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Summary

An analytical method for scalar second-order functional-difference equations with meromorphic
periodic coefficients is proposed. The technique involves reformulating the equation as a vector
functional-difference equation of the first order and reducing it to a scalar Riemann—Hilbert
problem for two finite segments on a hyperelliptic surface. The final step of the procedure is
solution of the classical Jacobi’s inversion problem. The method is illustrated by solving in
closed form a second-order functional-difference equation when the corresponding surface is a
torus. The solution is constructed in terms of elliptic functions.

1. Introduction

The analysis of canonical problems in acoustic and electromagnetic diffraction theory by half-

planes and wedges is frequently carried out by using the Maliuzhinets techajguéh{s method

ultimately yields functional-difference equations which, in general, are equivalent to difference

equations with periodic coefficients nth order o > 2). If the equation is of the second order and

the shift coincides with the period of the coefficients, then it reduces to two difference equations of

the first order (Jost?), Demetrescu3), Senior and Legault)). The coefficients of these equations

are the roots of the characteristic quadratic equation with periodic coefficients and, in general, they

are multi-valued functions. In the particular case when the coefficients are single-valued, a closed-

form solution can be found either in terms of the Maliuzhinets functidipsar by the method of

the Riemann—Hilbert problem on a finite segment of a complex plane (Antipov and Silvesjirov (

In spite of the importance of the second-order difference equations with periodic coefficients for the

geometric theory of diffraction, a general exact method for their solution is still unavailable in the

literature. For a survey of some results related to difference equations of the second oréigf)see (
Demetrescuet al. (6, 8) have analysed some difference equations of the second order appearing

in diffraction by a right-angled resistive wedge. They replace the initial equation by a couple of the

first-order equations with multi-valued coefficients and then apply the Fourier transform. By taking
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the logarithms they reduce the equations to a boundary-value problem for a strip whose solution is
given by a singular integral with a periodic analog of the Cauchy kernel. Analysis of the results (see
the Appendix) shows that their solution is multi-valued in the complex plane. It is multi-valued in
the strip—m < Res < & because of the choice of the system of the branch cuts (one of the cuts
crosses the integration contour of the Cauchy integral involved). Although by a correct choice of the
cuts it is possible to achieve the desired property of the solution in the| &dp| < 7 and make
it single-valued, it is impossible to overcome another obstacle: the solution is multi-valued outside
the strip| Res| < & regardless of the choice of the cuts. We emphasize that the spectral functions
have to be single-valued in an extended strip and therefore the solution of the functional-difference
equation has to be a meromorphic single-valued function in the complex plane.

Senior and Legault have generalized the equation deducei) by (@dding another parameter
into the coefficients of the second-order equati)rand also by doubling the shiff), The shift is
equal to 2, wherer is the period of the coefficients amd= 1 in (4) andn = 2 in (7). They also
reduce the second-order equation to two first-order equations with multi-valued coefficients. Then
by taking the logarithmic derivatives they transform the problem into the equations of the form

i logw(e + nm) — i logw(a — nr) = g(w), (1.2)
da da

whereg(«) is a multi-valued 2 -periodic function with prescribed poles and branch points. The
solution of the initial difference equation is expressed through solutions of equation (1.1). These
solutions are multi-valued functions on the complex plane and have to be single-valued on a
Riemann surfac® defined by the branch points of the functigt). The construction of a partial
solution of equation (1.1) that is single-valued Bn is the key step in the procedurg, ). The
property of the solution to be single-valued is satisfied by adding to the solution abelian integrals
of the first kind with unknown coefficients and abelian integrals of the third kind with unknown
logarithmic singularities. Eliminating the polar and cyclic periods of the functionul@g leads
to systems of equations which are linear with respect to the unknown coefficients of the abelian
integrals of the first kind and nonlinear with respect to the unknown singularities of the abelian
integrals of the third kind. The number of equations is equal to the genus of the corresponding
Riemann surface that is defined by the number of the zeros (they are assumed to be simple) of the
determinant of the characteristic equation. In particular cases, when the genus of the surface is one
or when the surface has a special symmetry, it is possible to simplify the above nonlinear system
and to find its exact solution. In the cast the genus of the surface is one, and the solution is
found in terms of elliptic functions. In the cas@é) the corresponding surface is of genus three.
By exploring the symmetry of the surface, the Cauchy theorem and the Riemann bilinear relations
for abelian integrals, the nonlinear system reduces to inversion of the elliptic integrals. In general,
however, the solvability of the corresponding nonlinear system has not been studied and methods
for solution (exact or approximate) are unknown.

A new constructive method for a vector functional-difference equation of the first order

P(0) =G(0)P(oc —h)+9(o), o e€Q={Res=uw}, (1.2)

has been proposed by Antipov and Silvesty (The authors have found that if the mat@Xo)
has the following structure:

Glo) = ( a1(0) + az(0) f1(o) az(o) ) —

22(0) f2(0) 21(0) — ao(0) f1(0) (1-3)
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then equation (1.2) reduces to a scalar Riemann—Hilbert boundary-value problem on two finite
segments of a Riemann surfaReof an algebraic function defined by the characteristic function
f(s) = flz(s) + fa(s). Hereay (o), ax(o) are arbitrary Hlder functions on every finite segment
of the contourQ, fi(o), f2(0) are arbitrary single-valued meromorphic functions in the strip
IT = {w —h < Re(s) < w} such thatfj(c) = fj(c —h),o € Q, ] =1, 2 Itis assumed that the
functions f1(s) and f (s) have finite numbers of poles in the stiip The number of zeros of the
function f (s) in the stripIT is also finite. The solution of equation (1.2) is constructed in terms of
the Weierstrass integrals and the Riem@armnction on the surfac®. This method is applied for
solving in closed form a problem of electromagnetic scattering of a plane wave obliquely incident
on an anisotropic impedance half-plane with four different impedances.

The main objectives of the present paper are

(i) to propose an efficient method for scalar functional-difference equations of the second order
ais)f(s+h)+bs)f(s)y+c(s)f(s—h)y=d(s), seC, (1.4)

with h-periodic entire coefficients based on the theory of the Riemann—Hilbert problem on two
finite segments of a hyperelliptic surface of any finite genus;

(i) to illustrate the technique by studying the solvability and finding a closed-form solution of a
class of second-order difference equations when the relevant surface is a torus.

The method to be proposed in the present paper is different from the one by Senior and Legault
(4,7). The first step of the procedure is to convert the scalar functional-difference equation of the
second order into a vector difference equation of the first order and decouple it. In contrast to the
approach of Jost), Demetrescu3) and Senior and Legaulé(7) as afirst stage we arrive not at
two functional equations of the first order with two-valued coefficients, but at a scalar Riemann—
Hilbert problem for finite segments on a hyperelliptic surface. To solve this problem on the Riemann
surface we use the singular integrals with the Weierstrass kernel that has a pole at infinity. Its order
coincides with the genus of the surfageThis solution is single-valued on the surface and therefore
does not require elimination of the polar and cyclic periods, the bulk of the procetiie The
constructed solution, however, has an essential singularity at infinity. The condition for eliminating
this singularity is equivalent to the Jacobi inversion problem (Farkas andiRyaZverovich (1)).
It has been shown by Antipov and Silvestrd2) that this problem reduces to an algebraic equation
of degreep or can be solved numerically by the method based on the principle of the argument on
aRiemann surface.

The present paper is organized as follows. We formulate the problem, describe a class of solutions
in section 2.1. Then (section 2.2) we reduce an auxiliary problem for equation (1.4) in a strip to a
scalar Riemann—Hilbert problem on the segméntk 1] on two sheets of a hyperelliptic surface of
an algebraic function. It is also shown that if the number of branch points of a funaficiis)
is equal to 2 + 2 (this number is always even), then the surface has genuklere A(s) is
the discriminant of equation (1.4)A(s) = b2(s) — 4a(s)c(s). The general theory of the scalar
Riemann—Hilbert problem on the segmefusl, 1] on two sheets of a hyperelliptic surface and
solution of the associated Jacobi inversion problem has been proposed by Antipov and Silvestrov
(9,12). We write down the solution of the Riemann—Hilbert problem associated with the second-
order difference equation in section 2.3. In section 2.4, we find a general solution to the functional-
difference equation (1.4) in the whole complex plane. The elliptic case is thoroughly analysed in
section 3. An exact solution is constructed in terms of elliptic functions. In the Appendix, we show
that the solution, 8) is multi-valued.
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To illustrate the proposed technique we have solved a problem on electromagnetic scattering
by a right-angled magnetically conductive wed§® (The governing equation to be solved is the
following one:

(coss —sind)[f(s+m) + f(s—m)] = cossf (), (1.5)
and the corresponding auxiliary equation is
(co€s —siO)[f(s+2r) + f(s—27)] + (cofs — 2sir?6) f(s) = 0. (1.6)

The last equation is equivalent to a Riemann—Hilbert problem on a torus and it is solved by the
technique proposed in the present paper. For equation (1.5), the period of the coefficients of the
functional-difference equation ist2whereas the shift is equal to. The case when the shift is

less than the period is not the subject of the present paper. This issue is addressed in Antipov and
Silvestrov ).

2. Scalar functional-difference equation of the second order
2.1 Formulation
Lets € C. Consider the following problem.
Given entire functions a(s), b(s), c(s) and d(s) find a function f (s) meromorphic in C such that

a(s) f(s+h) +b(s) f(s) + c(s) f(s—h) = d(s). (2.1)

The functions a(s), b(s) and c(s) are h-periodic and the expressions b(s)/a(s), c(s)/a(s) have
certain finite limitsas |s| — oo (Res isfinite). It is also assumed that the function f (s) isanalytic
inastrip % = {w; < Res < w»} apart from a finite set of poles. At the ends of the strip, that is,
as|s| — oo, f(s) = O(e2™*I!msl/hy with v* being real, finite and prescribed.

At any zero of orderg of the coefficienta(s— h), b(s) andc(s+ h), the unknown functiorf (s)
may have a pole of the same ordegr

Let w be a real number, and* be a strip{s € C : w — h < Res < w + h} such that1* c 10 if
2h < wo — w1, IT* = rnlif 2h = wy — w1, andIT* D noif 2h > w2 — w1.

First, we state and analyse an auxiliary problem.

Find a function f (s) that

e ismeromorphic in the strip IT* with prescribed poles and admits a continuous extension up to
the boundary 9 1T*,

e atinfinity may grow (decay) exponentially:
f(s) = O IIMS/Ny  Ims s 400, se I, (2.2)

e onthecontour @ = {o € [T* : Reo = w} satisfies the equation

a(o)f(c +h) +b()f(o)+co)f(c —h) =do)- (2.3)
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Without loss of generality assume thas) /a(s), c(s)/a(s) do not have poles and zeros €n

Note that if[T* ¢ T19, that is, 2 < w» — w1, then it might happen that some of the prescribed
poles, say; € I1° of the functionf (s) in (2.1), will be outside the stripl*. Therefore, not to lose
them, we need to seek the functidis) in IT* with the additional poles at the poirdg + nh € IT*
(nis an integer).

Clearly, in either casel{* < IT° or IT* > I19) in the strip [T*, the functionf (s) is a solution of
the auxiliary problem.

2.2 Scalar Riemann—Hilbert problem on a hyperelliptic surface

The auxiliary problem for equation (2.1) is equivalent to a vector equation of the first order. To
show this, introduce two functions

D1(s) = f(s), ®as)= f(s+h), sell, (2.4)

whereIl = {s € C : w — h < Res < w}. Then on the contou®?, ®1(c) = ®o(c — h). At the
same time, equation (2.3) becomes

a(o)®2(0) +b(o)P2(c — h) +c(o)P1(oc —h) =d(o), o €Q. (2.5)

Equivalently, (2.3) can be rewritten in the vector form

P(0) =G(o)P(c —h)+9g(o), o€, (2.6)
where 0
_{ ®i(s) _
0 =( 319 ) 99=( aoyae )
0 1
G® = < —c(s)/a(s)  —b(s)/a(s) ) (2.7)

Let A(s) = b%(s) — 4a(s)c(s) be the discriminant of the quadratic equation
a(s)A2(s) + b(s)A(s) + c(s) = 0. (2.8)
Then the eigenvalues of the matfB(s) are given by

—b(s) + (1) 1AY2(s)

*(®) = 2a(s)

, i=12 (2.9)

Call A(s) the discriminant of the functional-difference equation (2.1). Zeros of odd order of the
discriminant are branch points of the functiar/?(s). Let the branch points in the strid be
0,81, - -+ » 241 (p = 0). Their number is always even. To fix a branch of the functidr?(s),

cut the stripIT by smooth curve§; Cc TI1(j =0, 1, ..., p) which do not intersect each other and
join the branch points so th@lty = ;11 (j = 0,1,..., p). The positive direction is chosen
from spj t0 5j1. For the limit values of the fixed branch on the left)(and on the right{) sides

of the cuts[AY2(0) ] = —[AY2(0)]7, 0 € Tj.



250 Y. A. ANTIPOV AND V. V. SILVESTROV

Let

1 1
0= t0 1 ) (2.10)

The elements of this matrix ateperiodic. Therefore
[T IG(T(s—h) = A(9), (2.11)

where A(s) = diag{A1(S), A2(S)}- Next, introduce a new vector functiap(s) = [T(s)] 1d(s),
s € I1, with the components

1 b(s) a(s)
$1(8) = > (ATZ(S) + 1) P1(s) + mq)z(s),

1 b(s) a(s)
@2(s) = > <_AT2(S) + 1) dy1(s) — m‘bz(s)- (2.12)

Because of relation (2.11), the new functianss), ¢»(s) satisfy the two separate equations

$1(0) = r(0)p1(0 —h) + A™Y2(6)d(0),

$2(0) = 12(0)p2(c — h) — A™Y%(0)d(0), o €. (2.13)

The vector functionb (s) is single-valued in the stripl provided the following boundary conditions
onthecutdj (j =0,1,..., p) hold:

THo)pt (o) =T (0)p (0), o€}, j=01,...,p. (2.14)
Equivalently,
¢7 () =¢5(0), ¢ (0)=¢F(0), oelj, j=01...,0. (2.15)

Analysis of relation (2.12) shows that the poles of the functidaés), ©»(s) may or may not give
poles to the function&i(s), ¢2(s). This depends on whether the corresponding point is a zero of
the functions 1 b(s)A~1/2(s) or a(s). In addition, the functiong1(s), #2(s) have poles at the
zeros of even order of the discriminafit{s) in the stripIT. Let all the poles inT of the functions
91(8), ¢2(S) beay, ap, ... , am, and their orders bey, vy, ... , vy, respectively.

At the branch points of the function/2(s),

pj(s) ~ Aj(s—s) M2 s, Aj=const j=1,2k=01...,20+1 (2.16)

wherepj > 1, nj are odd.
It is possible to reduce the problem (2.13), (2.15) to a vector Riemann—Hilbert problem on a
system of contours. Transform the stiipinto a z-plane cut along the segmept1, 1] by the

mapping

. T ih 142z
Z=—i tanﬁ(s—a)), S=w+ —log——

, 2.17
21 1-z ( )
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where the single branch of the functisns chosen such that — o — %h asz — oo. Then the
system of equations (2.13), (2.15) is equivalent to the following vector Riemann—Hilbert problem
for the functionsFj(2) = ¢j(s) (j = 1, 2):

Fj+(t) =ljOF O+ Dj®), te(-11D, j=12

Fj+(t)=|:g_j(t), teym =12 m=01...,p, (2.18)
where
FE®) = ¢77(0), 1) =2j(0),
Dj®) = (-1 A Y2(6)d(0), o=w+ % log i—f: j=12. (2.19)
The curvesym (m = 0,1, ..., p) which are the images of the contourgs, do not intersect each

other and the segmept 1, 1]. The contoui2 is mapped onto the upper side of the gy, 1], and
the left boundary of the stripl, the contour2_1, ismapped onto the lower bank of the ¢utl, 1].

To solve the new problem (2.18), convert it into a scalar Riemann—Hilbert problem on a two-
sheeted Riemann surface. [7etbe the hyperelliptic surface of the algebraic function

w?=q@, Q@ =@Z-20)Z-2)...(Z— Z2p+1), (2.20)

formed by gluing two copie€; andC; of the extended complex plafigu co cut along the system
of the curves/, (M= 0,1, ..., p). The positive (left) sides of the cuis, on C; are glued with
the negative (right) sides of the curvas onC, and vice versa. Herg (j =0, 1,... ,2p+1) are
the images of the branch poirds sy, ... , Spp41:

zj = —i tan%(sj —w), j=01...,20+1. (2.21)

The constructed surface has gepud_et q¥/2(z) be the branch chosen such t@gt?(z) ~ z°*1,
Z — oo. Then the functionw defined by (2.20) is single-valued on the surfée

1/2
_ ] 9742, ze Cy,
Introduce now the following function on the surfaRe
_ ) @, (Zw)elCy,
& ‘{ R@),  (zw) eC &5

By the second condition in (2.18) it becomes evident that the fundfitn w) is meromorphic
everywhere on the surfacg apart from the contou€ = L1 U Lo, with L1 = [-1,1] ¢ C; and
L, =[—1, 1] c C,. Onthe contourZ C R, this function satisfies the boundary condition

Fre,6) =1t HF (1,6 + D, &), (1,8 €L, (2.24)
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where

I(t,s>={ (). (.85 el Dit), (t.&) e Ly,

l2t), (t,§) €Ly, Da(t), (t,§) €Ly,
At the ends of the contout, the behaviour of the functioR (z, w) is defined by the asymptotics of
the functionsp1(s), ¢2(s) as Ims — oo and therefore by the asymptotics of the functidr(s),
a(s)AY2(s), 1+ b(s)A~Y2(s) and 1— b(s)A~1Y/2(s) as Ims — +o0. For definiteness, assume
that

Fzw| < APIzF1™7%, @w) eC, z—+1, AP =const p=12 (2.26)

D, §&) = { £ =w(). (2.25)

wherev:t are definite real numbers. In particular, if the functiaiis) A=/2(s), 1+ b(s)A=Y/2(s)
and 1— b(s) A=Y/2(s) have finite non-zero limits, therf" = v*, 1 =1, 2.

2.3 General solution to the Riemann—Hilbert problem

A general procedure for solution of the scalar Riemann—Hilbert problem for an open contour on a
hyperelliptic surface of any finite genus is presented by Antipov and Silve@jon(this section

we write down the final formulae for the solution to the problem (2.24). The general representation
for the functionF (z, w) has the form

F(z,w) = X(z, w)[¥(z, w) + R(z, w)], (2.27)
where
V(z, w) = ¥1(2) + w(DY2(2),
1 D(t, &) dt 1 D(t, &)  dt
"o =g |eani-e 0w Locepior @9
The meromorphic functiorR(z, w) = Ri1(z) + w(2)Rz(2) is expressed through the rational

functions R1(z) and Rx(z) with specified poles and arbitrary coefficients. The functiofz, w)
is a solution of the following problem.

Find a function X (z, w) meromorphic on R C £ which has a finite number of poles and zeros, has
non-zero boundary values X*(t, &) and satisfies the boundary condition

XT(t, &) =1, &)X (t, &), (& el CR. (2.29)
At the ends of the segments L,
BolzF 1/ %t < Xz w)| < Bz F 1%, (zw)eCu, z—+1, p=12 (2.30)
where By, B; are positive constants.

Such a solution is called a canonical function of the problem (2.24) and it is giveéi(hyw) =
exp{E(z, w)}, (z, w) € R, where

1
E(z, w)=—_/ logl(t, &)dW +
27 Jp

2 LM Puj
> sgne, Y / dw
= j=1vP

n=1 10

p r
+y /de+mj7§ dw+nj?§ dw | . (2.31)
i=1 \’e a bj
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Here
dW=——"—-, w=w(®, &=w(), (2.32)

is the Weierstrass kernel (Zverovichl]), an analogue of the Cauchy kernel on the surfRce
Under lod (t, £) on the segments,, C C, (« = 1, 2) we understand the branches of the functions
logl,.(t) onL, fixed by the conditions

27(v, -1 < argl, (—1) < 2rv,, pn=1L12 (2.33)

The integerg,, in (2.31) are determined by
=vf 1 [, (1 =12 2.34
Ky =v, + Zarg,l(), nw=12. (2.34)

Here[a] is the integer part of the numbar

The first integral in (2.31) is discontinuous d@h and the function eX{E(z, w)} satisfies the
boundary condition (2.29). In general, the function &, w)} grows exponentially at infinity
and might not meet the inequalities (2.30). To achieve the prescribed behaviour of the solution at
the ends of the contout, the second group of the line integrals along smooth curves is added in
(2.31). The starting pointp,0 € C, (1 = 1, 2) of the lines of integration coincide with the end
t = 1 of the contourd. ,, respectively:pio = (1, q%/2(1)), pzo = (1, —q¥/?(1)). The upper limits

Puj = Wuj» DP Muu) € Cuy Uy =qY2(n), i =212, lkul, p=1,2, (2.35)

of the integrals are arbitrary fixed distinct points of the surfRc& he exponents of these integrals
are continuous through the contours of integration. The last group of the line integrals in (2.31) is
taken to remove the exponential growth of the solution at infinity. They do not violate the condition
(2.29). The contoura; andbj form a system of canonical cross-sections of the surfac&he
pointse; = (§j,vj) € C1, vj = q¥?@5j), j = 1,2,..., p, are arbitrary fixed distinct points of

the surfaceR. We note that the arbitrary points and p,j do not lie on the contout and the
canonical cross-sections. Also, they do not coincide with the branch points of the sRréamkthe
poles of the functiorF (z, w). The final formulae for the solution do not depend upon the choice
of the pointse; and p,j. The pointsrj = (oj, wj) (wj = w(oj), j = 1,2,..., p) may lie on
either sheet of the surface. These points and the integgns; have to satisfy the Jacobi inversion
problem (Springeri3), Farkas and KralQ), Zverovich (11))

P
> lov(oj. wp) + mjAj +njBjl=d, v=12...p, (2.36)
j=1

where

t'—1dt tv—1dt
Aj=¢ ——, By,j= (2.37)
a &) b, &M

are theA- and B-periods of the abelian integrals

(Z,w) tv—ldt

wvzwu(z,w)zf — v=12,...,p, 2.38
w0 ED g (238)
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and the constant are defined by

4 1 1 tv—ldt 2 licya Yuj tl)—ldt

df = wv(ﬁ',v')——,f [logli(t) — logla(t)] ———5— + (=" sgnk / —.
JZ:; R gh gl2 20 /; g ;LJZ:; L 920
(2.39)

For genusp = 1, the inversion problem (2.36) is solvable in terms of elliptic functions. This case is
analysed in section 3. For genps> 1, the Jacobi problem is equivalent to the identification of the
zeros of the associated Riemafifunction. This issue is discussed it2§.

We now summarize the procedure for finding the canonical function. First one needs to fix
branches of the functions légt) and lod»(t) on the segments-1, 1] by the inequality (2.33).
Next, the integers,, should be identified to meet the conditions (2.30). The last step of the
procedure is to find the integensj, n; and the unknown points; = (oj, wj) € R by solving
the Jacobi inversion problem (2.36). The canonical funckdn, w) = exp{E(z, w)} is given by
(2.31). Itis bounded at infinity, satisfies the boundary condition (2.29) and the inequality (2.30).
The functionX(z, w) is analytic and non-zero everywherefncC £ apart from the simple poles
and simple zerosj (j =1, 2,..., p) and, possibly, the points,;; (j =1,2,..., [kul, 0 =1,2).

If x,, > 0, then the pointg,; are simple zeros. For negativg, the functionX(z, w) has simple
poles at these points. Fey, = 0, the pointsp,; are neither poles nor zeros.

Not all the constants in the rational functioRs(z) and Rx(z) are arbitrary. They have to be
chosen such that

lim X[v2(2) + R(21=0, k=1,2,...,p,
Z— 00

W(dk, k) + Rk, o) =0, k=12,...,p,

Wy, (DR uu) + Rz, DR tu) =0, j=1,2,...,—«,, w=12. (2.40)

The last group of the conditions is required«if < 0. The conditions (2.40) guarantee the
boundedness of the functidf(z, w) at infinity, eliminate the poles at the pointk, vx) and assure
the boundedness of the solution at the poipts, (—1)“—1uﬂj) whenk, < 0.

2.4 General solution to the functional-difference equation

According to formulae (2.12), (2.4) and theperiodicity of the function®(s)/a(s), c(s)/a(s), the
general solution to the auxiliary problem (2.3) has the form

f(s) = ¢1(S) + ¢2(S), @ —h < Res < o,

~ b9 AV2(s)
f(s) = —%[ms —h) + ¢2(s — )]+ 2a(s)

[pr(s—h) —¢pa(s—h)], o <Res<w+h,
(2.41)

wheregj(s) = Fj(z(s)), z(s) = —i tan(w/h)(s — w)-
Inview of ¢j (s — h) = Fj(z(s—h)) = Fj(z(s)), | = 1, 2, express the functiofi(s) in terms of
the solution to the Riemann—Hilbert problem on the surfdce

f(s)=F(z,w)+ F(z,—w), w—h<Res<w,
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~ . b AV2(s)
f(s) = _T(S)[F(Z’ w)+ F(z, —w)] + 2a(s)

(2.42)

wherew = q¥2(2). To define the general solution to equation (2.1) in the whole complex plane,
continue analytically the functiofi (s) from the stripIT* to the left and to the right

f(s) = Ils)[_b(s) fs—h)—c(s)f(s—2h)+d(s—h)], o+h<Res<w+2h,

f(s) = Fls)[_a(s) f(s+2h)—bs)f(s+h)+ds+h)], w—2h<Res<w—h. (2.43)

It is convenient to use the following notation:

f(s) = f(s), sell,

Mk={seC:w+Kk-2Dh<Res<w+(k—Dh), k=041, .... (2.44)

The functionsfy(s) and jz(s) defined in the strip$l1 andIl, are given by (2.42):f1(s) = f(s),
s € Iy, and fa(s) = f(s), s € IIo. As for the other functions, they can be obtained by the
analytical continuation of relations (2.42) into the stripg:

1
fk(s) = @[—b(s) fke1(s—h) —c(s) fk_a2(s—2h) +d(s—h)], k=3,4,5,...,

1
fk(s) = ?S)[—a(s) fke2(s+ 2h) — b(s) fkr1(s+ h) +d(s+h)], k=0,-1,-2,.... (2.45)
The function f (s) = fk(s), s € Ik, is continuous through the contours Re= w + kh (k =
0,+1, +£2,...), and is meromorphic and single-valued in the whole plane.

In the casdl* c I1° the analytical continuation may cause undesired poles in the3tipf
the functionf (s). They should be removed.

3. Elliptic case

In this section we aim to find an explicit solution to equation (2.1) when the scalar Riemann—Hilbert
problem is set on a torus, a Riemann surface of genusl-

3.1 Riemann—Hilbert problem on two arcs of a torus

In the case under consideration the discriminant of equation (2.1), the furot®)nhas four zeros

sj € 1 (j =0,1,2, 3) of odd order. The conformal mapping (2.17) that transforms the Htrip
into the complex plane with a cut, is not unique. In the elliptic case instead of the function (2.17)
it is useful to take the function which maps the stfiponto a complex plane such that the branch
pointssg, S1, S andsz are mapped into the pointsl/k, —1, 1 and ¥k, respectively, wher& is
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acomplex parameter to be determined. It will be done into two steps. First, map th&lsbrifo

the ¢-plane by the functiom = exp(2rxis/h). Obviously, the contour§2 = {s € C : Res = w}
andQ_; = {s € C : Res = w — h} are transformed into the lower and the upper banks of the
semi-infinite cu{arg¢ = 27w/ h}, respectively. Let

g =8/ 201,23 (3.1)

Secondly, we use the inverse linear rational funcior> C that maps the points1/k, —1, 1, 1/k
into the points;j (j =0, 1, 2, 3) (see Hancockid))

_Cl+§2+§1—§22—,u
T2 2 puz—-1

e 3-2)

where the parametersandk should be found from

1+pn _fo—g21-K
1-pn fo—al+k

(1—k>2= fo—¢1t3 -2
1+k to—Ct2t3—01
By solving equation (3.2) with respect ofind the mapping function

26715/ — (¢ + ¢2) — (g1 — ¢2)
22/ — il 402 — (1 —¢2)
This function maps the branch poirsts s1, S andsg into the points-1/k, —1, 1, 1/Kk, respectively.
The cutsl'g andI'; become smooth curveg andy; joining the points—1/k, —1and 1 1/k.

The contour2 transforms into a circle arc = tytot3 defined by three points, to andts with t;
being a starting point (Fig.1):

(3.3)

Z=uUu(s), u(s) =

(3.4)

t1=—,
"

_ 292’”‘?/“ —(G1+&2) — (L —&2)
2ue?mielN — p(t1 +¢2) — (G- ¢2)

t2

_a+ o+ ul—0)

= . 3.5
STt a - (3:9)
It follows immediately from (3.2) that the inverse function is
h f1+8  h—z—p
= = —1 .
s=v@), VD) =~ og( > T 1) (3.6)

where a single branch of the above function is chosen such thatzRe= w, z € LT, with L+
being the left bank of the cut.
To find the functions

Fi(22 =9¢;j(v(2), zeC, j=12 3.7)
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we have to solve the vector Riemann—Hilbert boundary-value problem (2.18), where
li® =2 ®), Dj® = (1A 2@)d@m). (3.8)

Following the procedure described in section 2 reduces the problem to the scalar Riemann—Hilbert
problem (2.24) on the Riemann surface of gepus 1 of the algebraic function

w?>=q(2), q@=1-2201-kK2. (3.9)

The contourf consists of two circular arck1 = L ¢ C1 andL, = L ¢ C,. Because of the
prescribed asymptotics (2.2) of the functidiis) as Ims — +oo, s € I1*, and formulae (2.4),
(2.12) the functior (z, w) has power singularities in the vicinities of the end pomnts t1, z = t3:

Fizw)=0(z—t1|™™), z—t, (Zw)eC,y p=12

F(zw)=0(z—t3 ™), z—>ts (Zw)eCy u=12 (3.10)

where the parameters; are defined by the numbens® and the behaviour of the functions
a(s)A~Y2(s), 1+ b(s)A~Y2(s) and 1— b(s) A~Y/2(s) as Ims — +o0. At the branch points of the
surfacez = —1/k, —1, 1 and Yk, the functionF (z, w) possesses poles of orders, (1, 12 and

us, respectively. We emphasize that the poles are understood in the sense of Riemann surfaces
(Springer (3)). Here the numbergwo, 11, w2 and uz denote the orders of the zeros of the
discriminantA(s) at the corresponding poing, j = 0,1,2,3. To complete the description of

the class of solutions, we indicate that the unknown funcidm, w) may have poles of orders

V1, V2, ..., vm ON both sheet€1, C; at the points with affixess, ao, ... ,am. Herew; are the

images of the poles; of the functionsp1(s), ¢2(s): «j = u(@j), j =1,2,...,m.

3.2 Canonical function of the Riemann-Hilbert problem

To solve the Riemann—Hilbert problem (2.24) one needs to factorize the coefficight. This
means constructing a canonical function of the problem (2.24). At the end pointg andz = t3
this function may have power singularities

Bylz—til ™ < IX(zw) <Bflz—tl™, z-t, (Zw)eC, p=12

Blz—t3| it < Xz w)| < Bf [z—t3] i, z—>t3, (Zw)eC, p=12 (3.11)

First we construca- andb-canonical cross-sections of the surf&€The cross-sectioaconsists
of the banks of the cyt; (Fig. 1) which simultaneously belong @ andCs,. The positive direction
onais chosen such that the first sh€gtis always on the left. The cross-sectinis a smooth closed
curve that consists of two parts. The first part is a curv&€pjoining the points tk and —1/k
and passing through infinity. The second part lies on the sBigeind joins the points-1/k and
1/k through infinity. The starting point is/k and the first sheet is traced first. Both parts of the
cross-sectiob are symmetric with respect to the origin. The function= w(z) on the surfac® is
defined by (2.22), where!/2(z) = /(1 — z2)(1 — k?22) is the branch single-valued in tleplane
cut alongyp andy; and satisfying the relation?(0) = 1-




258 Y. A. ANTIPOV AND V. V. SILVESTROV

b
tl L [0
t, a 1/k
AN "
= \ 17 "
b Yo &
-1k
Fig. 1 Canonical cross-sectiomsb and the contout. The elliptic case
A canonical function of the problem (2.24) is given by
X(z,w) =expE(z,w)}, (zZ,w)eR,
1 2 |K[L| Pyj
8(z,w) = -— | logl(t, &)dW sgn dw
(z w) meﬁ gl &) +Zj ng/p
n=1 j=1% Pu0
(00, wo)
+/ dW—i—mo?{deLnoygdW. (3.12)
(80,v0) a b

A single branch of the logarithmic function lod, £) on each ard. 1, L is fixed by the inequalities
2r(v, —1) < argl, (t1) < 2y, n=12, and the integers;, «2 are chosen as follows:

1
Ky = v+ [Z argl,t(tg)] , o w=12. (3.13)
Then analysis of the Weierstrass integrals in (3.12) implies

Xz w)=0{z-t)fr}, (Zw) eCu z-t, p=12

Xz w)=0{z-t3)fi}, (zw)eC, z—ots u=12 (3.14)

where

1 1
L= —Zarglﬂ(tl), B = Zarglﬂ(tg) —kpy m=12

vy <Br<1-vj. (3.15)

Therefore the function (3.12) is within the class of solutions (3.11).
The pointsp,,o are chosen to bp,o = (t3, (—1)*~1q¥/?(t3)) € C,, n = 1, 2- As for the points
(80, vo) and pyj,
(0. v0) € C1, o = q*/%(50).



SECOND-ORDER FUNCTIONAL-DIFFERENCE EQUATIONS | 259

Puj = Wujr D u) € Cuy Uy =qY2(), i =120 lkul, w=12, (3.16)

they are arbitrary fixed distinct points of the surfeéBewhich fall neither on the contouf nor
on the canonical cross-sections. In addition, it is required for the above points not to coincide
with the branch points of the surfage and the poles of the functiofR(z, w)- The point(cg, wo)
(wo = w(op)) and the integersg, ng are not arbitrary. They will be fixed later.

The integrals in (3.12) apart from the integrals ogeanda, b are taken over smooth curves which
join the end points and which do not cross the cross-sectidmand the contouf. These integrals
are independent of the shape of the path of integration. The first integral in (3.12) is discontinuous
through the contouf with the jump lod (t, £). The other integrals are also discontinuous through
the contours of integration. The corresponding jumps are equatitm2m is an integer). Hence
the functionX (z, w) satisfies the homogeneous boundary condition (2.29).

In general, for an arbitrary point§, wp) and arbitrary integersg, no, the functionX(z, w) in
(3.12) has an essential singularity at infinity. This is becaugd ~ (—1)/kz%, z — 00,z € Cj,
and the Weierstrass kernel (2.32) has a pole at infinity. To eliminate the essential singularity we
ewvaluate the principal terms of the expansions of the funcHgr w) at infinity on both sheets of
the surface:

|#u| i
L1 Efve dt
( 1)i- {271 /[logll(t) —logla(t)]—=— 1/2(t) Z( D sgnic, Z /; ql/2(1)

n=1
(00.wo) (it dt dt
— — 3.17
+/<so,vo) g0 Lo O/S(t)}z (347

Thus in order that the functioK (x, w) is bounded at infinity it is necessary and sufficient that

(©0.wo)  (t dt dt
ekl _ do, 3.18
/@0,%) TR AT °7€sa> (318)

where

M :
1 Lofve o dt
do — > [L[Ioglz(t) —logli()] =7 1/2(0 + Z( H* sgnKMZ/; TS (3.19)

This nonlinear equation is the Jacobi inversion problem for the suRaskgenusp = 1. We next
solve this problem in closed form. Since the single branch of the fungficiit) has already been
fixed by the conditiorg'/2(0) = 1 the A- and B-periods of the elliptic integrals in (3.18) become

o ?ﬁ a k. (3.20)
aé® b &)

whereK = K(k), K’ = K(+/1—k?2) are complete elliptic integrals of the first order. Hence
equation (3.18) reduces to

(90,w0) (¢
/ —— =d* 4+ 4ngK — 2imgK’, (3.21)
on §&®
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where

Jo dt
* 0

Assume, first, that the unknown poito, wo) is in C1. Then&(t) = q¥/2(t). By inversion of the
elliptic integral we getg = snd*. Next, find the numbergsg, mg from (3.21):

__Im{(o—d"K} o Re{(lp — d*)K’}

—1 o _ (3.23)
2RgKK'} 4 RgKK’}
where
lo = /JO dt = F(arcsinsnd™*), k) (3.24)
) Ja—oa_kid T '

andF (x, k) is the elliptic integral of the first kind. If it turns out that the numbexs ng given by
(3.23) are integers, then the $éip, wo) € C1, Mg, N} forms a solution of the problem (3.21). If,
however, at least one of the numbeng, ng is not an integer, then, certainlyo, wo) € C». In this
case equation (3.21) can be rewritten as

0 dt 1
_ :d*+4<n +—>K—2im K’ 3.25
/o VA=t (1 - K3t?) °T2 ° (3:25)

The above relation implies thagy = sn(—d* — 2K) = snd*. The numbersng, ng are defined from
the equation

lo+d* +4(ng + 3K — 2imgK’ = 0 (3.26)

by

k * /
m, :—Im{(lo+d_)K}’ no:—}——Re{(loer_)K }. (3.27)
2 RgKK"} 2 4 RegKK'}
Lete = 1 if the numbers (3.23) are integers ane: —1 if the numbers (3.27) are integers. Then
the point(oo, wo) is given by(snd*, eq/2(snd*)).
We now turn to the canonical function. It is convenient to rewrite formula (3.12) in terms of two
functions defined on theplane:

X(z, w) = exp{E1(2) + w(2)E2(2)}, (3.28)
where
2.2 = = [ 1loglit) + loglo®)] - 4+ L1og 2=
ul()_H/L[ gla(t) + 92()]:-’_5 92—80

‘K[L‘

13 Z— Vi
=Y sgn log— 4
+3 2,5 2005
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g (z)—i/[lo l1(t) — logl (t)]L—}fSOL
=2 = g J P09 TR0 T 2 a2 - 2

+s/(’0 dt m /Uk dt . /00 2zdt
2)1 a0t -2 L q1/2(t+)(t—z> ° i PO @ -2

|KM|

1 Yuj
22( 1= SgnKMZf 7(11/2(0“_2) (3.29)

We assume that logz — a)(z — b)~1} — 0,z — oo. This condition determines a single branch of
the logarithmic function. The poin®o, vg) € C1 is fixed in an arbitrary manner such that it does
not fall on the contout, cutsyy, y1 and does not coincide with the poles of the functiofz, w).
The final solution is independent of the choice of the péintThe integral from 1 to ik in (3.29)

is taken along the left bank of the cput.

Thus we have shown that the function (3.28) is a canonical function. This function satisfies the
conditions (3.11) at the ends of the contour. The p@intvp) € C1 is its simple pole. At the point
(00, wo) € R the functionX(z, w) has a simple zero. The behaviour of the funct¥é(e, w) at
the pointsp,; = (vyj, (—1)”_1%]) eCu(j =12 ..., |kul; 0 = 1,2) depends on the sign
of the numbersc,. If x, > 0, then all the pointg,; are simple zeros of the functioX(z, w).
Correspondingly, ik, < 0, then the pointg,,j are simple poles of the functiod(z, w). Finally,
in the case, = 0, the functionX(z, w) is bounded and is non-zero at the poipjs.

3.3 General solution

For simplicity, assume that the functic(s)/a(s) in (2.1) meets the requirement (2.2). Then
from relations (2.25), (2.19) and (3.14) the functi@t, £)[X*(t, £)]~1 may have integrable
singularities at the ends of the contofir Therefore, a partial solution of the non-homogeneous
boundary-value problem (2.24) can be takerX&s, w)[V1(2) + w(2)¥V2(2)], where

1 D(t, &) dt 1 D(t, &) dt

No=0 L xrenicz PP o0 L roxra -z (3.30)

The general solution of the Riemann—Hilbert problem (2.24) becoB)es (

F(z, w) = X(z, w)[V1(2) + Ri(D)] + w(2) X(z, w)[V2(2) + Rx(2)], (3.31)
where
Clwo 3 (uk=1)/2 ’ 2 Ku HMjuMJ
Ri(z2) =C —|— + (=DM M
1 0 X;_JX;_(Z ak)] Z Z Z—Z)J l;- ;Z_VM
3 (mtD/2 E|/(/j
Ry(2) = + . (3.32)
ZLJX;(Z—ak)‘ kXZ:O ; (z— 7)) MX:“X: —)/m
Herek, = max0, x.}, 1 = 1, 2; uyj = qY2(yj), oo = snd*, wo = eq¥2(00), 20 = —1/k,

z1=-1,2=123=1/k
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Assume that among the poleg (k = 1, 2, ..., m) there is no infinity. Then, for the function
F(z, w) to be bounded at infinity, it is necessary and sufficient that

Zr_es[\Ilz(z) + Ro(2)] = 0. (3.33)

If, however, the functionF(z, w) has poles of the same ordeg, at the points(co, co) and
(00, —00), then the condition (3.33) should be disregarded and the terms

Voo—2

ie’j 2, > Gl (3.34)
j=

j=0

need to be added to the functioRs(z), Rx(2), respectively. Note that the second term in (3.34) is
added only ifvee > 2.
The procedure of solution of the Riemann—Hilbert problem will be accomplished if the following
conditions hold:
W1(80) + Ri(80) + q7%(80)[W2(0) + Rz(80)] = 0,

W1(yug) + Ra(vj) + (D", [Wa(y)) + Re(yuj)1 =0,

j=12... .-k, p=12 (3.35)

The first condition removes the simple pole at the p&pt vg) € C; of the functionF(z, w). The
conditions at the pointg,; are required fok, < 0and provide the boundedness of the solution at
these points.

The general solution to the functional-difference equation (2.3) is given by (2.42). In addition
to formula (2.42) we give another representation of the solution without functions on the Riemann
surface. Let

Y1(2) = ¥1(2) + Ri(@), Y2(2) = q¥2(@2)[¥2(2) + Rx(2)], (3.36)
with z = u(s). Inthe stripw —h < Res< w+h, f(s) = f (s). Therefore
f(s) = 2e51@{Y1(2) costq¥/2(2) E2(2)] + Y2(2) sinlq¥2(2) E2(2)]}, ® —h < Res < o,
b(s) =
f(s) = —%emm(z) costiqt2(2) E2(2)] + Y2(2) sinhq™?(2) E2(2)1}
1/2
A (S)e
a(s)
+Yo2(2) coshq?(2) E2(2)]}, o < Res< w+h. (3.37)

21D¢v, (2) sinhiqY?(2) E2(2)]

Formulae (2.43) to (2.45) define the solutiiis) to equation (2.1) in the whole complex plaBie
Assume first that = oo is not a pole of the functiofr (z, w). Then analysis of formulae (3.32)
shows that the number of arbitrary constants in the general solét®ris

m 3
242> o+ Y uk+ R+ ke (3.38)
k=1 k=0
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For their definition we have 2- k1 + k2 — k1 — k2 conditions (3.33) and (3.35). F(z, w) has
poles at the infinite points on either sheet, then the difference between the number of the arbitrary
constants and the number of the conditions is given by

m 3
2% vkt D pk+ K1+ K2 + 25 (3.39)
k=1 k=0

The zeros of the functioa(s) in the stripw < Res < @ + h may bring inadmissible poles of the
solution f (s). Their number and multiplicity may increase the total number of additional conditions
for the arbitrary constants.

4. Conclusion

In this paper we have proposed an analytical method for a scalar second-order functional-difference
equation (2.1) whose coefficients drgeriodic and entire functions. The method is still applicable
if only the functionsb(s)/a(s) andc(s)/a(s) areh-periodic and if the coefficients are meromorphic
functions. It has been shown that the solution of equation (2.1) can be constructed by analytical
continuation of the general solution of an auxiliary boundary-value problem (2.2) in albtgp
{se C:w—-h < Res < w+ h}, wherew is a real number. The auxiliary problem has been
reduced to a vector functional-difference equation of the first order (2.6) in thelbteip{s € C :
o —h < Res < w}. We have shown how to transform the above problem to a scalar Riemann—
Hilbert boundary-value problem (2.24) on two finite segments of a hyperelliptic surface of genus
p, Where  + 2 isthe number of branch points of the functiart/?(s) = [b?(s) — 4a(s)c(s)]Y/?
in the stripIT. A general technique for solution of such problems for arbitrary finite gen{®
requires solution of the corresponding Jacobi inversion problems. This nonlinear problem is always
solvable; it is equivalent to an algebraic equation of degrdé&?) and therefore can be solved
effectively. To illustrate the technique proposed, we have analysed in detail the elliptipcasB) (
and constructed a closed-form solution of equation (2.1) in terms of elliptic functions.

The case when the shift is less than the period of the coefficients and a physical example analysed
by the method of this paper are presentedin (
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APPENDIX

We aim to show that the solutior§(8), the function®1(«) + ®2(«), is amulti-valued function with branch
pointsw + 27m1, m1 € Z, and+n + wmy, My is an integer such thaty + mmy ¢ I, [ ={a € C: —7 <
Rea < w}. Here

®12(a) = [F@]*, |Rea| <7,

ioo _
F(a) = exp{ 4_71“ / tanZTa Iogq(z)dz} , (A1)
o0

and we adopt the notation d)

u(a) + 1 sing
q@) = ———=—,
U(er) — 5 siné

u(er) = y/cofa —cofn, cosy= ? siné. (A.2)

A single-valued branch of the functiari«) is defined in thex-plane cut along the segments joining the pairs
of the points—n 4+ mm andn + me, m € Z. Because of this choice of the branch cuts, the ppiat0 lies on
the cut joining the points-n andyn. Hence the density of the integral (A.1) is discontinuous at the @EoiD:

logq(+i0) — logq(—i0) = 5o (A.3)

where

V4 — 35sirf 6 + sing
V4 _3sirf0 —sing

80 = 2logq(+i0) = 2log (A.4)
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In a neighbourhood of the points = +, the integral (A.1) behaves as the corresponding Cauchy integral
with the discontinuous density lagz). On usng (15),

)
F(B+n)=p10.8), B0 8= 2—;" (A.5)

The function®, (8) has definite finite non-zero limits gs— 0 and Re # 0. Therefore
1
(@ F 1)1 Po(e)”

and the functionbg(«) is finite. Its limits asx — +x exist and do not equal zero.
The functions?; »(«) may be continued analytically into the strip< Rea < 37 as follows:

®1(a) + Do) = (¢ F 1)1 P (0r) + o — +m, |Rea| <7, (A.6)

@1 2(@) = T He — 1)@ 2 — 27). (A7)
Because of the relatiom(e — 7) = 1/q(«) and the Z-periodicity of the kernel taé (z— x) we have
®12(0) = [A@F @], 7 <Rea < 37 (A.8)

In the vicinities of the pointex = 7, @ = 3, bisected along the branch cuts, the functigr) is single-
valued. Therefore, it — 7 ora« — 3m, then the sunmbq(«) + () may be written similarly to (A.6).
Now it is clear that if the parametéy is not integer, then all the points+ 2rm1 (mq € Z) are branch points
of the function®1 (@) + ®2(«). We notice that4 is an integer if and only if

V4 —3si? 0 +sino

V4 —3sin?6 — sind

or, equivalently, if eithep = 0, orn = /2. In both cases the functiar(s) does not have branch points.
Analyse next the pointsn + 7my, mo € Z. Those points which belong to the stipr < Rex < 7 are

not branch points. Show that the next pair of the points are branch points:; Lt a cut joining the points
27w — n and 2r 4+ 5. Onthe banks of the cut,

+1 (A.9)

1

@1(6) + 020®) = Q@) + o,

ot eIy, (A.10)
Clearly, the functionF («) is continuous on the cutE(@t) = F(a™). As for the functionq(a), it is
discontinuous andj(@~) = 1/q(at). This means that the limit values of the functidn (a) + ®»(x)
on the left and the right sides of the cut are not the same, and the gojntstmy ¢ IT are branch points of
the solution. In summary, the method presentedjB)(yields a solution that is multi-valued in the exterior of
the strip—7 < Res < & regardless of the choice of the system of the branch cuts.



