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Summary

An analytical method for scalar second-order functional-difference equations with meromorphic
periodic coefficients is proposed. The technique involves reformulating the equation as a vector
functional-difference equation of the first order and reducing it to a scalar Riemann–Hilbert
problem for two finite segments on a hyperelliptic surface. The final step of the procedure is
solution of the classical Jacobi’s inversion problem. The method is illustrated by solving in
closed form a second-order functional-difference equation when the corresponding surface is a
torus. The solution is constructed in terms of elliptic functions.

1. Introduction

The analysis of canonical problems in acoustic and electromagnetic diffraction theory by half-
planes and wedges is frequently carried out by using the Maliuzhinets technique (1). This method
ultimately yields functional-difference equations which, in general, are equivalent to difference
equations with periodic coefficients ofnth order (n � 2). If the equation is of the second order and
the shift coincides with the period of the coefficients, then it reduces to two difference equations of
the first order (Jost (2), Demetrescu (3), Senior and Legault (4)). The coefficients of these equations
are the roots of the characteristic quadratic equation with periodic coefficients and, in general, they
are multi-valued functions. In the particular case when the coefficients are single-valued, a closed-
form solution can be found either in terms of the Maliuzhinets functions (1), or by the method of
the Riemann–Hilbert problem on a finite segment of a complex plane (Antipov and Silvestrov (5)).
In spite of the importance of the second-order difference equations with periodic coefficients for the
geometric theory of diffraction, a general exact method for their solution is still unavailable in the
literature. For a survey of some results related to difference equations of the second order see (6,7).

Demetrescuet al. (6,8) have analysed some difference equations of the second order appearing
in diffraction by a right-angled resistive wedge. They replace the initial equation by a couple of the
first-order equations with multi-valued coefficients and then apply the Fourier transform. By taking
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the logarithms they reduce the equations to a boundary-value problem for a strip whose solution is
given by a singular integral with a periodic analog of the Cauchy kernel. Analysis of the results (see
the Appendix) shows that their solution is multi-valued in the complex plane. It is multi-valued in
the strip−π � Res � π because of the choice of the system of the branch cuts (one of the cuts
crosses the integration contour of the Cauchy integral involved). Although by a correct choice of the
cuts it is possible to achieve the desired property of the solution in the strip| Res| � π and make
it single-valued, it is impossible to overcome another obstacle: the solution is multi-valued outside
the strip| Res| � π regardless of the choice of the cuts. We emphasize that the spectral functions
have to be single-valued in an extended strip and therefore the solution of the functional-difference
equation has to be a meromorphic single-valued function in the complex plane.

Senior and Legault have generalized the equation deduced in (6) by adding another parameter
into the coefficients of the second-order equation (4) and also by doubling the shift (7). The shift is
equal to 2nπ , whereπ is the period of the coefficients andn = 1 in (4) andn = 2 in (7). They also
reduce the second-order equation to two first-order equations with multi-valued coefficients. Then
by taking the logarithmic derivatives they transform the problem into the equations of the form

d

dα
logw(α + nπ) − d

dα
logw(α − nπ) = g(α), (1.1)

whereg(α) is a multi-valued 2π -periodic function with prescribed poles and branch points. The
solution of the initial difference equation is expressed through solutions of equation (1.1). These
solutions are multi-valued functions on the complex plane and have to be single-valued on a
Riemann surfaceR defined by the branch points of the functiong(α). The construction of a partial
solution of equation (1.1) that is single-valued onR, is the key step in the procedure (4, 7). The
property of the solution to be single-valued is satisfied by adding to the solution abelian integrals
of the first kind with unknown coefficients and abelian integrals of the third kind with unknown
logarithmic singularities. Eliminating the polar and cyclic periods of the function logw(α) leads
to systems of equations which are linear with respect to the unknown coefficients of the abelian
integrals of the first kind and nonlinear with respect to the unknown singularities of the abelian
integrals of the third kind. The number of equations is equal to the genus of the corresponding
Riemann surface that is defined by the number of the zeros (they are assumed to be simple) of the
determinant of the characteristic equation. In particular cases, when the genus of the surface is one
or when the surface has a special symmetry, it is possible to simplify the above nonlinear system
and to find its exact solution. In the case (4) the genus of the surface is one, and the solution is
found in terms of elliptic functions. In the case (7) the corresponding surface is of genus three.
By exploring the symmetry of the surface, the Cauchy theorem and the Riemann bilinear relations
for abelian integrals, the nonlinear system reduces to inversion of the elliptic integrals. In general,
however, the solvability of the corresponding nonlinear system has not been studied and methods
for solution (exact or approximate) are unknown.

A newconstructive method for a vector functional-difference equation of the first order

Φ(σ ) = G(σ )Φ(σ − h) + g(σ ), σ ∈ � = {Res = ω}, (1.2)

has been proposed by Antipov and Silvestrov (9). The authors have found that if the matrixG(σ )

has the following structure:

G(σ ) =
(

a1(σ ) + a2(σ ) f1(σ ) a2(σ )

a2(σ ) f2(σ ) a1(σ ) − a2(σ ) f1(σ )

)
, σ ∈ �, (1.3)
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then equation (1.2) reduces to a scalar Riemann–Hilbert boundary-value problem on two finite
segments of a Riemann surfaceR of an algebraic function defined by the characteristic function
f (s) = f 2

1 (s) + f2(s). Herea1(σ ), a2(σ ) are arbitrary Ḧolder functions on every finite segment
of the contour�, f1(σ ), f2(σ ) are arbitrary single-valued meromorphic functions in the strip
� = {ω − h < Re(s) < ω} such thatf j (σ ) = f j (σ − h), σ ∈ �, j = 1, 2· It is assumed that the
functions f1(s) and f (s) have finite numbers of poles in the strip�. The number of zeros of the
function f (s) in the strip� is also finite. The solution of equation (1.2) is constructed in terms of
the Weierstrass integrals and the Riemannθ -function on the surfaceR. This method is applied for
solving in closed form a problem of electromagnetic scattering of a plane wave obliquely incident
on an anisotropic impedance half-plane with four different impedances.

The main objectives of the present paper are

(i) to propose an efficient method for scalar functional-difference equations of the second order

a(s) f (s + h) + b(s) f (s) + c(s) f (s − h) = d(s), s ∈ C, (1.4)

with h-periodic entire coefficients based on the theory of the Riemann–Hilbert problem on two
finite segments of a hyperelliptic surface of any finite genus;

(ii) to illustrate the technique by studying the solvability and finding a closed-form solution of a
class of second-order difference equations when the relevant surface is a torus.

The method to be proposed in the present paper is different from the one by Senior and Legault
(4, 7). The first step of the procedure is to convert the scalar functional-difference equation of the
second order into a vector difference equation of the first order and decouple it. In contrast to the
approach of Jost (2), Demetrescu (3) and Senior and Legault (4,7) as afirst stage we arrive not at
two functional equations of the first order with two-valued coefficients, but at a scalar Riemann–
Hilbert problem for finite segments on a hyperelliptic surface. To solve this problem on the Riemann
surface we use the singular integrals with the Weierstrass kernel that has a pole at infinity. Its order
coincides with the genus of the surfaceρ. This solution is single-valued on the surface and therefore
does not require elimination of the polar and cyclic periods, the bulk of the procedure (4, 7). The
constructed solution, however, has an essential singularity at infinity. The condition for eliminating
this singularity is equivalent to the Jacobi inversion problem (Farkas and Kra (10), Zverovich (11)).
It has been shown by Antipov and Silvestrov (12) that this problem reduces to an algebraic equation
of degreeρ or can be solved numerically by the method based on the principle of the argument on
aRiemann surface.

The present paper is organized as follows. We formulate the problem, describe a class of solutions
in section 2.1. Then (section 2.2) we reduce an auxiliary problem for equation (1.4) in a strip to a
scalar Riemann–Hilbert problem on the segments[−1, 1] on two sheets of a hyperelliptic surface of
an algebraic function. It is also shown that if the number of branch points of a function	1/2(s)
is equal to 2ρ + 2 (this number is always even), then the surface has genusρ. Here 	(s) is
the discriminant of equation (1.4):	(s) = b2(s) − 4a(s)c(s). The general theory of the scalar
Riemann–Hilbert problem on the segments[−1, 1] on two sheets of a hyperelliptic surface and
solution of the associated Jacobi inversion problem has been proposed by Antipov and Silvestrov
(9, 12). We write down the solution of the Riemann–Hilbert problem associated with the second-
order difference equation in section 2.3. In section 2.4, we find a general solution to the functional-
difference equation (1.4) in the whole complex plane. The elliptic case is thoroughly analysed in
section 3. An exact solution is constructed in terms of elliptic functions. In the Appendix, we show
that the solution (6,8) is multi-valued.
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To illustrate the proposed technique we have solved a problem on electromagnetic scattering
by a right-angled magnetically conductive wedge (5). The governing equation to be solved is the
following one:

(coss − sinθ)[ f (s + π) + f (s − π)] = coss f (s), (1.5)

and the corresponding auxiliary equation is

(cos2 s − sin2 θ)[ f (s + 2π) + f (s − 2π)] + (cos2 s − 2sin2 θ) f (s) = 0. (1.6)

The last equation is equivalent to a Riemann–Hilbert problem on a torus and it is solved by the
technique proposed in the present paper. For equation (1.5), the period of the coefficients of the
functional-difference equation is 2π whereas the shift is equal toπ . The case when the shift is
less than the period is not the subject of the present paper. This issue is addressed in Antipov and
Silvestrov (5).

2. Scalar functional-difference equation of the second order

2.1 Formulation

Let s ∈ C. Consider the following problem.
Given entire functions a(s), b(s), c(s) and d(s) find a function f (s) meromorphic in C such that

a(s) f (s + h) + b(s) f (s) + c(s) f (s − h) = d(s). (2.1)

The functions a(s), b(s) and c(s) are h-periodic and the expressions b(s)/a(s), c(s)/a(s) have
certain finite limits as |s| → ∞ (Res is finite). It is also assumed that the function f (s) is analytic
in a strip �0 = {ω1 � Res � ω2} apart from a finite set of poles. At the ends of the strip, that is,
as |s| → ∞, f (s) = O(e2πν±| Im s|/h) with ν± being real, finite and prescribed.

At any zero of orderν0 of the coefficientsa(s −h), b(s) andc(s +h), the unknown functionf (s)
may have a pole of the same orderν0.

Let ω be a real number, and�∗ be a strip{s ∈ C : ω − h < Res < ω + h} such that�∗ ⊂ �0 if
2h < ω2 − ω1, �∗ = �0 if 2h = ω2 − ω1, and�∗ ⊃ �0 if 2h > ω2 − ω1.

First, we state and analyse an auxiliary problem.

Find a function f̂ (s) that

• is meromorphic in the strip �∗ with prescribed poles and admits a continuous extension up to
the boundary ∂�∗,

• at infinity may grow (decay) exponentially:

f̂ (s) = O(e2πν±| Im s|/h), Im s → ±∞, s ∈ �∗, (2.2)

• on the contour � = {σ ∈ �∗ : Reσ = ω} satisfies the equation

a(σ ) f̂ (σ + h) + b(σ ) f̂ (σ ) + c(σ ) f̂ (σ − h) = d(σ )· (2.3)
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Without loss of generality assume thatb(s)/a(s), c(s)/a(s) do not have poles and zeros on�.
Note that if�∗ ⊂ �0, that is, 2h < ω2 − ω1, then it might happen that some of the prescribed

poles, saŷa j ∈ �0 of the function f (s) in (2.1), will be outside the strip�∗. Therefore, not to lose
them, we need to seek the function̂f (s) in �∗ with the additional poles at the pointsâ j + nh ∈ �∗
(n is an integer).

Clearly, in either case (�∗ ⊆ �0 or �∗ ⊃ �0) in thestrip�∗, the function f (s) is a solution of
the auxiliary problem.

2.2 Scalar Riemann–Hilbert problem on a hyperelliptic surface

The auxiliary problem for equation (2.1) is equivalent to a vector equation of the first order. To
show this, introduce two functions

�1(s) = f̂ (s), �2(s) = f̂ (s + h), s ∈ �̄, (2.4)

where�̄ = {s ∈ C : ω − h � Res � ω}. Then on the contour�, �1(σ ) = �2(σ − h). At the
same time, equation (2.3) becomes

a(σ )�2(σ ) + b(σ )�2(σ − h) + c(σ )�1(σ − h) = d(σ ), σ ∈ �. (2.5)

Equivalently, (2.3) can be rewritten in the vector form

Φ(σ ) = G(σ )Φ(σ − h) + g(σ ), σ ∈ �, (2.6)

where

Φ(s) =
(

�1(s)
�2(s)

)
, g(s) =

(
0

d(s)/a(s)

)
,

G(s) =
(

0 1
−c(s)/a(s) −b(s)/a(s)

)
· (2.7)

Let 	(s) = b2(s) − 4a(s)c(s) be the discriminant of the quadratic equation

a(s)λ2(s) + b(s)λ(s) + c(s) = 0. (2.8)

Then the eigenvalues of the matrixG(s) are given by

λ j (s) = −b(s) + (−1) j−1	1/2(s)

2a(s)
, j = 1, 2. (2.9)

Call 	(s) the discriminant of the functional-difference equation (2.1). Zeros of odd order of the
discriminant are branch points of the function	1/2(s). Let the branch points in the strip� be
s0, s1, . . . , s2ρ+1 (ρ � 0). Their number is always even. To fix a branch of the function	1/2(s),
cut the strip� by smooth curves� j ⊂ � ( j = 0, 1, . . . , ρ) which do not intersect each other and
join the branch points so that� j = s2 j s2 j+1 ( j = 0, 1, . . . , ρ). The positive direction is chosen
from s2 j to s2 j+1. For the limit values of the fixed branch on the left (+) and on the right (−) sides
of the cuts,[	1/2(σ )]+ = −[	1/2(σ )]−, σ ∈ � j .
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Let

T(s) =
(

1 1
λ1(s) λ2(s)

)
. (2.10)

The elements of this matrix areh-periodic. Therefore

[T(s)]−1G(s)T(s − h) = �(s), (2.11)

where�(s) = diag{λ1(s), λ2(s)}· Next, introduce a new vector functionφ(s) = [T(s)]−1Φ(s),
s ∈ �, with the components

φ1(s) = 1

2

(
b(s)

	1/2(s)
+ 1

)
�1(s) + a(s)

	1/2
�2(s),

φ2(s) = 1

2

(
− b(s)

	1/2(s)
+ 1

)
�1(s) − a(s)

	1/2(s)
�2(s). (2.12)

Because of relation (2.11), the new functionsφ1(s), φ2(s) satisfy the two separate equations

φ1(σ ) = λ1(σ )φ1(σ − h) + 	−1/2(σ )d(σ ),

φ2(σ ) = λ2(σ )φ2(σ − h) − 	−1/2(σ )d(σ ), σ ∈ �. (2.13)

The vector function�(s) is single-valued in the strip� provided the following boundary conditions
on the cuts� j ( j = 0, 1, . . . , ρ) hold:

T+(σ )φ+(σ ) = T−(σ )φ−(σ ), σ ∈ � j , j = 0, 1, . . . , ρ. (2.14)

Equivalently,

φ+
1 (σ ) = φ−

2 (σ ), φ−
1 (σ ) = φ+

2 (σ ), σ ∈ � j , j = 0, 1, . . . , ρ. (2.15)

Analysis of relation (2.12) shows that the poles of the functions�1(s), �2(s) may or may not give
poles to the functionsφ1(s), φ2(s). This depends on whether the corresponding point is a zero of
the functions 1± b(s)	−1/2(s) or a(s). In addition, the functionsφ1(s), φ2(s) have poles at the
zeros of even order of the discriminant	(s) in the strip�. Let all the poles in� of the functions
φ1(s), φ2(s) bea1, a2, . . . , am , and their orders beν1, ν2, . . . , νm , respectively.

At the branch points of the function	1/2(s),

φ j (s) ∼ A j (s − sk)
−µk/2, s → sk, A j = const, j = 1, 2; k = 0, 1, . . . , 2ρ + 1, (2.16)

whereµ j � 1, µ j are odd.
It is possible to reduce the problem (2.13), (2.15) to a vector Riemann–Hilbert problem on a

system of contours. Transform the strip� into a z-plane cut along the segment[−1, 1] by the
mapping

z = −i tan
π

h
(s − ω), s = ω + ih

2π
log

1 + z

1 − z
, (2.17)
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where the single branch of the functions is chosen such thats → ω − 1
2h asz → ∞. Then the

system of equations (2.13), (2.15) is equivalent to the following vector Riemann–Hilbert problem
for the functionsFj (z) = φ j (s) ( j = 1, 2):

F+
j (t) = l j (t)F−

j (t) + D j (t), t ∈ (−1, 1), j = 1, 2,

F+
j (t) = F−

3− j (t), t ∈ γm, j = 1, 2; m = 0, 1, . . . , ρ, (2.18)

where
F±

j (t) = φ±
j (σ ), l j (t) = λ j (σ ),

D j (t) = (−1) j−1	−1/2(σ )d(σ ), σ = ω + ih

2π
log

1 + t

1 − t
, j = 1, 2. (2.19)

The curvesγm (m = 0, 1, . . . , ρ) which are the images of the contours�m do not intersect each
other and the segment[−1, 1]. The contour� is mapped onto the upper side of the cut[−1, 1], and
the left boundary of the strip�, the contour�−1, ismapped onto the lower bank of the cut[−1, 1].

To solve the new problem (2.18), convert it into a scalar Riemann–Hilbert problem on a two-
sheeted Riemann surface. LetR be the hyperelliptic surface of the algebraic function

w2 = q(z), q(z) = (z − z0)(z − z1) . . . (z − z2ρ+1), (2.20)

formed by gluing two copiesC1 andC2 of the extended complex planeC∪∞ cut along the system
of the curvesγm (m = 0, 1, . . . , ρ). The positive (left) sides of the cutsγm on C1 are glued with
the negative (right) sides of the curvesγm onC2 and vice versa. Herez j ( j = 0, 1, . . . , 2ρ + 1) are
the images of the branch pointss0, s1, . . . , s2ρ+1:

z j = −i tan
π

h
(s j − ω), j = 0, 1, . . . , 2ρ + 1. (2.21)

The constructed surface has genusρ. Let q1/2(z) be the branch chosen such thatq1/2(z) ∼ zρ+1,
z → ∞. Then the functionw defined by (2.20) is single-valued on the surfaceR:

w =
{

q1/2(z), z ∈ C1,

−q1/2(z), z ∈ C2.
(2.22)

Introduce now the following function on the surfaceR:

F(z, w) =
{

F1(z), (z, w) ∈ C1,

F2(z), (z, w) ∈ C2.
(2.23)

By the second condition in (2.18) it becomes evident that the functionF(z, w) is meromorphic
everywhere on the surfaceR apart from the contourL = L1 ∪ L2, with L1 = [−1, 1] ⊂ C1 and
L2 = [−1, 1] ⊂ C2. On the contourL ⊂ R, this function satisfies the boundary condition

F+(t, ξ) = l(t, ξ)F−(t, ξ) + D(t, ξ), (t, ξ) ∈ L, (2.24)
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where

l(t, ξ) =
{

l1(t), (t, ξ) ∈ L1,

l2(t), (t, ξ) ∈ L2,
D(t, ξ) =

{
D1(t), (t, ξ) ∈ L1,

D2(t), (t, ξ) ∈ L2,
ξ = w(t). (2.25)

At the ends of the contourL, the behaviour of the functionF(z, w) is defined by the asymptotics of
the functionsφ1(s), φ2(s) as Ims → ±∞ and therefore by the asymptotics of the functionsf (s),
a(s)	−1/2(s), 1 + b(s)	−1/2(s) and 1− b(s)	−1/2(s) as Ims → ±∞. For definiteness, assume
that

|F(z, w)| � A(µ)
± |z ∓ 1|−ν±

µ , (z, w) ∈ Cµ, z → ±1, A(µ)
± = const, µ = 1, 2, (2.26)

whereν±
µ are definite real numbers. In particular, if the functionsa(s)	−1/2(s), 1+ b(s)	−1/2(s)

and 1− b(s)	−1/2(s) have finite non-zero limits, thenν±
µ = ν±, µ = 1, 2.

2.3 General solution to the Riemann–Hilbert problem

A general procedure for solution of the scalar Riemann–Hilbert problem for an open contour on a
hyperelliptic surface of any finite genus is presented by Antipov and Silvestrov (9). In this section
we write down the final formulae for the solution to the problem (2.24). The general representation
for the functionF(z, w) has the form

F(z, w) = X (z, w)[�(z, w) + R(z, w)], (2.27)

where
�(z, w) = ψ1(z) + w(z)ψ2(z),

ψ1(z) = 1

4π i

∫
L

D(t, ξ)

X+(t, ξ)

dt

t − z
, ψ2(z) = 1

4π i

∫
L

D(t, ξ)

ξ(t)X+(t, ξ)

dt

t − z
. (2.28)

The meromorphic functionR(z, w) = R1(z) + w(z)R2(z) is expressed through the rational
functions R1(z) and R2(z) with specified poles and arbitrary coefficients. The functionX (z, w)

is a solution of the following problem.

Find a function X (z, w) meromorphic on R ⊂ L which has a finite number of poles and zeros, has
non-zero boundary values X±(t, ξ) and satisfies the boundary condition

X+(t, ξ) = l(t, ξ)X−(t, ξ), (t, ξ) ∈ L ⊂ R. (2.29)

At the ends of the segments Lµ,

B0|z ∓ 1|−ν±
µ +1 < |X (z, w)| � B1|z ∓ 1|−ν±

µ , (z, w) ∈ Cµ, z → ±1, µ = 1, 2, (2.30)

where B0, B1 are positive constants.

Such a solution is called a canonical function of the problem (2.24) and it is given byX (z, w) =
exp{�(z, w)}, (z, w) ∈ R, where

�(z, w) = 1

2π i

∫
L

log l(t, ξ)dW +
2∑

µ=1

sgnκµ

|κµ|∑
j=1

∫ pµj

pµ0

dW

+
ρ∑

j=1

(∫ r j

e j

dW + m j

∮
a j

dW + n j

∮
b j

dW

)
. (2.31)
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Here

dW = w + ξ

2ξ

dt

t − z
, w = w(z), ξ = w(t), (2.32)

is the Weierstrass kernel (Zverovich (11)), an analogue of the Cauchy kernel on the surfaceR.
Under logl(t, ξ) on the segmentsLµ ⊂ Cµ (µ = 1, 2) we understand the branches of the functions
log lµ(t) on Lµ fixed by the conditions

2π(ν−
µ − 1) < arglµ(−1) � 2πν−

µ , µ = 1, 2. (2.33)

The integersκµ in (2.31) are determined by

κµ = ν+
µ +

[
1

2π
arglµ(1)

]
, µ = 1, 2. (2.34)

Here[a] is the integer part of the numbera.
The first integral in (2.31) is discontinuous onL, and the function exp{�(z, w)} satisfies the

boundary condition (2.29). In general, the function exp{�(z, w)} grows exponentially at infinity
and might not meet the inequalities (2.30). To achieve the prescribed behaviour of the solution at
the ends of the contourL, the second group of the line integrals along smooth curves is added in
(2.31). The starting pointspµ0 ∈ Cµ (µ = 1, 2) of the lines of integration coincide with the end
t = 1 of the contoursLµ, respectively:p10 = (1, q1/2(1)), p20 = (1, −q1/2(1)). The upper limits

pµj = (γµj , (−1)µ−1uµj ) ∈ Cµ, uµj = q1/2(γµj ), j = 1, 2, . . . , |κµ|, µ = 1, 2, (2.35)

of the integrals are arbitrary fixed distinct points of the surfaceR. The exponents of these integrals
are continuous through the contours of integration. The last group of the line integrals in (2.31) is
taken to remove the exponential growth of the solution at infinity. They do not violate the condition
(2.29). The contoursa j andb j form a system of canonical cross-sections of the surfaceR. The
pointse j = (δ j , v j ) ∈ C1, v j = q1/2(δ j ), j = 1, 2, . . . , ρ, are arbitrary fixed distinct points of
the surfaceR. We note that the arbitrary pointse j and pµj do not lie on the contourL and the
canonical cross-sections. Also, they do not coincide with the branch points of the surfaceR and the
poles of the functionF(z, w). The final formulae for the solution do not depend upon the choice
of the pointse j and pµj . The pointsr j = (σ j , w j ) (w j = w(σ j ), j = 1, 2, . . . , ρ) may lie on
either sheet of the surface. These points and the integersm j , n j have to satisfy the Jacobi inversion
problem (Springer (13), Farkas and Kra (10), Zverovich (11))

ρ∑
j=1

[ων(σ j , w j ) + m j Aν j + n j Bν j ] = d∗
ν , ν = 1, 2, . . . , ρ, (2.36)

where

Aν j =
∮

a j

tν−1dt

ξ(t)
, Bν j =

∮
b j

tν−1dt

ξ(t)
(2.37)

are theA- andB-periods of the abelian integrals

ων = ων(z, w) =
∫ (z,w)

(z0,0)

tν−1dt

ξ(t)
, ν = 1, 2, . . . , ρ, (2.38)
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and the constantsd∗
ν are defined by

d∗
ν =

ρ∑
j=1

ων(δ j , v j ) − 1

2π i

∫ 1

−1
[log l1(t) − log l2(t)] tν−1dt

q1/2(t)
+

2∑
µ=1

(−1)µ sgnκµ

|κµ|∑
j=1

∫ γµj

1

tν−1dt

q1/2(t)
.

(2.39)

For genusρ = 1, the inversion problem (2.36) is solvable in terms of elliptic functions. This case is
analysed in section 3. For genusρ > 1, the Jacobi problem is equivalent to the identification of the
zeros of the associated Riemannθ -function. This issue is discussed in (12).

We now summarize the procedure for finding the canonical function. First one needs to fix
branches of the functions logl1(t) and logl2(t) on the segments[−1, 1] by the inequality (2.33).
Next, the integersκµ should be identified to meet the conditions (2.30). The last step of the
procedure is to find the integersm j , n j and the unknown pointsr j = (σ j , w j ) ∈ R by solving
the Jacobi inversion problem (2.36). The canonical functionX (z, w) = exp{�(z, w)} is given by
(2.31). It is bounded at infinity, satisfies the boundary condition (2.29) and the inequality (2.30).
The functionX (z, w) is analytic and non-zero everywhere inR ⊂ L apart from the simple polese j

and simple zerosr j ( j = 1, 2, . . . , ρ) and, possibly, the pointspµj ( j = 1, 2, . . . , |κµ|, µ = 1, 2).
If κµ > 0, then the pointspµj are simple zeros. For negativeκµ, the functionX (z, w) has simple
poles at these points. Forκµ = 0, the pointspµj are neither poles nor zeros.

Not all the constants in the rational functionsR1(z) and R2(z) are arbitrary. They have to be
chosen such that

lim
z→∞ zk[ψ2(z) + R2(z)] = 0, k = 1, 2, . . . , ρ,

�(δk, vk) + R(δk, vk) = 0, k = 1, 2, . . . , ρ,

�(γµj , (−1)µ−1uµj ) + R(γµj , (−1)µ−1uµj ) = 0, j = 1, 2, . . . , −κµ, µ = 1, 2. (2.40)

The last group of the conditions is required ifκµ < 0. The conditions (2.40) guarantee the
boundedness of the functionF(z, w) at infinity, eliminate the poles at the points(δk, vk) and assure
the boundedness of the solution at the points(γµj , (−1)µ−1uµj ) whenκµ < 0.

2.4 General solution to the functional-difference equation

According to formulae (2.12), (2.4) and theh-periodicity of the functionsb(s)/a(s), c(s)/a(s), the
general solution to the auxiliary problem (2.3) has the form

f̂ (s) = φ1(s) + φ2(s), ω − h � Res � ω,

f̂ (s) = − b(s)

2a(s)
[φ1(s − h) + φ2(s − h)] + 	1/2(s)

2a(s)
[φ1(s − h) − φ2(s − h)], ω � Res � ω + h,

(2.41)

whereφ j (s) = Fj (z(s)), z(s) = −i tan(π/h)(s − ω)·
In view of φ j (s − h) = Fj (z(s − h)) = Fj (z(s)), j = 1, 2, express the function̂f (s) in terms of

the solution to the Riemann–Hilbert problem on the surfaceR:

f̂ (s) = F(z, w) + F(z, −w), ω − h � Res � ω,
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f̂ (s) = − b(s)

2a(s)
[F(z, w) + F(z, −w)] + 	1/2(s)

2a(s)
[F(z, w) − F(z, −w)], ω � Res � ω + h,

(2.42)

wherew = q1/2(z). To define the general solution to equation (2.1) in the whole complex plane,
continue analytically the functionf (s) from the strip�∗ to the left and to the right

f (s) = 1

a(s)
[−b(s) f̂ (s − h) − c(s) f̂ (s − 2h) + d(s − h)], ω + h � Res � ω + 2h,

f (s) = 1

c(s)
[−a(s) f̂ (s + 2h) − b(s) f̂ (s + h) + d(s + h)], ω − 2h � Res � ω − h. (2.43)

It is convenient to use the following notation:

fk(s) = f (s), s ∈ �k,

�k = {s ∈ C : ω + (k − 2)h � Res � ω + (k − 1)h}, k = 0, ±1, . . . . (2.44)

The functionsf1(s) and f2(s) defined in the strips�1 and�2 are given by (2.42):f1(s) = f̂ (s),
s ∈ �1, and f2(s) = f̂ (s), s ∈ �2. As for the other functions, they can be obtained by the
analytical continuation of relations (2.42) into the strips�k :

fk(s) = 1

a(s)
[−b(s) fk−1(s − h) − c(s) fk−2(s − 2h) + d(s − h)], k = 3, 4, 5, . . . ,

fk(s) = 1

c(s)
[−a(s) fk+2(s + 2h) − b(s) fk+1(s + h) + d(s + h)], k = 0, −1, −2, . . . . (2.45)

The function f (s) = fk(s), s ∈ �k , is continuous through the contours Res = ω + kh (k =
0, ±1, ±2, . . . ), and is meromorphic and single-valued in the whole plane.

In the case�∗ ⊂ �0, the analytical continuation may cause undesired poles in the strip�0 of
the function f (s). They should be removed.

3. Elliptic case

In this section we aim to find an explicit solution to equation (2.1) when the scalar Riemann–Hilbert
problem is set on a torus, a Riemann surface of genusρ = 1·

3.1 Riemann–Hilbert problem on two arcs of a torus

In the case under consideration the discriminant of equation (2.1), the function	(s), has four zeros
s j ∈ � ( j = 0, 1, 2, 3) of odd order. The conformal mapping (2.17) that transforms the strip�

into the complex plane with a cut, is not unique. In the elliptic case instead of the function (2.17)
it is useful to take the function which maps the strip� onto a complex plane such that the branch
pointss0, s1, s2 ands3 are mapped into the points−1/k, −1, 1 and 1/k, respectively, wherek is
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a complex parameter to be determined. It will be done into two steps. First, map the strip� onto
theζ -plane by the functionζ = exp(2π is/h). Obviously, the contours� = {s ∈ C : Res = ω}
and�−1 = {s ∈ C : Res = ω − h} are transformed into the lower and the upper banks of the
semi-infinite cut{argζ = 2πω/h}, respectively. Let

ζ j = e2π is j /h, j = 0, 1, 2, 3. (3.1)

Secondly, we use the inverse linear rational functionC → C that maps the points−1/k, −1, 1, 1/k
into the pointsζ j ( j = 0, 1, 2, 3) (see Hancock (14))

ζ = ζ1 + ζ2

2
+ ζ1 − ζ2

2

z − µ

µz − 1
, (3.2)

where the parametersµ andk should be found from

1 + µ

1 − µ
= ζ0 − ζ2

ζ0 − ζ1

1 − k

1 + k
,

(
1 − k

1 + k

)2

= ζ0 − ζ1

ζ0 − ζ2

ζ3 − ζ2

ζ3 − ζ1
. (3.3)

By solving equation (3.2) with respect toz, find the mapping function

z = u(s), u(s) = 2e2π is/h − (ζ1 + ζ2) − µ(ζ1 − ζ2)

2µe2π is/h − µ(ζ1 + ζ2) − (ζ1 − ζ2)
. (3.4)

This function maps the branch pointss0, s1, s2 ands3 into the points−1/k, −1, 1, 1/k, respectively.
The cuts�0 and�1 become smooth curvesγ0 andγ1 joining the points−1/k, −1 and 1, 1/k.

The contour� transforms into a circle arcL = t1t2t3 defined by three pointst1, t2 andt3 with t1
being a starting point (Fig.1):

t1 = 1

µ
,

t2 = 2e2π iω/h − (ζ1 + ζ2) − µ(ζ1 − ζ2)

2µe2π iω/h − µ(ζ1 + ζ2) − (ζ1 − ζ2)
,

t3 = ζ1 + ζ2 + µ(ζ1 − ζ2)

µ(ζ1 + ζ2) + ζ1 − ζ2
. (3.5)

It follows immediately from (3.2) that the inverse function is

s = v(z), v(z) = h

2π i
log

(
ζ1 + ζ2

2
+ ζ1 − ζ2

2

z − µ

µz − 1

)
, (3.6)

where a single branch of the above function is chosen such that Rev(z) = ω, z ∈ L+, with L+
being the left bank of the cutL.

To find the functions

Fj (z) = φ j (v(z)), z ∈ C, j = 1, 2, (3.7)
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we have to solve the vector Riemann–Hilbert boundary-value problem (2.18), where

l j (t) = λ j (v(t)), D j (t) = (−1) j−1	−1/2(v(t))d(v(t)). (3.8)

Following the procedure described in section 2 reduces the problem to the scalar Riemann–Hilbert
problem (2.24) on the Riemann surface of genusρ = 1 of the algebraic function

w2 = q(z), q(z) = (1 − z2)(1 − k2z2). (3.9)

The contourL consists of two circular arcsL1 = L ⊂ C1 and L2 = L ⊂ C2. Because of the
prescribed asymptotics (2.2) of the functionf (s) as Ims → ±∞, s ∈ �∗, and formulae (2.4),
(2.12) the functionF(z, w) has power singularities in the vicinities of the end pointsz = t1, z = t3:

F(z, w) = O(|z − t1|−ν−
µ ), z → t1, (z, w) ∈ Cµ, µ = 1, 2,

F(z, w) = O(|z − t3|−ν+
µ ), z → t3, (z, w) ∈ Cµ, µ = 1, 2, (3.10)

where the parametersν±
µ are defined by the numbersν± and the behaviour of the functions

a(s)	−1/2(s), 1+ b(s)	−1/2(s) and 1− b(s)	−1/2(s) as Ims → ±∞. At the branch points of the
surface,z = −1/k, −1, 1 and 1/k, the functionF(z, w) possesses poles of ordersµ0, µ1, µ2 and
µ3, respectively. We emphasize that the poles are understood in the sense of Riemann surfaces
(Springer (13)). Here the numbersµ0, µ1, µ2 and µ3 denote the orders of the zeros of the
discriminant	(s) at the corresponding pointss j , j = 0, 1, 2, 3. To complete the description of
the class of solutions, we indicate that the unknown functionF(z, w) may have poles of orders
ν1, ν2, . . . , νm on both sheetsC1, C2 at the points with affixesα1, α2, . . . , αm . Hereα j are the
images of the polesa j of the functionsφ1(s), φ2(s): α j = u(a j ), j = 1, 2, . . . , m.

3.2 Canonical function of the Riemann–Hilbert problem

To solve the Riemann–Hilbert problem (2.24) one needs to factorize the coefficientl(t, ξ). This
means constructing a canonical function of the problem (2.24). At the end pointsz = t1 andz = t3
this function may have power singularities

B−
0 |z − t1|−ν−

µ +1 < |X (z, w)| � B−
1 |z − t1|−ν−

µ , z → t1, (z, w) ∈ Cµ, µ = 1, 2,

B+
0 |z − t3|−ν+

µ +1 < |X (z, w)| � B+
1 |z − t3|−ν+

µ , z → t3, (z, w) ∈ Cµ, µ = 1, 2. (3.11)

First we constructa- andb-canonical cross-sections of the surfaceR. The cross-sectiona consists
of the banks of the cutγ1 (Fig. 1) which simultaneously belong toC1 andC2. The positive direction
ona is chosen such that the first sheetC1 is always on the left. The cross-sectionb is a smooth closed
curve that consists of two parts. The first part is a curve ofC1 joining the points 1/k and−1/k
and passing through infinity. The second part lies on the sheetC2 and joins the points−1/k and
1/k through infinity. The starting point is 1/k and the first sheet is traced first. Both parts of the
cross-sectionb are symmetric with respect to the origin. The functionw = w(z) on the surfaceR is
defined by (2.22), whereq1/2(z) = √

(1 − z2)(1 − k2z2) is the branch single-valued in thez-plane
cut alongγ0 andγ1 and satisfying the relationq1/2(0) = 1·
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Fig. 1 Canonical cross-sectionsa, b and the contourL. The elliptic case

A canonical function of the problem (2.24) is given by

X (z, w) = exp{�(z, w)}, (z, w) ∈ R,

�(z, w) = 1

2π i

∫
L

log l(t, ξ)dW +
2∑

µ=1

sgnκµ

|κµ|∑
j=1

∫ pµj

pµ0

dW

+
∫ (σ0,w0)

(δ0,v0)

dW + m0

∮
a

dW + n0

∮
b

dW . (3.12)

A single branch of the logarithmic function logl(t, ξ) on each arcL1, L2 is fixed by the inequalities
2π(ν−

µ − 1) < arglµ(t1) � 2πν−
µ , µ = 1, 2, and the integersκ1, κ2 are chosen as follows:

κµ = ν+
µ +

[
1

2π
arglµ(t3)

]
, µ = 1, 2. (3.13)

Then analysis of the Weierstrass integrals in (3.12) implies

X (z, w) = O{(z − t1)
β−

µ }, (z, w) ∈ Cµ, z → t1, µ = 1, 2,

X (z, w) = O{(z − t3)
β+

µ }, (z, w) ∈ Cµ, z → t3, µ = 1, 2, (3.14)

where

β−
µ = − 1

2π
arglµ(t1), β+

µ = 1

2π
arglµ(t3) − κµ, µ = 1, 2,

−ν±
µ � β±

µ < 1 − ν±
µ . (3.15)

Therefore the function (3.12) is within the class of solutions (3.11).
The pointspµ0 are chosen to bepµ0 = (t3, (−1)µ−1q1/2(t3)) ∈ Cµ, µ = 1, 2· As for the points

(δ0, v0) and pµj ,
(δ0, v0) ∈ C1, v0 = q1/2(δ0),
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pµj = (γµj , (−1)µ−1uµj ) ∈ Cµ, uµj = q1/2(γµj ), j = 1, 2, . . . , |κµ|, µ = 1, 2, (3.16)

they are arbitrary fixed distinct points of the surfaceR which fall neither on the contourL nor
on the canonical cross-sections. In addition, it is required for the above points not to coincide
with the branch points of the surfaceR and the poles of the functionF(z, w)· The point(σ0, w0)

(w0 = w(σ0)) and the integersm0, n0 are not arbitrary. They will be fixed later.
The integrals in (3.12) apart from the integrals overL anda, b are taken over smooth curves which

join the end points and which do not cross the cross-sectionsa, b and the contourL. These integrals
are independent of the shape of the path of integration. The first integral in (3.12) is discontinuous
through the contourL with the jump logl(t, ξ). The other integrals are also discontinuous through
the contours of integration. The corresponding jumps are equal to 2π im (m is an integer). Hence
the functionX (z, w) satisfies the homogeneous boundary condition (2.29).

In general, for an arbitrary point (σ0, w0) and arbitrary integersm0, n0, the functionX (z, w) in
(3.12) has an essential singularity at infinity. This is becausew(z) ∼ (−1) j kz2, z → ∞, z ∈ C j ,
and the Weierstrass kernel (2.32) has a pole at infinity. To eliminate the essential singularity we
evaluate the principal terms of the expansions of the function�(z, w) at infinity on both sheets of
the surface:

k

2
(−1) j−1

{
1

2π i

∫
L
[log l1(t) − log l2(t)] dt

q1/2(t)
−

2∑
µ=1

(−1)µ sgnκµ

|κµ|∑
j=1

∫ γµj

t3

dt

q1/2(t)

+
∫ (σ0,w0)

(δ0,v0)

dt

ξ(t)
+ m0

∫
a

dt

ξ(t)
+ n0

∫
b

dt

ξ(t)

}
z. (3.17)

Thus in order that the functionX (x, w) is bounded at infinity it is necessary and sufficient that

∫ (σ0,w0)

(δ0,v0)

dt

ξ(t)
+ m0

∮
a

dt

ξ(t)
+ n0

∮
b

dt

ξ(t)
= d0, (3.18)

where

d0 = 1

2π i

∫
L
[log l2(t) − log l1(t)] dt

q1/2(t)
+

2∑
µ=1

(−1)µ sgnκµ

|κµ|∑
j=1

∫ γµj

t3

dt

q1/2(t)
. (3.19)

This nonlinear equation is the Jacobi inversion problem for the surfaceR of genusρ = 1. We next
solve this problem in closed form. Since the single branch of the functionq1/2(t) has already been
fixed by the conditionq1/2(0) = 1 the A- andB-periods of the elliptic integrals in (3.18) become∮

a

dt

ξ(t)
= 2iK′,

∮
b

dt

ξ(t)
= −4K, (3.20)

whereK = K(k), K′ = K(
√

1 − k2) are complete elliptic integrals of the first order. Hence
equation (3.18) reduces to

∫ (σ0,w0)

(0,1)

dt

ξ(t)
= d∗ + 4n0K − 2im0K′, (3.21)
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where

d∗ = d0 +
∫ δ0

0

dt

q1/2(t)
. (3.22)

Assume, first, that the unknown point(σ0, w0) is in C1. Thenξ(t) = q1/2(t). By inversion of the
elliptic integral we getσ0 = snd∗. Next, find the numbersn0, m0 from (3.21):

m0 = − Im{(I0 − d∗)K}
2 Re{KK′} , n0 = Re{(I0 − d∗)K′}

4 Re{KK′} , (3.23)

where

I0 =
∫ σ0

0

dt√
(1 − t2)(1 − k2t2)

= F(arcsin(snd∗), k), (3.24)

andF(x, k) is the elliptic integral of the first kind. If it turns out that the numbersm0, n0 given by
(3.23) are integers, then the set{(σ0, w0) ∈ C1, m0, n0} forms a solution of the problem (3.21). If,
however, at least one of the numbersm0, n0 is not an integer, then, certainly,(σ0, w0) ∈ C2. In this
case equation (3.21) can be rewritten as

−
∫ σ0

0

dt√
(1 − t2)(1 − k2t2)

= d∗ + 4

(
n0 + 1

2

)
K − 2im0K′. (3.25)

The above relation implies thatσ0 = sn(−d∗ −2K) = snd∗. The numbersm0, n0 are defined from
the equation

I0 + d∗ + 4(n0 + 1
2)K − 2im0K′ = 0 (3.26)

by

m0 = Im{(I0 + d∗)K}
2 Re{KK′} , n0 = −1

2
− Re{(I0 + d∗)K′}

4 Re{KK′} . (3.27)

Let ε = 1 if the numbers (3.23) are integers andε = −1 if the numbers (3.27) are integers. Then
the point(σ0, w0) is given by(snd∗, εq1/2(snd∗)).

We now turn to the canonical function. It is convenient to rewrite formula (3.12) in terms of two
functions defined on thez-plane:

X (z, w) = exp{�1(z) + w(z)�2(z)}, (3.28)

where

�1(z) = 1

4π i

∫
L
[log l1(t) + log l2(t)] dt

t − z
+ 1

2
log

z − σ0

z − δ0

+1

2

2∑
µ=1

sgnκµ

|κµ|∑
j=1

log
z − γµj

z − t3
,
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�2(z) = 1

4π i

∫
L
[log l1(t) − log l2(t)] dt

q1/2(t)(t − z)
− 1

2

∫ δ0

−1

dt

q1/2(t)(t − z)

+ε

2

∫ σ0

−1

dt

q1/2(t)(t − z)
+ m0

∫ 1/k

1

dt

q1/2(t+)(t − z)
+ n0

∫ ∞

1/k

2zdt

q1/2(t)(t2 − z2)

+1

2

2∑
µ=1

(−1)µ−1 sgnκµ

|κµ|∑
j=1

∫ γµj

t3

dt

q1/2(t)(t − z)
. (3.29)

Weassume that log{(z − a)(z − b)−1} → 0, z → ∞. This condition determines a single branch of
the logarithmic function. The point(δ0, v0) ∈ C1 is fixed in an arbitrary manner such that it does
not fall on the contourL, cutsγ0, γ1 and does not coincide with the poles of the functionF(z, w).
The final solution is independent of the choice of the pointδ0. The integral from 1 to 1/k in (3.29)
is taken along the left bank of the cutγ1.

Thus we have shown that the function (3.28) is a canonical function. This function satisfies the
conditions (3.11) at the ends of the contour. The point(δ0, v0) ∈ C1 is its simple pole. At the point
(σ0, w0) ∈ R the functionX (z, w) has a simple zero. The behaviour of the functionX (z, w) at
the pointspµj = (γµj , (−1)µ−1uµj ) ∈ Cµ ( j = 1, 2, . . . , |κµ|; µ = 1, 2) depends on the sign
of the numbersκµ. If κµ > 0, then all the pointspµj are simple zeros of the functionX (z, w).
Correspondingly, ifκµ < 0, then the pointspµj are simple poles of the functionX (z, w). Finally,
in the caseκµ = 0, the functionX (z, w) is bounded and is non-zero at the pointspµj .

3.3 General solution

For simplicity, assume that the functiond(s)/a(s) in (2.1) meets the requirement (2.2). Then
from relations (2.25), (2.19) and (3.14) the functionD(t, ξ)[X+(t, ξ)]−1 may have integrable
singularities at the ends of the contourL. Therefore, a partial solution of the non-homogeneous
boundary-value problem (2.24) can be taken asX (z, w)[�1(z) + w(z)�2(z)], where

�1(z) = 1

4π i

∫
L

D(t, ξ)

X+(t, ξ)

dt

t − z
, �2(z) = 1

2π i

∫
L

D(t, ξ)

ξ(t)X+(t, ξ)

dt

t − z
. (3.30)

The general solution of the Riemann–Hilbert problem (2.24) becomes (5)

F(z, w) = X (z, w)[�1(z) + R1(z)] + w(z)X (z, w)[�2(z) + R2(z)], (3.31)

where

R1(z) = C0 + C1w0

z − σ0
+

m∑
k=1

νk∑
j=1

D′
k j

(z − αk) j
+

3∑
k=0

(µk−1)/2∑
j=1

E ′
k j

(z − zk) j
−

2∑
µ=1

(−1)µ
κ̃µ∑
j=1

Hµj uµj

z − γµj
,

R2(z) = C1

z − σ0
+

m∑
k=1

νk∑
j=1

D′′
k j

(z − αk) j
+

3∑
k=0

(µk+1)/2∑
j=1

E ′′
k j

(z − zk) j
+

2∑
µ=1

κ̃µ∑
j=1

Hµj

z − γµj
. (3.32)

Here κ̃µ = max{0, κµ}, µ = 1, 2; uµj = q1/2(γµj ), σ0 = snd∗, w0 = εq1/2(σ0), z0 = −1/k,
z1 = −1, z2 = 1, z3 = 1/k.
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Assume that among the polesαk (k = 1, 2, . . . , m) there is no infinity. Then, for the function
F(z, w) to be bounded at infinity, it is necessary and sufficient that

res
z=∞[�2(z) + R2(z)] = 0. (3.33)

If, however, the functionF(z, w) has poles of the same orderν∞ at the points(∞, ∞) and
(∞, −∞), then the condition (3.33) should be disregarded and the terms

ν∞∑
j=1

G ′
j z

j ,

ν∞−2∑
j=0

G ′′
j z

j (3.34)

need to be added to the functionsR1(z), R2(z), respectively. Note that the second term in (3.34) is
added only ifν∞ � 2.

The procedure of solution of the Riemann–Hilbert problem will be accomplished if the following
conditions hold:

�1(δ0) + R1(δ0) + q1/2(δ0)[�2(δ0) + R2(δ0)] = 0,

�1(γµj ) + R1(γµj ) + (−1)µ−1uµj [�2(γµj ) + R2(γµj )] = 0,

j = 1, 2, . . . , −κµ, µ = 1, 2. (3.35)

The first condition removes the simple pole at the point(δ0, v0) ∈ C1 of the functionF(z, w). The
conditions at the pointsγµj are required forκµ < 0 and provide the boundedness of the solution at
these points.

The general solution to the functional-difference equation (2.3) is given by (2.42). In addition
to formula (2.42) we give another representation of the solution without functions on the Riemann
surface. Let

Y1(z) = �1(z) + R1(z), Y2(z) = q1/2(z)[�2(z) + R2(z)], (3.36)

with z = u(s). In the stripω − h � Res � ω + h, f (s) = f̂ (s). Therefore

f (s) = 2e�1(z){Y1(z) cosh[q1/2(z)�2(z)] + Y2(z) sinh[q1/2(z)�2(z)]}, ω − h � Res � ω,

f (s) = −b(s)

a(s)
e�1(z){Y1(z) cosh[q1/2(z)�2(z)] + Y2(z) sinh[q1/2(z)�2(z)]}

+	1/2(s)

a(s)
e�1(z){Y1(z) sinh[q1/2(z)�2(z)]

+Y2(z) cosh[q1/2(z)�2(z)]}, ω � Res � ω + h. (3.37)

Formulae (2.43) to (2.45) define the solutionf (s) to equation (2.1) in the whole complex planeC.
Assume first thatz = ∞ is not a pole of the functionF(z, w). Then analysis of formulae (3.32)

shows that the number of arbitrary constants in the general solutionf (s) is

2 + 2
m∑

k=1

νk +
3∑

k=0

µk + κ̃1 + κ̃2. (3.38)
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For their definition we have 2+ κ̃1 + κ̃2 − κ1 − κ2 conditions (3.33) and (3.35). IfF(z, w) has
poles at the infinite points on either sheet, then the difference between the number of the arbitrary
constants and the number of the conditions is given by

2
m∑

k=1

νk +
3∑

k=0

µk + κ1 + κ2 + 2ν∞. (3.39)

The zeros of the functiona(s) in the stripω � Res � ω + h may bring inadmissible poles of the
solution f (s). Their number and multiplicity may increase the total number of additional conditions
for the arbitrary constants.

4. Conclusion

In this paper we have proposed an analytical method for a scalar second-order functional-difference
equation (2.1) whose coefficients areh-periodic and entire functions. The method is still applicable
if only the functionsb(s)/a(s) andc(s)/a(s) areh-periodic and if the coefficients are meromorphic
functions. It has been shown that the solution of equation (2.1) can be constructed by analytical
continuation of the general solution of an auxiliary boundary-value problem (2.2) in a strip� =
{s ∈ C : ω − h < Res < ω + h}, whereω is a real number. The auxiliary problem has been
reduced to a vector functional-difference equation of the first order (2.6) in the strip� = {s ∈ C :
ω − h < Res < ω}. We have shown how to transform the above problem to a scalar Riemann–
Hilbert boundary-value problem (2.24) on two finite segments of a hyperelliptic surface of genus
ρ, where 2ρ + 2 is the number of branch points of the function	1/2(s) = [b2(s) − 4a(s)c(s)]1/2

in the strip�. A general technique for solution of such problems for arbitrary finite genusρ (9)
requires solution of the corresponding Jacobi inversion problems. This nonlinear problem is always
solvable; it is equivalent to an algebraic equation of degreeρ (12) and therefore can be solved
effectively. To illustrate the technique proposed, we have analysed in detail the elliptic case (ρ = 1)
and constructed a closed-form solution of equation (2.1) in terms of elliptic functions.

The case when the shift is less than the period of the coefficients and a physical example analysed
by the method of this paper are presented in (5).
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APPENDIX

We aim to show that the solution (6,8), the function�1(α) + �2(α), is amulti-valued function with branch
pointsπ + 2πm1, m1 ∈ Z, and±η + πm2, m2 is an integer such that±η + πm2 /∈ �, � = {α ∈ C : −π <

Reα < π}. Here

�1,2(α) = [F(α)]±1, | Reα| � π,

F(α) = exp

{
1

4π i

∫ i∞
−i∞

tan
z − α

2
logq(z)dz

}
, (A.1)

and we adopt the notation of (6):

q(α) = u(α) + 1
2 sinθ

u(α) − 1
2 sinθ

,

u(α) =
√

cos2 α − cos2 η, cosη =
√

3

2
sinθ . (A.2)

A single-valued branch of the functionu(α) is defined in theα-plane cut along the segments joining the pairs
of the points−η + mπ andη + mπ , m ∈ Z. Because of this choice of the branch cuts, the pointz = 0 lies on
the cut joining the points−η andη. Hence the density of the integral (A.1) is discontinuous at the pointz = 0:

logq(+i0) − logq(−i0) = δ0, (A.3)

where

δ0 = 2logq(+i0) = 2log

√
4 − 3 sin2 θ + sinθ√
4 − 3 sin2 θ − sinθ

. (A.4)
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In a neighbourhood of the pointsα = ±π , the integral (A.1) behaves as the corresponding Cauchy integral
with the discontinuous density logq(z). On using (15),

F(β ± π) = βδ1�∗(β), β → 0, δ1 = δ0

2π i
. (A.5)

The function�∗(β) has definite finite non-zero limits asβ → 0 and Reβ �= 0. Therefore

�1(α) + �2(α) = (α ∓ π)δ1�0(α) + 1

(α ∓ π)δ1�0(α)
, α → ±π, | Reα| � π, (A.6)

and the function�0(α) is finite. Its limits asα → ±π exist and do not equal zero.
The functions�1,2(α) may be continued analytically into the stripπ � Reα � 3π as follows:

�1,2(α) = q∓1(α − π)�1,2(α − 2π). (A.7)

Because of the relationq(α − π) = 1/q(α) and the 2π -periodicity of the kernel tan12(z− ∝) we have

�1,2(α) = [q(α)F(α)]±1, π � Reα � 3π . (A.8)

In the vicinities of the pointsα = π , α = 3π , bisected along the branch cuts, the functionq(α) is single-
valued. Therefore, ifα → π or α → 3π , then the sum�1(α) + �2(α) may be written similarly to (A.6).
Now it is clear that if the parameterδ1 is not integer, then all the pointsπ + 2πm1 (m1 ∈ Z) are branch points
of the function�1(α) + �2(α). Wenotice thatδ1 is an integer if and only if√

4 − 3sin2 θ + sinθ√
4 − 3sin2 θ − sinθ

= ±1 (A.9)

or, equivalently, if eitherη = 0, orη = π/2. In both cases the functionu(s) does not have branch points.
Analyse next the points±η + πm2, m2 ∈ Z. Those points which belong to the strip−π � Reα � π are

not branch points. Show that the next pair of the points are branch points. Let�1 be a cut joining the points
2π − η and 2π + η. On the banks of the cut,

�1(α±) + �2(α±) = q(α±)F(α±) + 1

q(α±)F(α±)
, α± ∈ �±

1 . (A.10)

Clearly, the functionF(α) is continuous on the cut,F(α+) = F(α−). As for the functionq(α), it is
discontinuous andq(α−) = 1/q(α+). This means that the limit values of the function�1(α) + �2(α)

on the left and the right sides of the cut are not the same, and the points±η + πm2 /∈ � are branch points of
the solution. In summary, the method presented in (6,8) yields a solution that is multi-valued in the exterior of
the strip−π � Res � π regardless of the choice of the system of the branch cuts.


