(OZ):tI Ii,B ZZO’ 0 =+m F0,
p 00 ap ni
10(ZoH oE . .
—%—i—cosﬁa—zilkn;smzﬁzom:o, 6 =+m F0. (8.4)
0
Represent the total field in the form of the Sommerfeld integral (Maliuzhinets, 1958)
—ikzcosp o
Ez(p.0.2) = ———— | SN0 +0) dar,
2
Y
e—ikzcosﬁ o
ZoHz(p,0,2) = o / ghosinfcoseg (4 4+ 9) da, (8.5)
JT

14

wherey is the Sommerfeld contour, the functior$e) ands, («) are analytic everywhere
in the strip—m < Re(w) < 7 apart from the poink = 6y, where they have a simple pole
with the residues defined by the incident field (8.1). At the infinite paints X =+ ico

(IX| < o0), the functionsss(«r) ands, («) are bounded. The boundary conditions (8.4) are
satisfied if and only if (Maliuzhinets, 1958)

1
(sina +— sinﬂ) Se(a =) — coSx CoSBsh (o £ 1)
n

1
= (— sine £ — sinﬁ) Se(—a £ ) — COS COSBSH(—a £ 1),
m
(sina % n3 sinB) sh(a + 1) + cosa cosPse(e + )

= (—sina % n5 sinp) sh(—a £ 1) + COSx COSPSe(—a £ 7). (8.6)
Next, following Senior & Legault (1998) introduce the two functions

ni (8.7)

. 1
P1(a+m) = (sma +—= smﬁ) Se(o + ) — cOSa coSPBsh (o + ),
Po(a + 1) = (sina + nJ sinp) sn(a + ) + cosa COSPSe(e + 7).
Inverting these relations gives

1

= [(si 1 sing) ¢ P
Se(a + ) Fa(l/nf, 77;) [(sma + 15 smﬂ) 1(a + 1) 4 COSa COSPB Po(a + )],
Shia + ) = sina + 1 sing | $a2(a + ) — cosa cosp P1(a + )
o = o+ — o - o ,
Iy (/nf . n3) Ny 2 .

(8.8)
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where
Iy (a, b) = (sina + asinB)(sina + bsinB) + cos « co< B. (8.9)
Because of the identities
Pj(@+mn) = Pj(—a+m), Pj(—a—n)=Pj(a+3n), j=12 (8.10)

the system of equations for the functioRss, can be reduced to the system for the new
functions @1, &5:

1
Iy | —
Lo (=1/nf, —n3) [ <n1

P1(a — ) — nico&x sin 28 $o(a — 71):| ,
1

)
) (8.12)
)
)

1
=——— _|T
Tu(/nf.n3) [ ¢

Go(a + 3m) + n2 cosa Sin 28 $1(a + 371)}

$o(a — 1) + n2 COSa SiN 28 P (o — n)i| ,

where

1 1(1 1 Ny +15
o =+=), = , 8.12
n1 2<n1’ n1> 2 (8.12)

If now expressdy (« + 3r), $2(a + 3m) in terms of the value®, (o — ), 2(e¢ — ) and
putec = 37 + «, then, onf2 = {Re(o) = 37},

Do) =G(o)P(oc —4m), o €, (8.13)

where

_{ ®1(0) _ [ Gu(o) Ga2o)
Qs(‘”‘(abz(o))’ G(“)—<621(a> G22(0)>’ (8.14)
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with
LU0y, =) Do (L0, —n5) + n2ng * cof o sir? 28
Gu(o) = Do) ,
I (=1/n7, 03 Do (=1/07  ny) + nang * coS o sir? 28
G22(0) = Do) ,
ny Sing sin 28 sin 2» nt
Gia(0) = — =2 . Gai(0) = -2 yinGia(e),  (8:15)
mD (o) g
F{T(_l/ni‘rv _fl;) — — -1 .
D(o) = (Lo (—1/n7. n3) o (1/nf, —n3) + nany* cos o sirf 28],
Lo(/nf.ny) 7 AR 2 1
1 1
+_ o+ — —
0 2 Ny 0 2 T)I_

8.2 Arbitrary impedances: a surface of genus p’ = 3
Equation (8.13) is a vector functional-difference equation of the first order with the shift
h = 47 subject to the additional condition of symmetry

P(0)=P2r —0), oe€ll ={—m <Res) < 3r}. (8.16)

In this section we show how to reduce the problem (8.13), (8.16) to a particular case of the
even Riemann—Hilbert problem (3.15), (7.1) analysed in Section 7, and also how to solve
it.

8.2.1 Analysis of a Riemann—Hilbert problem on a surface. It is seen that the matrix
(8.14) has the structure (2.10) required for the method to be applied. Indeed, in the notation
of Section 2,

a1(0) = 3[G11(0) + G22(0)],  @2(0) = G12(0),

n(ng +ng) . .
fi(s) = %Si"n—%;oss(coszscoszﬂ + sir?s — e sin? ), (8.17)
+
fa(s) = 77_2’]1772,
o

where

1 ny o _ng
- (nf{n—i + g —2_> : (8.18)

1 N1
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Clearly, the functions (8.17) meet the conditionsdpfo ), ax(o), f1(s) and f2(s) imposed
in Section 2. The key function of the method is

2
f(8) = T4(8) + fa(s) = ["1("3 + 1) tans } F%(s), (8.19)
4ng COSS
where
_ 2
f*(s) = (coszs— w) + 16e;1 cos scof’ B,
Sire (8.20)

_ mngng
n(ng + ng)?

In the stripll = {—7 < Re(s) < 3r}, the function f (s) has four poles of the second

order:—3r,37, 37 and3x. Define the branch points of the functidrt/2(s). From (8.19),

(8.20), they are the roots of the equations
cosxz=A,, sell (v=12), (8.21)

where

A, =-1+ ﬁ [1—90 sin? B—8e; coS B+4i (-1)" cosﬂ\/el(l—eo sir? 8 —4e; co ﬂ)}.
i
(8.22)

In the above formula, /7~ is one of the branches of the square root. From the whole set
of the roots

i
i /a2 _ _19 i_
T+ 2Iog(A,, +/A2-1) (=12 j=041+2...), (8.23)
one needs to choose those roots which lie in the gftipVe note that the expression
do = e1(1 — epsi’ B — 4e; cos B) (8.24)

can be positive, negative and, also, equal to zerdy K= 0, then, obviously, the function
f1/2(s) does not have branch points at all. The roots of (8.21) become zeros of the function
f1/2(s). This case is reported in Section 8.3. Henceforward we assumethat0 and,
therefore, in the strigZ, the functionf 1/2(s) has 16 branch pointsy, si, . .. , Si5.

For example, forg = 7, n3 /nf = 2,17 /nf = 3andny, /nf = 4, the branch points
are

s = —157080—i1.70392 s =5,
s = —1.57080— i0-05375 3=, (8.25)

Sj=Sj4+m (j=4,5...,15.
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Analysis of formulae (8.17), (8.19) reveals that the functiéps) f ~%/2(s) and f ~1/2(s)
are free of poles in the striff (all their singular points are the branch poisissy, . . . S15).
Since the functionse(«), sh(«) have the prescribed pole at the paint 6y and because
of the relation (8.16) the functiongi(s), $2(s) have simple poles at the poirgs= 6,

s = 27 — 6p. Therefore, the functions (s), ¢2(s), defined by (3.3), have simple poles at
the same pointsa; = 0, ap = 27 — 6.

As for the behaviour at the ends of the strip, because of the presence of the functions
sine and cosy in (8.7), the functions?y(s), $2(s), grow exponentially as — x + ioco
(-7 < x < 3n): 9j(s) = O(€%). The functionsfi(s) f ~¥/2(s) £ 1 and f ~1/2(s) make
different the principal term in the expansions of the functigp&) and¢»(s) ass — oo,

s € II. To show this, choose a branch of the functibl2(s) such that

+
fU25) ~ —— |10 q1|siPBcoss, s— Xtico, —7 <X<3r. (8.26)
2sin28 |,
Then
fi(s) oy P :
=sgn| =2 +1)+0@E 2, s +ico. 8.27
iz -9 - +1]+0(€™), s—x+ioo (8.27)

Formulae (3.3) and (8.26) indicate that one of the functign(s), ¢2(s) grows at the ends
of the strip, and the other is bounded:

+
"0 L120: ¢i(s)=0@E%), ¢a(s) = O(1), s— xX+ioo, (8.28)
Mo

77+
9 41<0: ¢1(5)=0(), ¢o(s)=0E"), s—> xEioo. (8.29)
Mo

From the relations (8.8), it is clear that the functicaéx), sh(«) have inadmissible
poles at the zeros of the functidi, (—1/n7, —n3) which lie in the strip—7 < Re(a) <
w. Let these zeros bej, | = 1,2, 3,4 (Re(ej) € (—m, m)). The pointse; become
removable points of the functiomss(a), sh(«), if the following conditions hold:

(—sins + n; sinp) @1(s) — cosscosp P(s) =0, s=z¢j,

. 1 .
<— sins+ — smﬁ) D,(s) +cosscospP1(s) =0, s=¢j, j=12734. (8.30)
N

Since the determinant of this system, (—1/ny,—1/n3) is equal to 0, the above
conditions are equivalent to the following four equations:

(—singj + n3 sinB) d1(sj) — cosej cospda(ej) =0, j=1234. (8.31)
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Following the procedure of Section 3 we reduce the vector functional-difference
equation (8.13) to the scalar Riemann—Hilbert problem (3.5)t(£) = 0) on the two-
sheeted Riemann surfa@&of genusp = 7 (the number of the branch points is 16). In the
example (8.25) the branch points become

zo = —0-45822— 0-33792] zp = —0-01574— 0-41413i

4 = —1.41358— 1.04246i zg = —0-09165— 241124
(8.32)

zj =Zj—12 (j =12, 13 14,15).

It turns out that in all possible cases the branch paipesre symmetric with respect to the
origin. Since the functioz = —itan S‘f” maps the points and 2r — s into the pointsz
and—z, respectively, and because the functiahgs), #,(s) and f1(s), f1/2(s) meet the
relation (8.16), the functions, (z), u = 1, 2 are even. Itis also clear that they have simple
poles at the pointg; = —i cot”jlg0 anday = —og.

Define the behaviour of the functiof, (z) at the endg = +1. Let, first,nar/ng +1 >
0. Because of formulae (8.28), the numbejfsin inequalities (4.1) becomeit = 2,

v2ﬂE = 0. Indeed, for1(2), for instance, we have

1
Fi(2) = ¢1 (Sn + 2ilog 1%2) ~ ie‘s| ~ A} exp{Z

142z o
log—— | ~ AS|z+ 1|74,
gl_ZH fz+ 1

z— Fl (s— X=*ioco, —7w < X< 3m), { = const. (8.33)

Forng /ng +1 < 0, the same argument give§ = 0, vy = 2.
Next, analysing formulae (8.15) as— 37 +ioco and ass = 37 we get

Gjj(0) ~1, Gjm(o)=0(2) (j#m), o—3r+ico, jm=12
(8.34)
G12(8m) =0, G113m) = G22(3m) =1,

and therefore

Lj@Br) =Aj@r +ico) =1, j=12. (8.35)

8.2.2 Even Riemann—Hilbert problem. We have already shown that the poles a2
and the branch pointg; (j = 0,1,...,15) are simple and symmetric with respect to
the origin. The end-points = £1 are not branch points of the surface. In order that the
functions F,(2) are even, it is necessary for the functidpst) to satisfy the condition
(7.7),i.el, Ol (=t) = 1,t € (-1, 1). To check this relation, notice that for = 37 +i&
(—o0 < & < )

CO0SG = C0So, Sing = —sino, I5(a,b) =TI,(—a, —b). (8.36)
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Then from (8.15), (8.17), (8.19) and (2.8), (2.11)

- D(o) - D(o) - D(o)
G11(0) = G22(0) —— DG)’ G22(0) = G11(0)—D(6), Gi12(0) = —Gi2(0) D&’
1(6) = al(a>DE ; a(5) = —az(o)gg, f12(6) = tY%(0), o€ .
(8.37)
So, for the characteristic functiong(o), A2(o) we obtain
_ D(o)
j 1/2 —
11(8) = [a1(0) + (~DVaz(o) 1 2(0)] 52 Gy H=12 (8.38)
Then
A (0 F) = [G11(0)G22(0) — Glz(d)Gzl(G)]D(U) =12 (8.39)
D(o)
It is directly verified that
[(G11(0)G22(0) — G12(0)G21(0)]D(0) — D(0)
_ n2c08 0 Sin? 2 o - P
= W{[Fa(l/nl ) _772) - Fa(_l/nl » o )][Fa(l/ﬁl ) _772)
— I (=10} )] — g ng sir? B sir? a} —o0. (8.40)
For this reason,
A (0) =1, o€, (8.41)
and
LDl (-t)=1 te(-11, pu=12 (8.42)
As for the quantities arig, (t), we get
I, (=1) =1,(0 =1,(1) = 1. (8.43)
Choose art},(0) = 0. Then, by formula (8.42), atg(—1) = —argl,(1). Numerical

results for different sets of the parameters of the problem show that as thé traierses
from 0 to 1, the point{Rel,(t), Iml,(t)} always passes once round the origin in the
negative direction (see Figs 3 and 4 for= n/4, nj /nf = 0001, n/nf = 10,
ng/nf = 2). This means that the increment$, of the arguments of the functiofg(t),

as the contourt; = [0, 1] € C,, are traversed by the poinin the positive direction, are
equal to—27:

— A = -1 8.44
27 H (8.44)

We have verified all the conditions for the Riemann—Hilbert problem (3.15) to have an even
solution. Thus, to construct it, we may follow the scheme of Section 7.
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Re ()

FIG.3. The seffly(t) : 0 < t < 1}, for = 37, nJ /nf = 0.001,57 /nf = 10,15 /nf =2.

8.2.3 Closed-formsolution. We seek an even solution of the Riemann—Hilbert problem
(3.15) in the class of functions

IFL.@| < Aylz—1™", z—-1, pn=12 (8.45)
with
2, r;g/ng > -1 {0, nar/no_ > -1
Vv = 9 , V= 9 . 8.46
! {07 773_/710<_1 ? 2, ’73/'10<—1 ( :

The integerss, 2 are defined from (7.22)

1, r;g/ng > -1 { -1, ng/ng > -1
K1 = 9 , ko= Y . 8.47
! { -1 ni/ng <-1° "2 1L mg/mg <-1 (8.47)

The Riemann surfac®’ introduced in Section 7 becomes a surface of gerius 3. The
ewven canonical functiory (z, w) has been constructed in Section 7.2, and it is defined by
the relations (4.26), (7.27). The poir(tsjz, uj) € R’ and the integerm;, nj (j = 1,2, 3)
should be found by solving the Jacobi inversion problem (7.25).

We next specify formulae (7.27), (7.28) which describe the solution of the Riemann—
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15

05

im0

—0-5
Re (1)

FIG. 4. The setflp(t) : 0 < t < 1}, for g = 37, nJ /nf = 0-001,n7 /nf = 10,15 /nf =2.

Hilbert problem (3.15), (7.1) relevant to the physical problem under consideration:
F(z, w) = x(z, w)[R1(2) + w(2)R2(2)],

jwj D1 n Hivi1d i1 Hov218-ip1

+ 9
Z2—af 2—y2 2—y2 (8.48)

3. C
Ri(@=Co+ ) —
j=1¢

— O

)

2

3 7
C; D2 Hi6_;,1  H20_4,1 E;j
Ro(2) = L4 + Lo 4 =4
Z 2o} Z-vh Z-vj j;) 2 -7

J

with Cj (j =0,1,2,3), D1, D2, H1, H2 Ej (j =0,1,...,7), being arbitrary constants,
8m.n being Kronecker’s symbol, and

T —6y
7

S| —3m

a1 = —icot
! 4

zj = —itan (j=0.1....7.  (8.49)

Thus, the functions (8.48) possess 15 arbitrary constants. Define the number of additional
conditions for them. Equations (7.31), (7.32) yield the first six conditions

lim 22 Ry(2)=0, j=1,23
Z— o0

Ri(3)) + vjRa(8j) =0, | =1,23. (8.50)
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From (7.33), (7.34) we get either

Ri(y11) + vi1Re(y11) =0 for «1= -1, k2 =1, (8.51)
or

Ri(y21) —v21Re(y21) =0 for x1 =1, k2 =-1. (8.52)

We also have the four equations (8.31) and the two regularity conditions (6.11) of the
function &,(s) at the points- 3, 37

€8 (=118 + FY2O1(9) — [1(9) + T2(5))ga(s)) = 0. (853)

Note that then, because of the symmetry conditbets) = $,(2r —s), the function®,(s)
will be regular at the points = %n ands = %n automatically. These conditions follow
from (3.2) and (2.13). Finally, to reproduce the incident field, the solution has to meet the

two conditions

ress(a) =¢,, ress(a)=en. (8.54)
a=0p a=0p
The number of the constants is 15, and to fix them, we have the same number of linear
equations.

The solution of the vector functional equation (8.13) is defined by (6.5). The
constructed solution meets the symmetry condition (8.16). The closed-form solution of
the scattering problem is given by formulae (8.5) and (8.8).

REMARK 1 If n,; = n, (¢ = 1, 2), then the initial vector functional-difference equation

can be simplified to a new one with = 27 (see Senior, 1978, p.212). Following the
above procedure reduces the problem to a Riemann—Hilbert problem on a surface of genus
o' = 1 (atorus). The corresponding Jacobi inversion problem is solvable in terms of
elliptic functions. This symmetric case was analysed by Hurdifaéberg (1985). They

used the Wiener—Hopf formulation and the Daniele (1984) technique and found a closed-
form solution in terms of elliptic functions.

REMARK 2 The above technique may be extended for the case of the complex impedances
if the single branch of the functiof/2(s) is chosen such that

+
£1/2(g) ~ —2377;23 (”—2 + 1) SiPBcoss, S-—> Xx+ico, —m <x<3r. (855)
Mo

We leave this interesting case and also physical and numerical analysis of the problem for
future research.

8.3 Case p = —1: no branch points

By the convention of Section 3, if the functidit/?(s) does not have branch points in the
strip I, thenp = —1. This is a very important case since the matrix of transformation
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FIG.5. Some cases when= —1. The angle of incideng versusyy /5] for (1) nJ /n] = 001,15, /nf = 10;
@) ng /nf = 2,05 /nf =10, 3)nf /ni = 2.0, /n =01

(2.13) becomes single-valued, and the solution of the Riemann—Hilbert problem on the
Riemann surfac&k can be bypassed. In Fig. 5 we present those angles of ingidtmt
some values of the impedances when there are no branch poirit§g$) in the strip
II. Such cases can be used as a test for numerical computations for arbitrary values of
the impedances. In this section we give a closed-form solution of the vector functional-
difference equation (8.13) fav = —1. In addition, we show that for the isotropic case
ni = n; = 1, the integerp is also equal to-1.

Instead of the Riemann—Hilbert problem on the surf&&ewe get two separate
problems on a plane:

Fr)=h®OF ), te(-11),

(8.56)
Fr®=LOF, 1), te(-11).
We are looking for a solution of the above problems subject to the conditions
Fu(2 =Fu(-2), z¢[-11]. (8.57)

Then the limit values of the functiorfs, (z) satisfy the relationst;;[(t) =F, (-1, te
(-1, 1.
Let nar/na > —1. In this case, as it was shown in Section 8.2,

Fi(z) = O(|z£17%), Fa(2)=0@), z— Fl. (8.58)
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We also get
AY = AP = 47 1,1 =1 (8.59)
Choose arty, (0) = 0. Then, immediately, alg (-1) = 27 and ard, (1) = —2r.
Factorize the functionk, (t):
X ()
L) =2, te(-11), (8.60)
S AG)
where
1 1| [, ()
og
X, (2) = (2 — 1) — | =L 61
V@)= @ wexp{zm/ o dt] (8.61)
-1

with r,, to be determined. Analysis of the Cauchy integral gives

1

oni)] t—z
21

where the functions’,+ (z) are bounded as— +1. Therefore,
Xu(@ ~ AfzF D", z—£1, A*=const. (8.63)
The class of solutions (8.58) indicates that
r=-1, rp=1. (8.64)
The Sokhotski—Plemelj formulae and the identities (8.42) imply
Xu(2) = Xu(=2), z¢(-11); X:(t) =X, (-1, te(-1D. (8.65)

The functionsF1(2), F2(z) must be bounded at infinity (the point= oo corresponds to
the regular poins = & of the functions®i(s), $2(s)). They may have simple poles at the
points£zj (j =0, 1, 2, 3) and+ay, where
T — S : — 6

7 L oy = —icott 2 °
ands}‘ (j =0,1, 2, 3) are the simple zeros in the stfipr < Re(s) < &} of the function

zj = —icot (8.66)

ni(ng + ng)tanp

— (cog' s + 4e; cof? B). (8.67)
4ng COSs

fl/Z(S) —

The general solution of the Riemann—Hilbert problems (8.56), (8.57) becomes

D, 3 Cj
F1(2) = X1(2) | dy + dZ? + + ’
1(2) 1()[1 2 2 — o2 ;(ZZ—ZJZ)Xl(ZJ')}

(8.68)

Fa(2) = Xa(2) | =22 3 Ci
2(2) = X2 zz—az_z(zz—z%)xz(zj) '

1 j=0
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whereds, dp, D1, D2, Cg, C1, Co, C3 are arbitrary constants. Here we used the relation

Zgzﬁ@=—;gfﬂ& j=0123, (8.69)

that follows from (3.3). Clearly, sinc&1(z) = O(z ), X2(z2) = O(z%), z — o0, the
functionsF1(2), F2(z) are bounded at infinity.

To fix the eight constants in (8.68), we have the same number of equations (8.31),
(8.53) and (8.54).

Finally, notice that in the isotropic case we get

1

Ny =nf=m=n=1n n=n--,
n (8.70)

o=1 e=3z do=0
and the functionf %/2(s) does not have branch points:
tanp

£12(5) = 12 0025 + cof B). 8.71
(s 2COSS( + B) ( )

Thus, this is a particular case of the above problenpfer —1.

9. Conclusion

In this paper we have analysed a class of vector functional-difference equations. It has
been shown that a vector functional-difference equation of the first order, in dktfa
complex plane subject to certain restrictions, is equivalent to a scalar Riemann—Hilbert
boundary-value problem on a two-sheeted Riemann surface of genlise genusp

is defined through the numb&t of the poles and zeros of odd order in the strip of a
characteristic function of the matrix coefficient by the formpla= (N — 2)/2 (N is
always even). In contrast with the Riemann—Hilbert problem on a union of two real axes of
a hyper-elliptic surface considered by Antipov & Silvestrov (2002), in the present case, the
corresponding Riemann—Hilbert problem is formulated on a union of two finite segments.
We have constructed a closed-form solution of that new problem of the theory of analytic
functions. The conditions quenching the pole of ordet infinity of the Weierstrass kernel

give rise to the classical Jacobi inversion problem.

Motivated by applications to diffraction theory, in addition to the general case, we have
studied a special symmetric case of the vector functional-difference equation. It has been
revealed that in this case the Riemann—Hilbert problem is reducible to a new problem on a
surface of genug’ = [p/2].

To convince the reader of the applicability and the viability of the technique proposed,
we have solved a new model problem for an anisotropic half-plane with imperfect
interfaces (the impedances'f, n% are arbitrary) which are illuminated by a plane
electromagnetic wave at oblique incidence. To solve this problem, we started with the
Maliuzhinets formulation or, equivalently, with a vector functional-difference equation of
the first order. It turns out that the matrix coefficient of the equation meets the restrictions
for the method to be applied. The genus of the corresponding Riemann surface is equal
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to three. To complete the procedure of solution, one needs to solve the Jacobi inversion
problem for a surface of genus three. A device for its exact solution has already been
reported (Antipov & Silvestrov, 2002). We have also analysed a particular case when the
characteristic function does not have poles and zeros of odd order, and the solution of the
Jacobi inversion problem has been avoided. Numerical results will be reported elsewhere.

The proposed technique has a potential to be successfully applied to a variety of
diffraction problems that have been considered insoluble. The complexity of the approach
depends on the genus of the corresponding Riemann surface. From the numerical point
view the only portion which becomes more complicated is the solution of the Jacobi
inversion problem.
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