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Summary

Scattering of a plane electromagnetic wave from an anisotropic impedance half-plane at skew
incidence is considered. The two matrix surface impedances involved are assumed to be com-
plex and different. The problem is solved in closed form. The boundary-value problem reduces
to a system of two first-order difference equations with periodic coefficients subject to a sym-
metry condition. The main idea of the method developed is to convert the system of difference
equations into a scalar Riemann–Hilbert problem on a finite contour of a hyperelliptic surface
of genus 3. A constructive procedure for its solution and the solution of the associated Jacobi
inversion problem is proposed and described in detail. Numerical results for the edge diffraction
coefficients are reported.

1. Introduction

During the last 50 years significant progress has been made in the mathematical theory of diffraction
which studies the influence of material properties on edge diffraction phenomena. The achievements
have been made in large part due to the use of the Leontovich impedance boundary conditions in
modeling and the Wiener–Hopf–Jones (1, 2) and Maliuzhinets (3) methods for the solution. The
former method works successfully for half-planes and right-angled wedges. Wedges of arbitrary
angles are normally treated by the Maliuzhinets technique. Recently, Daniele (4) showed that the
Wiener–Hopf–Jones method is applicable for scattering problems for wedges as well. In fact, for
certain canonical problems of acoustic and electromagnetic diffraction (5 to 8), both techniques
are equivalent to the solution of a scalar Riemann–Hilbert problem on a Riemann surface (in some
particular cases on a sphere, that is, on a plane).

The scalar problem of electromagnetic diffraction of a plane wave from a semi-infinite impedance
plane at oblique incidence was solved by Senior (9) by the Wiener–Hopf approach. By using the
Sommerfeld integral, Maliuzhinets (3) found a closed-form solution to the problem of acoustic
diffraction by an impedance wedge with two different impedance parameters. The solution was
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derived in terms of special functions later called the Maliuzhinets functions. The homogeneous
isotropic two-face impedance half-plane problem of electromagnetic diffraction in the oblique inci-
dence case was analysed by Lüneburg and Serbest (10) by using the ‘range restrictions’ concept.

For the more complicated anisotropic case, two different matrix surface impedances

Z± = Z0

(
0 −η±

2
η±

1 0

)
(1.1)

are involved. Here the superscripts identify the upper and the lower faces of the plane, η±
1 and

η±
2 are dimensionless parameters, Z0 = √

µ0/ε0 is the intrinsic impedance, and µ0 and ε0 are the
permeability and permittivity of free space. On the screen faces, the impedance boundary conditions
are E = Z±H, where E = (Eρ, Ez)

� and H = (Hρ, Hz)
� are the total electric and magnetic

fields. In the normal incidence case, the governing system of Wiener–Hopf and first-order difference
equations is uncoupled. The solution is obtained by quadratures.

When the incident wave is not orthogonal to the edge of the structure the equations are in general
coupled. For special cases of skew incidence the equations reduce to scalar Maliuzhinets equations.
Examples include those considered by Bernard (11) and Lyalinov and Zhu (12). For the case when
the matrices Z+ and Z− are different, Senior (13) used the Wiener–Hopf and Maliuzhinets ideas to
reduce the problem to functional equations. The former method gives rise to a vector Wiener–Hopf
problem for four pairs of unknown functions. Hurd and Lüneburg (14) found a closed-form solution
in the case Z+ = Z− when the problem is reducible to the problem of factorization of a 2×2 matrix.
The matrix was factorized by employing the Daniele (15) method. In the more general case, when
Z+ �= Z−, the Daniele method leads to a system of highly nonlinear equations. These equations
have to be solved in order to eliminate an essential singularity of the Wiener–Hopf factors. Apart
from the elliptic case (the number of nonlinear equations equals one) (15, 14) so far there is no
constructive (exact or approximate) technique for its solution.

Senior and Topsakal (16) employed the Sommerfeld–Maliuzhinets formulation and reduced the
problem to a second-order difference equation and then converted it into an integral equation. An
approximate solution was given for the case Z+ = Z−. A method of the Riemann bilinear re-
lations for abelian integrals for a partial solution of a second-order difference was proposed by
Legault and Senior (17). The principal complexity of their method is to eliminate the polar and
cyclic periods of the solution in order to make it single-valued. The procedure requires solving a
system of nonlinear equations with respect to the unknown singularities of the abelian integrals of
the third kind. Its constructive solution is found only for those cases which are equivalent to the
elliptic case.

The main motivation behind the present work was to solve in closed form the problem on
electromagnetic scattering of a plane wave from an anisotropic impedance half-plane at oblique in-
cidence. The entries of the impedance matrices Z+ and Z− could be complex and different. Antipov
and Silvestrov (6, 7) proposed a unified approach for a general class of problems in electromagnetic
scattering. It generalizes the Wiener–Hopf and Maliuzhinets technique for systems of Wiener–Hopf
and Maliuzhinets equations. The proposed method rephrases the systems of governing equations
as a scalar Riemann–Hilbert problem on a Riemann surface. The Wiener–Hopf factors expressed
through the solution of the boundary-value problem on a Riemann surface are single-valued. The
essential singularity of the solution at infinity is removed by fixing certain free parameters which
solve the associated Jacobi inversion problem. Its solution always exists and can be constructed in
terms of the zeros of the Riemann θ -function. By this method, a problem on E-polarization of a
right-angled magnetically conductive wedge was solved by quadratures (8). It was pointed out (6)
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that the problem of electromagnetic scattering at skew incidence from an anisotropic half-plane is
solvable by quadratures.

The main aims of this work are (i) to construct the actual solution to the problem, (ii) to develop
an efficient procedure for the associated Jacobi inversion problem, and (iii) to derive formulae for
electric and magnetic fields and to compute the diffraction coefficients.

In section 2, the governing equations are converted into two vector first-order difference equations
(2.18) subject to a symmetry condition (2.19) and additional conditions (2.5) and (2.17). Section 3
derives a vector Riemann–Hilbert problem (3.14) on a system of segments. In section 4, this prob-
lem reduces to a scalar Riemann–Hilbert problem (4.3) on two segments of a hyperelliptic surface
of genus 3 and to a Jacobi inversion problem (4.23). The solution of the inversion problem requires
calculating the Riemann constants and finding the zeros of the associated Riemann θ -function of
genus 3. Formulae (5.19) and (5.33) for the Riemann constants are derived and a numerical algo-
rithm for the Jacobi problem is proposed in section 5. Section 6 presents the exact solution (6.10),
(2.10) to the physical problem and fixes arbitrary constants C j ( j = 1, 2, . . . , 15) in (6.5). The
case of normal incidence is considered in section 7. It is shown that the problem is equivalent to
two scalar Riemann–Hilbert problems on a segment of a complex plane. These problems are solved
in terms of one quadrature. The reflected, surface and diffracted waves are recovered in section
8. Numerical results for the diffraction coefficients are reported and discussed. It is proved that
the electromagnetic field and the diffraction coefficients are invariant with respect to the trans-
formation (θ, θ0, β, η±

1 , η±
2 ) → (−θ, −θ0, π − β, η∓

1 , η∓
2 ), where θ is the angle of observation,

β is the angle of incidence, and π − θ0 is the angle between the screen and the incident plane
wave.

2. Formulation

PROBLEM 2.1 (Main problem) Let S be a thin semi-infinite anisotropic impedance sheet {0 <
ρ < ∞, θ = ±π ∓ 0, −∞ < z < +∞} with surface impedances η+

1 , η+
2 on the upper side S+

(θ = π − 0) and η−
1 , η−

2 on the lower surface S− (θ = −π + 0) (Fig. 1). The impedances may be

Fig. 1 Geometry of the problem
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complex. The screen S is illuminated by a plane wave incident obliquely whose z-components are

Ei
z = e1eikρ sin β cos(θ−θ0)−ikz cos β, Z0 Hi

z = e2eikρ sin β cos(θ−θ0)−ikz cos β, (2.1)

where k is the wave number (Im k � 0), β ∈ (0, π) is the angle of incidence, the angle θ0 ∈
(−π, π)\{0} defines the direction of incidence, e1 and e2 are prescribed parameters, and a time
factor eiωt is suppressed. The two components of the electric and magnetic field V1 = Ez and
V2 = Z0 Hz solve the Helmholtz equation

(∇2 + k2)Vj = 0, (ρ, θ, z) ∈ R3\S, (2.2)

and satisfy the following boundary conditions (13):

1

ρ

∂Vj

∂θ
+ (−1) j cos β

∂V3− j

∂ρ
± ikη̂±

j sin2 βVj = 0, θ = ±π ∓ 0, j = 1, 2, (2.3)

where η̂±
1 = 1/η±

1 , η̂±
2 = η±

2 .

In this section the boundary-value problem for the Helmholtz equation will be reduced to two
vector difference equations with periodic coefficients. The total field V = (V1, V2) is sought in the
form of the Sommerfeld integral (3)

V(ρ, θ, z) = e−ikz cos β

2π i

∫
γ

eikρ sin β cos sSSS(s + θ)ds. (2.4)

Here γ is the Sommerfeld contour. It consists of two loops symmetric with respect to the origin.
The asymptotes for the branches are the lines s = 3

2π and s = − 1
2π for the upper loop and the lines

s = 1
2π and s = − 3

2π for the lower loop. The spectral vector function SSS(s) = (S1(s),S2(s)) is
analytic everywhere in the strip −π � Re s � π apart from the point s = θ0, where its components
have a simple pole with the residues defined by the incident field (2.1)

res
s=θ0
S1(s) = e1, res

s=θ0
S2(s) = e2. (2.5)

At the infinite points s = x ± i∞ (|x | < ∞), the functions S1(s) and S2(s) are bounded.
Because of the symmetry of the Sommerfeld contour in (2.4) the boundary conditions can be

rephrased in terms of the spectral functions as the system of the Maliuzhinets type difference equa-
tions(

sin s ± η̂±
j sin β

)
S j (s ± π) + (−1) j cos s cos βS3− j (s ± π)

=
(
− sin s ± η̂±

j sin β
)
S j (−s ± π) + (−1) j cos s cos βS3− j (−s ± π), j = 1, 2. (2.6)

To satisfy the boundary conditions, we introduce the following four new functions:


±
j (s) =

(
− sin s ± η̂±

j sin β
)
S j (s) − (−1) j cos s cos βS3− j (s), j = 1, 2. (2.7)

Clearly, the transformation

T : (θ, θ0, β, η±
1 , η±

2 ) → (−θ, −θ0, π − β, η∓
1 , η∓

2 ) (2.8)

does not change the electromagnetic field. The general solution to the main problem invariant to the
transformation T is given by the Sommerfeld integral (2.4) with the spectral functions S1(s) and
S2(s) being expressed through the functions 
±

1 (s) and 
±
2 (s) as follows:

S1(s) = 1
2

[
S+

1 (s) + S−
1 (s)

]
, S2(s) = 1

2

[
S+

2 (s) + S−
2 (s)

]
, (2.9)
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where

S±
j (s) = 1

�s(∓η̂±
1 , ∓η̂±

2 )

[(
− sin s ± η̂±

3− j sin β
)


±
j (s)

+ (−1) j cos s cos β
±
3− j (s)

]
, j = 1, 2, (2.10)

and

�s(a, b) = (sin s + a sin β)(sin s + b sin β) + cos2 s cos2 β. (2.11)

The boundary conditions (2.6) for the functions S±
1 (s) and S±

2 (s) are equivalent to the following
conditions:

1

�s(∓1/η±
1 , ∓η±

2 )

[
�s

(
± 1

η∓
1

, ∓η±
2

)

±

1 (−s ∓ π) ∓ 1

η1
cos s sin 2β
±

2 (−s ∓ π)

]

= 1

�s(±1/η±
1 , ±η±

2 )

[
�s

(
∓ 1

η∓
1

, ±η±
2

)

±

1 (s ∓ π) ∓ 1

η1
cos s sin 2β
±

2 (s ∓ π)

]
,

1

�s(∓1/η±
1 , ∓η±

2 )

[
�s

(
∓ 1

η±
1

, ±η∓
2

)

±

2 (−s ∓ π) ± η2 cos s sin 2β
±
1 (−s ∓ π)

]

= 1

�s(±1/η±
1 , ±η±

2 )

[
�s

(
± 1

η±
1

, ∓η∓
2

)

±

2 (s ∓ π) ± η2 cos s sin 2β
±
1 (s ∓ π)

]
,


±
j (s ± π) = 
±

j (−s ± π), j = 1, 2, (2.12)

Here

η1 = 2

(
1

η+
1

+ 1

η−
1

)−1

, η2 = η+
2 + η−

2

2
. (2.13)

From formulae (2.10) it follows that 
±
j (s) = O(e|s|) ( j = 1, 2) as s → ∞ (Re s is finite). Because

of the poles of the functions S±
1 (s) and S±

2 (s), the new functions 
±
1 (s) and 
±

2 (s) admit simple
poles at the point s = θ0. Analysis of the relations (2.10) implies that the functions S±

1 (s),S±
2 (s)

have inadmissible poles at the zeros of the functions �s(∓1/η±
1 , ∓η±

2 ) which lie in the strip −π <
Re s < π . Let these zeros be denoted by ξ±

j , j = 1, 2, 3, 4. The singular points ξ±
j are the numbers

2π j − i log

(
i M±

ν ±
√

1 − (M±
ν )2

)
, j = 0, ±1, . . . , ν = 1, 2, (2.14)

which meet the requirement Re ξ±
j ∈ (−π, π). Here

M±
ν = ± 1

2η±
1 sin β

[
1 + η±

1 η±
2 + (−1)ν

√
d±

1

]
,

d±
1 = (1 − η±

1 η±
2 )2 + 4η±

1 (η±
2 − η±

1 ) cos2 β, (2.15)

and
√

d±
1 and log(i M±

ν ± √
1 − (M±

ν )2) are fixed branches of the square root and the loga-

rithmic functions, respectively. Notice that the transformation T maps the points ξ+
j into −ξ−

j :
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ξ+
j = −T ξ−

j and ξ−
j = −T ξ+

j . The points ξ±
j become removable points of the functions S±

1 (s)
and S±

2 (s) if the following conditions hold:

(− sin s ± η±
2 sin β)
±

1 (s) − cos s cos β
±
2 (s) = 0,(

− sin s ± 1

η±
1

sin β

)

±

2 (s) + cos s cos β
±
1 (s) = 0, s = ξ±

j , j = 1, 2, 3, 4. (2.16)

Since the determinant of this system �ξ±
j
(∓1/η±

1 , ∓η±
2 ) is equal to 0, the above conditions are

equivalent to the following four equations:

(− sin ξ±
j ± η±

2 sin β)
±
1 (ξ±

j ) − cos ξ±
j cos β
±

2 (ξ±
j ) = 0, j = 1, 2, 3, 4. (2.17)

Let �+ be the infinite strip �+ = {s ∈ C|−π < Re s < 3π}, and �− = {s ∈ C|−3π < Re s <
π}. Denote the boundaries of the strips by �± = {Re σ = 2π ±π} and �±

−1 = {Re σ = −2π ±π}.
From the integral representation (2.4) and the boundary conditions (2.3) it may be deduced that the
vectors 


±(s) = (
±

1 (s),
±
2 (s))� solve the following problem.

PROBLEM 2.2 Find the vectors 


±(s) analytic in the strips �± apart from simple poles at the
points s = θ0 and s = ±2π − θ0, continuous up to the boundaries �± ∪ �±

−1 and satisfying the
boundary conditions




±(σ ) = G±(σ )


±(σ − 4π), σ ∈ �±, (2.18)

and the conditions of symmetry




±(s) = 


±(±2π − s), s ∈ �±, (2.19)

where the components G±
mn(σ ) of the matrices G±(σ ) are given by

G+
11(σ ) = G−

11(σ ) = �σ (1/η−
1 , −η+

2 )�σ (1/η+
1 , −η−

2 ) + η2η
−1
1 cos2 σ sin2 2β

D(σ )
,

G+
22(σ ) = G−

22(σ ) = �σ (−1/η−
1 , η+

2 )�σ (−1/η+
1 , η−

2 ) + η2η
−1
1 cos2 σ sin2 2β

D(σ )
,

G±
12(σ ) = ∓η∓

0 sin β sin 2β sin 2σ

η1 D(σ )
, G±

21(σ ) = η±
0

η∓
0

η1η2G±
12(σ ),

D(σ ) = �σ (−1/η+
1 , −η+

2 )

�σ (1/η+
1 , η+

2 )
[�σ (−1/η−

1 , η+
2 )�σ (1/η+

1 , −η−
2 ) + η2η

−1
1 cos2 σ sin2 2β]

= �σ (−1/η−
1 , −η−

2 )

�σ (1/η−
1 , η−

2 )
[�σ (−1/η+

1 , η−
2 )�σ (1/η−

1 , −η+
2 ) + η2η

−1
1 cos2 σ sin2 2β],

η+
0 = η+

2 − 1

η−
1

, η−
0 = η−

2 − 1

η+
1

. (2.20)

At the ends of the strip, that is, as s → ∞ (Re s is finite), 
±
j (s) = O(e|s|) ( j = 1, 2). The

components 
±
j (s) of the vectors 


±(s) satisfy the additional conditions (2.17).
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REMARK 2.1 Because the entries of the matrices G±(s) are meromorphic functions, by analytical
continuation the boundary conditions (2.18) are valid not only on the contours �± but everywhere
in the complex plane apart from the poles of the solution and the functions G±

i j (s).

REMARK 2.2 In the case of normal incidence (β = 1
2π ), G±(σ ) = diag{G±

11(σ ), G±
22(σ )}. This

case is considered in section 7.

3. Vector Riemann–Hilbert problem on a plane

3.1 Riemann–Hilbert problem for two even functions on a system of contours

Let β �= 1
2π . In this section Problem 2.2 will be converted into two vector Riemann–Hilbert prob-

lems on the segment (−1, 1) and a system of branch cuts. In what follows the general method (6)
for vector difference equations with periodic meromorphic coefficients will be adjusted to Problem
2.2. The first step of the procedure is decoupling of the vector equations (2.18). It may be achieved
by splitting the matrices G±(σ ):

G±(σ ) = T±(σ )�±(σ )[T±(σ − 4π)]−1, σ ∈ �±, (3.1)

where �±(σ ) = diag{λ±
1 (σ ), λ±

2 (σ )}, and λ±
1 (σ ) and λ±

2 (σ ) are the eigenvalues of the matrices
G±(σ ),

λ±
1 (σ ) = a1(σ ) + a±

2 (σ ) f
1
2± (σ ), λ±

2 (σ ) = a1(σ ) − a±
2 (σ ) f

1
2± (σ ). (3.2)

The matrices T±(s) meet the condition T±(s) = T±(s − 4π) (their elements are 2π -periodic
functions), and they are given by

T±(s) =
(

1 1

− f ±
1 (s) + f

1
2± (s) − f ±

1 (s) − f
1
2± (s)

)
. (3.3)

Here

a1(σ ) = 1
2 [G11(σ ) + G22(σ )], a±

2 (σ ) = G±
12(σ ),

f ±
1 (s) = G11(s) − G22(s)

2G±
12(s)

= ± η1(η
+
0 + η−

0 )

2η∓
0 sin 2β cos s

(cos2 s cos2 β + sin2 s − g0 sin2 β),

f ±
2 = G±

21(s)

G±
12(s)

= η±
0

η∓
0

η1η2, f±(s) = [ f ±
1 (s)]2 + f ±

2 =
[

η1(η
+
0 + η−

0 ) tan β

4η∓
0 cos s

]2

f ∗(s),

f ∗(s) =
(

cos2 s + g0 − 1

sin2 β

)2

+ 16g1 cos2 s cot2 β,

g0 = 1

η+
0 + η−

0

(
η+

0
η−

2

η+
1

+ η−
0

η+
2

η−
1

)
, g1 = η2η

+
0 η−

0

η1(η
+
0 + η−

0 )2
. (3.4)

From the above formulae it follows that the matrices G+(σ ) and G−(σ ) have the same eigenvalues:
λ+

j (σ ) = λ−
j (σ ) = λ j (σ ) and therefore �+(σ ) = �−(σ ) = �(σ). Clearly, the elements of the

matrices T±(s) are two-valued functions. They have branch points at the zeros of odd order of the
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function f ∗(s) which are defined by the roots of the equations cos 2s = Nν , s ∈ �± (ν = 1, 2),
where

Nν = −1 + 2

sin2 β

[
1 − g0 sin2 β − 8g1 cos2 β + 4i(−1)ν cos β

√
d0

]
,

d0 = g1(1 − g0 sin2 β − 4g1 cos2 β). (3.5)

Here
√

d0 is one of the branches of the square root. In general, d0 is complex. If d0 = 0 then the
functions f 1/2

± (s) are single-valued. This case for the strip �+ is analysed in (6). Attention will now
be directed towards describing the details of the solution of Problem 2.2 in the case of the complex
impedance parameters (in particular, they might be real) when d0 �= 0.

Among the roots

π j + 1
2 i log(Nν ±

√
N 2

ν − 1) (ν = 1, 2; j = 0, ±1, ±2, . . .), (3.6)

only those roots s±
j should be taken which lie in the strip �± = {−2π ±π < Re s < 2π ±π}. The

branch of the logarithmic functions is fixed by the condition −π < arg(Nν ± √
N 2

ν − 1) � π , and√
N 2

ν − 1 (ν = 1, 2) is a fixed branch. There are 16 roots in the strip �±, s±
0 , s±

1 , . . . , s±
15. Single

branches of the functions f 1/2
± are fixed by

f
1
2± (s) = ∓ η1(η

+
0 +η−

0 ) tan β

4η∓
0 cos s

√
f ∗(s),

√
f ∗(s) ∼ cos2 s, s → x ± i∞,

−2π ± π � x � 2π ± π. (3.7)

Then, clearly, T f 1/2
+ (s) = f 1/2

− (s). The branches are single-valued functions in the strips �± cut
along a system of cuts C±

j ( j = 0, 1, . . . , 7) which join pairs of the branch points. The cuts are
smooth curves and they do not intersect each other.

According to the splitting (3.1) of the matrices G±(σ ) the new vector-functions

φ±(s) = [T±(s)]−1
±(s), s ∈ �±, (3.8)

are introduced. Their components are given by

φ±
1 (s) =

(
f ±
1 (s)

2 f 1/2
± (s)

+ 1

2

)

±

1 (s) + 
±
2 (s)

2 f 1/2
± (s)

,

φ±
2 (s) =

(
− f ±

1 (s)

2 f 1/2
± (s)

+ 1

2

)

±

1 (s) − 
±
2 (s)

2 f 1/2
± (s)

, s ∈ �±. (3.9)

Analysis of these formulae shows that the functions f ±
1 (s) f −1/2

± (s) and f −1/2
± (s) are free of poles

in the strips �±, respectively, and they have 16 branch points s±
0 , s±

1 , . . . , s±
15. Because of the poles

of the functions 
±
1 (s) and 
±

2 (s) at the points s = θ0 and s = ±2π − θ0, the functions φ±
1 (s) and

φ±
2 (s) may have two simple poles at these points.
Clearly, the branch cuts C±

j ( j = 0, 1, . . . , 7) are lines of discontinuity for the functions φ±
1 (s)

and φ±
2 (s). However, the vectors 
±(s) = T±(s)φ±(s) have to be continuous through these

lines. Therefore the functions φ±
1 (s) and φ±

2 (s) solve the following system of two scalar difference
equations:

φ±
µ (σ) = λµ(σ)φ±

µ (σ − 4π), µ = 1, 2, σ ∈ �±, (3.10)
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subject to the Riemann–Hilbert boundary conditions on the cuts C±
j

φ±
1 (σ )|L = φ±

2 (σ )|R, φ±
1 (σ )|R = φ±

2 (σ )|L , σ ∈ C±
j ( j = 0, 1, . . . , 7), (3.11)

where φ±
µ (σ)|L and φ±

µ (σ)|R are the limiting values of the functions φ±
µ (s) on the contours C±

j
from the left- and from the right-hand sides with respect to the positive directions of the contours
C±

j (µ = 1, 2; j = 1, 2, . . . , 7). It becomes evident from (3.9) that at the ends of the strip the
functions φ±

1 (s) grow, and the functions φ±
2 (s) are bounded:

φ±
1 (s) = O(e|s|), φ±

2 (s) = O(1), s → ∞, s ∈ �±. (3.12)

By the mappings

w = −i tan
s − 2π ∓ π

4
, s = 2π ± π + 2i log

1 + w

1 − w
, (3.13)

the contours �± are mapped onto the upper side of the cut [−1, 1] (the left bank with respect to
the positive direction), and the left boundaries of the strips, �±

−1, are mapped onto the lower side
of the cut. The images of the upper and the lower infinite points of the strips �±, x − i∞ and
x + i∞ (−2π ± π � x � 2π ± π ), are the points w = −1 and w = 1, respectively. The function
log[(1 + w)(1 − w)−1] is real on the upper side of the cut. The systems of equations (3.10) and
(3.11) reduce to the following vector Riemann–Hilbert problem.

PROBLEM 3.1 Find the functions Fµ±(s) analytic in the w-planes defined by (3.13), apart from the
segment [−1, 1] and the poles w = ŵ± and w = −ŵ±, where ŵ± = −i tan 1

4 (θ0 ± π), continuous
up to the segment (−1, 1) and the contours C∗

j± ( j = 0, 1, . . . , 7). The functions Fµ±(s) are even:
Fµ±(w) = Fµ±(−w), w ∈ C \ [−1, 1], and satisfy the boundary conditions

F+
µ±(t) = lµ(t)F−

µ±(t), µ = 1, 2, t ∈ (−1, 1),

F+
1±(t) = F−

2±(t), F+
2±(t) = F−

1±(t), t ∈ C∗
j±, j = 0, 1, . . . , 7. (3.14)

Here the curves C∗
j± ( j = 0, 1, . . . , 7) are the images of the branch cuts C±

j , and

Fµ±(w) = φ±
µ (s), w ∈ C, s ∈ �±,

F+
µ±(t) = Fµ±(w)|L , F−

µ±(t) = Fµ±(w)|R, t ∈ [−1, 1],

lµ(t) = λµ(σ), t ∈ [−1, 1], σ ∈ �±, (3.15)

where w and s are linked by (3.13) and t = −i tan 1
4 (σ − 2π ∓ π). At the ends,

F1±(w) ∼ D1±|w ± 1|−2, F2±(w) ∼ D2±, w → ∓1, (3.16)

where D1± and D2± are constants.

The functions F1±(w) and F2±(w) are even, because of the relations


±
µ(s) = 
±

µ(±2π − s), µ = 1, 2,

f ±
1 (s) = f ±

1 (±2π − s), f 1/2
± (s) = f 1/2

± (±2π − s), s ∈ �±. (3.17)

The class of solutions (3.16) for Problem 3.1 follows from the conditions (3.12).
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It was proved in (6) that the even Riemann–Hilbert problem (3.14) has a solution if the coeffi-
cients lµ(t) (µ = 1, 2) satisfy the condition lµ(t)lµ(−t) = 1. The functions lµ(t) meet the following
conditions:

lµ(−1) = lµ(0) = lµ(1) = 1, �µ = −2π, (3.18)

where �µ are the increments of the argument of the functions lµ(t) as the point t traverses the
segment [0, 1] in the positive direction. The quantities �µ are evaluated numerically. The argument
of the functions lµ(t) (µ = 1, 2) is fixed by the condition arg lµ(0) = 0.

3.2 Branch points and the function p
1
2 (ζ )

Analysis of the branch points

w±
j = −i tan

s±
j ± π

4
, j = 0, 1, . . . , 15, (3.19)

shows that half of them are located in the upper half-plane. Moreover, for each branch point w±
j

( j = 0, 1, . . . , 7) there is one branch point, say w±
m+8 (m = 0, 1, . . . , 7), such that w±

j = −w±
m+8.

Denote ζ = w2 = − tan2 1
4 (s ± π) and ζ±

j = (w±
j )2 ( j = 0, 1, . . . , 15). Among the 16 numbers

ζ±
j there are eight distinct ones. Let they be reordered in the following manner:

Im ζ±
0 � Im ζ±

1 � · · · � Im ζ±
7 , (3.20)

and

Re ζ±
j < Re ζ±

j+1 if Im ζ±
j = Im ζ±

j+1. (3.21)

Then, clearly, ζ+
j = ζ−

j = ζ j ( j = 0, 1, . . . , 7). For example, if

β = 1
3π, η+

1 = 1 − i, η+
2 = 0·1 − i, η−

1 = 2 − i, η−
2 = 1 + i, (3.22)

then the branch points ζ j are

ζ0 = −2·3406 − 1·9658i, ζ1 = −0·16520 − 1·5996i,

ζ2 = 0·12473 − 0·10242i, ζ3 = −0·051898 − 0·091307i,

ζ4 = −0·25053 + 0·21041i, ζ5 = −0·063887 + 0·61857i,

ζ6 = 4·7887 + 3·9321i, ζ7 = −4·7050 + 8·2778i.

Notice that the branch points are invariant with respect to the transformation T : T ζ j = ζ j , j =
0, 1, . . . , 7. Since the shape of the branch cuts C±

j and the starting and the ending points of the
cuts were not chosen it may be assumed that the branch cuts are the straight lines in the ζ -plane
which join the branch points ζ2 j with ζ2 j+1, j = 0, 1, 2, 3. These branch cuts are denoted by γ j .
The convention (3.20), (3.21) guarantees that the branch cuts will not cross each other (Fig. 2).
Notice that regardless of the values of the impedance parameters the first four branch points ζ j

( j = 0, 1, 2, 3) are located below the real axis, and the other four branch points are in the upper
half-plane. If all the impedance parameters η±

j are real, then ζ j = ζ7− j , j = 0, 1, 2, 3.
Let p1/2(ζ ) be the branch of the function

u2 = p(ζ ), p(ζ ) = (ζ − ζ0)(ζ − ζ1) . . . (ζ − ζ7), (3.23)
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Fig. 2 Branch cuts γ0, γ1, γ2 and γ3

chosen such that p1/2(ζ ) ∼ ζ 4, ζ → ∞. In what follows a relation between the single branches of
the functions f 1/2

± (s) and the branch of the function p1/2(ζ ) will be established. Since

ζ = w2 = − cot2
s ∓ π

4
=

(
sin 1

2 s + 1

sin 1
2 s − 1

)±1

,

cos s = 1 − 2

(
ζ + 1

ζ − 1

)2

= −ζ 2 + 6ζ + 1

(ζ − 1)2 , (3.24)

formula (3.7) implies

f
1
2± (s) = ±η1(η

+
0 + η−

0 ) tan β(ζ − 1)2

4η∓
0 (ζ 2 + 6ζ + 1)

√
f ∗(s). (3.25)

Use of the directly verified relations

cos 2s = 1 + 32ζ(ζ + 1)2

(ζ − 1)4 (3.26)

and

f ∗(s) = 1
4 (cos 2s − N1)(cos 2s − N2) = (1 − N1)(1 − N2)

4(ζ − 1)8 p(ζ ) = 212 p(ζ )

p(1)(ζ − 1)8 (3.27)

makes it possible to show that √
f ∗(s) = 64

p1/2(1)(ζ − 1)4 p1/2(ζ ). (3.28)
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Indeed, since cos2 s ∼ 64(ζ − 1)−4 as ζ → 1 (s → x ± ∞), the function
√

f ∗(s) meets the
condition (3.7). Therefore,

f 1/2
± (s) = ± 16η1(η

+
0 + η−

0 ) tan βp1/2(ζ )

η∓
0 p1/2(1)(ζ 2 + 6ζ + 1)(ζ − 1)2

. (3.29)

Analysis of the branches f 1/2
± (s) and p1/2(ζ ) shows that the functions f 1/2

± (s)p1/2(ζ ) do not have
branch points and also that at infinity

f 1/2
± (s) ∼ ±2η1(η

+
0 + η−

0 ) tan β

η∓
0 (ζ − 1)2

, s → x ± i∞ (ζ → 1). (3.30)

4. Scalar Riemann–Hilbert problem on a surface of genus 3

In this section the vector problem (3.14) is formulated as a scalar Riemann–Hilbert problem on a
hyperelliptic surface, sayR, of the algebraic function (3.23).

4.1 Formulation of the problem

The surface R is formed by gluing two copies C1 and C2 of the extended complex ζ -plane C ∪ ∞
cut along the system of the cuts γ j ( j = 0, 1, 2, 3). The positive (left) sides of the cuts γ j on C1
are glued with the negative (right) sides of the curves γ j on C2, and vice versa. The genus of the
surface is 3. The function u, defined by (3.23), becomes single-valued on the surfaceR:

u =
{

p1/2(ζ ), ζ ∈ C1,

−p1/2(ζ ), ζ ∈ C2,
(4.1)

where a point of the surface R with affix ζ on Cµ is denoted by the pair (ζ, (−1)µ−1 p1/2(ζ )),
µ = 1, 2. It follows from (3.14) that the functions

F±(ζ, u) =
{

F1±(w), (ζ, u) ∈ C1,

F2±(w), (ζ, u) ∈ C2,
ζ = w2 = − tan2 s ± π

4
, (4.2)

are single-valued on the Riemann surface R. They are meromorphic everywhere on R apart from
the contour L = L1 ∪ L2, where L1 = (0, 1) ⊂ C1 and L2 = (0, 1) ⊂ C2. Therefore, Problem 3.1
is equivalent to the following scalar Riemann–Hilbert problem on the surfaceR.

PROBLEM 4.1 Find the functions F±(ζ, u) piecewise analytic on the surface R apart from the
geometrical optics poles at the points (α1±, p1/2(α1±)) and (α1±, −p1/2(α1±)) and simple poles
at the branch points ζ0, ζ1, . . . , ζ7 of the surfaceR, continuous up to the boundary L and satisfying
the boundary condition

F+± (τ, η) = l(τ, η)F−± (τ, η), (τ, η) ∈ L, (4.3)

where

l(τ, η) =
{

l1(
√

τ), (τ, η) ∈ L1,

l2(
√

τ), (τ, η) ∈ L2,
(4.4)

η = u(τ ), and α1± = − tan2 1
4 (π ± θ0). The functions F±(ζ, u) are bounded at the infinite points

∞µ (µ = 1, 2) of the surface. As ζ → 1, the functions F±(ζ, u) are singular on the first sheet:
F±(ζ, u) ∼ B±(ζ − 1)−2, and they are bounded on the second sheet. As ζ → 0 and (ζ, u) ∈ R,
the functions F±(ζ, u) are bounded.
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Notice that a branch point ζ j of a two-sheeted Riemann surface is called (18) a pole of order µ j

for a function F(ζ, u) if F(ζ, u) ∼ Az−µ j , z → 0, A = const, and z = (ζ − ζ j )
1/2 is a local

uniformizer of the point ζ j .

4.2 Factorization of the coefficient l(t, η)

The first step of the procedure for the problem (4.3) is to factorize the function l(τ, η). This means
finding a meromorphic solution to the following problem:

l(τ, η) = X+(τ, η)

X−(τ, η)
, (τ, η) ∈ L. (4.5)

Its solution is given in terms of the singular integrals with the Weierstrass kernel on the Riemann
surface

dU = u + η

2η

dτ

τ − ζ
, (τ, η) ∈ L, (ζ, u) ∈ R, (4.6)

as follows (6):

X (ζ, u) = eχ(ζ,u),

χ(ζ, u) = I1(ζ, u) + I2(ζ, u) + I3(ζ, u),

I1(ζ, u) = 1

2π i

∫
L

log l(τ, η)dU, I2(ζ, u) =
∫ p11

p10

dU −
∫ p21

p20

dU,

I3(ζ, u) =
3∑

j=1

(∫
� j

dU + m j

∮
a j

dU + n j

∮
b j

dU

)
. (4.7)

The function exp{I1(ζ, u)} satisfies the boundary condition (4.3). However, its asymptotics at the
ends ±1 of the contours L1 and L2 differs from the one required in Problem 4.1. Also, in general,
it has an essential singularity at the infinite points ∞µ (µ = 1, 2) of the Riemann surface that is
not acceptable. The functions exp{I2(ζ, u)} and exp{I3(ζ, u)} are continuous through the contour
L and the contours of integration for the integrals I2 and I3. The function I2 is added to correct
the asymptotics of the solution at the ends of the contour L. The presence of the functions I3 is
explained by the necessity to illuminate the essential singularity of the functions exp{I1(ζ, u) +
I2(ζ, u)} at the infinite points.

The contours a j and b j ( j = 1, 2, 3) are the canonical cross-sections of the surface R shown in
Fig. 3. The loops a j are closed contours formed by the branch cuts γ1, γ2 and γ3:

a1 = [ζ2, ζ3]+ ∪ [ζ3, ζ2]−,

a2 = [ζ4, ζ5]+ ∪ [ζ5, ζ4]−,

a3 = [ζ6, ζ7]+ ∪ [ζ7, ζ6]−. (4.8)

The positive direction is chosen such that the first sheet C1 is on the left. The cross-sections b j are
closed contours consisting of two parts:

b1 = [ζ1, ζ2]C2 ∪ [ζ2, ζ1]C1 ,

b2 = b1 ∪ [ζ2, ζ3]+
C2

∪ [ζ3, ζ4]C2 ∪ [ζ4, ζ3]C1 ∪ [ζ3, ζ2]−
C1

,

b3 = b2 ∪ [ζ4, ζ5]+
C2

∪ [ζ5, ζ6]C2 ∪ [ζ6, ζ5]C1 ∪ [ζ5, ζ4]−
C1

. (4.9)
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Fig. 3 Canonical cross-sections a j and b j ( j = 1, 2, 3)

The first part (the solid line in Fig. 3) lies on the sheet C1. The starting point of the cross-section
b j is ζ2 j ( j = 1, 2, 3), and the terminal point is ζ1. The second part (the dashed line in Fig. 3)
lies on the second sheet C2. The contour b j crosses the loop a j from right to left and does not
cross the other loops ak and bk (k �= j) or the contour L. Notice that for all tested values of the
impedance parameters and the angle β, the segment ζ3ζ4 does not cross the segment (0, 1), and the
point ζ = 0 always lies to right of the segment ζ3ζ4. Because of the conditions (3.18) and the choice
of the argument of the functions lµ(t), the single branch of the logarithmic function in (4.7) has the
following properties:

log l(τ, η) = log lµ(
√

τ) = log |lµ(
√

τ)| + iεµ(τ), (τ, η) ∈ Lµ ⊂ Cµ, µ = 1, 2,

εµ(τ) = arg lµ(
√

τ), εµ(τ) ∈ [−2π, 0], εµ(0) = 0, εµ(1) = −2π. (4.10)

The contours � j = r jq j ( j = 1, 2, 3) are continuous curves with starting points r j = (δ j , v j ) ∈
C1, v j = p1/2(δ j ). These points are distinct and fixed arbitrarily. The ending points q j = (σ j , u j ) ∈
R, u j = u(σ j ), are to be determined (they may lie on either sheet). The contours � j cannot cross the
a- and b-loops or the contour L. It is convenient to take the contour � j as a line that passes through
the branch point ζ0 (Fig. 4). If the terminal point q j ∈ C1, then the whole contour � j ⊂ C1. If this
point lies on the second sheet C2, then the contour � j consists of two parts: the segment δ jζ0 ⊂ C1,
and the line ζ0σ j ⊂ C2. Depending on whether the point (σ j , u j ) is to the left or to the right of the
broken line ζ0ζ1 . . . ζ7, the part ζ0σ j of the contour � j lies in the domain that is either to the left, or
to the right of the contour ζ0ζ1 . . . ζ7. In Fig. 4, as an example, the following case is illustrated. The
point q1 ∈ C1, and the points q2 and q3 lie on the sheet C2.
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Fig. 4 Contours �1, �2 and �3

The points pµ1 (µ = 1, 2) are arbitrary, distinct and fixed

pµ1 = (ρµ, (−1)µ−1zµ) ∈ Cµ, ρ1 �= ρ2, ρµ �= 1, zµ = p1/2(ρµ), µ = 1, 2. (4.11)

The point pµ0 coincides with the right end ζ = 1 of the contour Lµ ⊂ Cµ: pµ0 = (1, (−1)µ−1

p1/2(1)). The integers m j and n j ( j = 1, 2, 3) and the points q j are to be determined. Formulae
(4.7) can be represented in another form more convenient for analysis

χ(ζ, u) = χ1(ζ ) + u(ζ )χ2(ζ ),

χ1(ζ ) = 1

4π i

∫ 1

0
[log l1(

√
τ)+log l2(

√
τ)]

dτ

τ − ζ
+1

2

∫ ρ1

1

dτ

τ − ζ
− 1

2

∫ ρ2

1

dτ

τ − ζ
+ 1

2

3∑
j=1

∫
� j

dτ

τ − ζ
,

χ2(ζ ) = 1

4π i

∫ 1

0
[log l1(

√
τ) − log l2(

√
τ)]

dτ

p1/2(τ )(τ − ζ )
+ 1

2

∫ ρ1

1

dτ

p1/2(τ )(τ − ζ )

+ 1

2

∫ ρ2

1

dτ

p1/2(τ )(τ − ζ )
+ 1

2

3∑
j=1

(∫
� j

+m j

∮
a j

+n j

∮
b j

)
dτ

η(τ)(τ − ζ )
. (4.12)

By the Sokhotski–Plemelj formulae for integrals with the Weierstrass kernel the first integrals in
the above formulae for the functions χ1(ζ ) and χ2(ζ ) are discontinuous through the contour [0, 1],
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and the limiting values of the function X (ζ, u) meet the condition (4.5). The other integrals are
continuous through the contour L. They are discontinuous through their lines of integration with
the jump multiple to 2π i . The continuity of the function X (ζ, u) = exp χ(ζ, u), however, is not
affected by these jumps. Analysis of the first, second, and third integrals in the representations
(4.12) of the functions χ1(ζ ) and χ2(ζ ) at the points ζ = 0 and ζ = 1 yields

χ(ζ, u) ∼ const, (ζ, u) → (0, ±p1/2(0)) ∈ R,

χ(ζ, u) ∼ −2 log(ζ − 1), (ζ, u) → (1, p1/2(1)) ∈ C1,

χ(ζ, u) ∼ const, (ζ, u) → (1, −p1/2(1)) ∈ C2. (4.13)

Thus, the function X (ζ, u) is bounded at the points (0, ±p1/2(0)) ∈ R, and its asymptotics at the
ends (1, ±p1/2(1)) is the same as for the functions F±(ζ, u) given by (3.16), (4.2).

4.3 Elimination of the essential singularity

The Weierstrass kernel (4.6) has a pole of order 3 at infinity. Therefore, in general, the function
X (ζ, u) has an essential singularity at infinity that is not acceptable. Use of the identity

1

τ − ζ
= − 1

ζ
− τ

ζ 2 − τ 2

ζ 3 + τ 3

ζ 3(τ − ζ )
(4.14)

gives the following asymptotic expansion of the function χ(ζ,w) at infinity:

χ(ζ,w) = −1

2

3∑
ν=1

⎧⎨
⎩ 1

2π i

∫ 1

0
[log l1(

√
τ) − log l2(

√
τ)]

τ ν−1dτ

p1/2(τ )
+

2∑
µ=1

∫ ρµ

1

τ ν−1dτ

p1/2(τ )

+
3∑

j=1

(∫
� j

+m j

∮
a j

+n j

∮
b j

)
τ ν−1dτ

η(τ)

⎫⎬
⎭ u(ζ )

ζ ν
+ O(1), ζ → ∞, ν = 1, 2, 3.

(4.15)

Therefore the function χ(ζ,w) is bounded at infinity if and only if the points q j = (σ j , u j ) and the
integers m j and n j solve the following system of nonlinear equations:

3∑
j=1

[ων(q j ) + m j Aν j + n j Bν j ] = dν, ν = 1, 2, 3, (4.16)

where

dν =
3∑

j=1

ων(δ j , v j ) − 1

2π i

∫ 1

0
[log l1(

√
τ) − log l2(

√
τ)]

τ ν−1dτ

p1/2(τ )
−

2∑
µ=1

∫ ρµ

1

τ ν−1dτ

p1/2(τ )
. (4.17)

The differentials

dων = τ ν−1dτ

η(τ)
, ν = 1, 2, 3, (4.18)

form a basis of abelian differentials of the first kind on the surfaceR. The integrals

Aν j =
∮

a j

τ ν−1dτ

η(τ)
, Bν j =

∮
b j

τ ν−1dτ

η(τ)
(4.19)
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are the A- and B-periods of the abelian integrals

ων = ων(ζ, u) =
∫ (ζ,u)

(ζ0,0)

τ ν−1dτ

η(τ)
, ν = 1, 2, 3. (4.20)

The contour of integration does not intersect the canonical cross-sections. The nonlinear system
(4.16) with respect to the points q j = (σ j , u j ) ∈ R and the integers m j and n j ( j = 1, 2, 3) is
the Jacobi inversion problem for the surface R of genus 3. Clearly, the solution to this problem is
invariant with respect to the transformation T . To reduce the system (4.16) to standard form, the
basis of abelian integrals needs to be normalized. The A-periods of the normalized (canonical) basis
form the unit matrix. The canonical basis ω̂ = {ω̂ν} (ν = 1, 2, 3) can be expressed through the basis
ω = {ων} (ν = 1, 2, 3) of abelian integrals (4.20) as follows:

ω̂ = Mω, (4.21)

where M = A−1, A = {Aν j } (ν, j = 1, 2, 3), and Aν j are given by (4.19). The A- and B-periods
of the canonical basis ω̂ are

Aν j =
∮

a j

dω̂ν = δν j ,

Bν j =
∮

b j

dω̂ν =
3∑

r=1

Mνr Br j . (4.22)

Here δν j is the Kronecker symbol. The matrix BBB = {Bν j } (ν, j = 1, 2, 3) is symmetric, and ImBBB is
a positive definite matrix. The Jacobi problem (4.16) can now be formulated for the canonical basis

3∑
j=1

[ω̂ν(q j ) + n jBν j ] + mν = d̂ν, ν = 1, 2, 3, (4.23)

where

d̂ν =
3∑

j=1

Mν j d j , ν = 1, 2, 3, (4.24)

and Mν j are the elements of the matrix M.

5. Solution of the Jacobi inversion problem

Consider the Jacobi inversion problem for a Riemann surface of genus h.

PROBLEM 5.1 Given h constants d̂ν find h points qν ∈ R and 2h integers nν and mν (ν =
1, 2, . . . , h) such that

h∑
j=1

ω̂ν(q j ) = eν − kν −
h∑

j=1

n jBν j − mν ≡ eν − kν (modulo the periods), ν = 1, 2, . . . , h,

(5.1)
where eν = d̂ν + kν , and kν (ν = 1, 2, . . . , h) are the Riemann constants.

The unknown points q j ( j = 1, 2, . . . , h) coincide with h zeros of the Riemann θ -function (see,
for example, (19, 5))

F(q) = θ(ω̂1(q) − e1, ω̂2(q) − e2, . . . , ω̂h(q) − eh) =
∞∑

t1,t2,...,th=−∞
Gt(q). (5.2)
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where

Gt(q) = exp

⎧⎨
⎩π i

h∑
µ=1

h∑
ν=1

Bµν tµtν + 2π i
h∑

ν=1

tν[ω̂ν(q) − eν]

⎫⎬
⎭ , t = (t1, t2, . . . , th). (5.3)

Since the matrix ImB is positive definite the series (5.2) converges exponentially. The integers nν

solve the system of linear algebraic equations

h∑
j=1

n j Im(Bν j ) = Im(�ν), ν = 1, 2, . . . , h, (5.4)

and the integers mν are defined explicitly through the integers nν by

mν = Re(�ν) −
h∑

j=1

n j Re(Bν j ). (5.5)

Here

�ν = eν − kν −
h∑

j=1

ω̂ν(q j ). (5.6)

5.1 Riemann’s constants

The Riemann constants kν = k(z)
ν were defined in (19, p. 144) as follows:

k(z)
ν = − 1

2 + 1
2Bνν −

h∑
j=1, j �=ν

∮
a j

ω̂−
ν (r)dω̂ j (r). (5.7)

Here ω̂−
ν (r) is the limiting value of the function ω̂ν(q) on the cross-section a j from the side of the

second sheet C2. It turns out that the use of these formulae gives non-integer values for the numbers
mν and nν . In what follows a correct formula for the constants kν will be derived. It will also be
shown that the zeros of the function (5.2) are the points q j . Following (19) consider the integral

Jν = 1

2π i

∫
∂R̃

ω̂ν(r)d logF(r), (5.8)

where R̃ is the surface R cut along all the loops aν and bν (ν = 1, 2, . . . , h). Because the winding
number of the Riemann θ -function (5.2) for each contour aν equals 2π , by the argument principle,
the θ -function has h zeros, say q ′

ν (ν = 1, 2 . . . , h). The residue theorem yields

Jν =
h∑

j=1

ω̂ν(q
′
j ). (5.9)

On the other hand, the same integral may be represented as

Jν =
h∑

j=1

(J ′
ν j + J ′′

ν j ), (5.10)
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where

J ′
ν j = 1

2π i

∮
a j

ω̂+
ν (r)d logF+(r) − 1

2π i

∮
a j

ω̂−
ν (r)d logF−(r),

J ′′
ν j = 1

2π i

∮
b j

ω̂+
ν (r)d logF+(r) − 1

2π i

∮
b j

ω̂−
ν (r)d logF−(r). (5.11)

Because of the properties of the abelian integrals and the θ -function, on the loops a j

ω̂+
ν (r) = ω̂−

ν (r) − Bν j ,

F+(r) = F−(r) exp{π iB j j + 2π i[ω̂+
j (r) − e j ]}, (5.12)

and on the loops b j

ω̂+
ν (r) = ω̂−

ν (r) + δν j , F+(r) = F−(r), (5.13)

the integrals (5.11) reduce to

J ′
ν j = 1

2π i

∮
a j

ω̂−
ν (r)d log

F+(r)

F−(r)
− Bν j

2π i

∮
a j

d logF+(r) =
∫

a j

ω̂−
ν (r)dω̂ j (r) − n′

jBν j ,

J ′′
ν j = δν j

2π i

∮
b j

d logF+(r) = δν j

2π i

[
logF(r−+

j ) − logF(r++
j )

]

= δν j

2π i

[
log
F(r−+

j )

F(r++
j )

+ 2π im′
j

]
, (5.14)

where n′
j and m′

j are some integers. The points r++
j and r−+

j are shown in Fig. 5. Since the points
r−+

j and r++
j are located on the different sides of the cross-section a j , from (5.12),

log
F(r−+

j )

F(r++
j )

= −π iB j j − 2π i[ω̂ j (r
++
j ) − e j ] + 2π im′′

j , (5.15)

where m′′
j are some integers. Therefore

Jν =
h∑

j=1

(∮
a j

ω̂−
ν (r)dω̂ j (r) − n′

jBν j

)
− 1

2Bνν − ω̂ν(r
++
ν ) + eν + m′

ν + m′′
ν . (5.16)

Performing the integration and using ω̂ν(r−−
ν ) = ω̂ν(r−+

ν ) − 1 yield∮
aν

ω̂−
ν (r)dω̂ν(r) = 1

2

∮
a−
ν

d[ω̂ν(r)]2

= 1
2 [ω̂ν(r

−+
ν ) − ω̂ν(r

−−
ν )][ω̂ν(r

−+
ν ) + ω̂ν(r

−−
ν )] = ω̂ν(r

−+
ν ) − 1

2

= ω̂ν(r
++
ν ) + Bνν − 1

2 . (5.17)

Notice that this formula is not reducible to the expression

1
2 + ω̂ν(r

++
ν ) (modulo the periods) (5.18)
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Fig. 5 Points r++
j , r+−

j , r−+
j and r−−

j

derived in (19, formula (5.15)). By substituting (5.17) into (5.16) and denoting mν = −(m′
ν +m′′

ν)+
1, nν = n′

ν , and

kν = − 1
2 − 1

2Bνν −
h∑

j=1, j �=ν

∮
a j

ω̂−
ν (r)dω̂ j (r), (5.19)

the integral Jν is converted into

Jν = eν − kν −
h∑

j=1

n jBν j − mν . (5.20)

Comparing with (5.9) and putting q j = q ′
j give the Jacobi inversion problem (5.1). Clearly, the

Riemann constants (5.19) and the constants (5.7) defined in (19) are not the same. Indeed, the
Jacobi problem in terms of the constants kν = k(z)

ν can be written as follows:
h∑

j=1

ω̂ν(q j ) ≡ eν − k(z)
ν + Bνν (modulo the periods), ν = 1, 2, . . . , h. (5.21)

Equivalently,
h∑

j=1

ω̂ν(q j ) = eν − k(z)
ν − mν −

j∑
j=1

(n j − δν j )Bν j , ν = 1, 2, . . . , h. (5.22)

Obviously, it is impossible to find integers mν and nν such that systems (5.1) and (5.22) are equiv-
alent. This is the reason why use of the constants (5.7) for numerical computations gives fractional
values for the constants mν and nν .

To simplify the expressions for the Riemann constants, evaluate the integral in (5.19). Rewrite it
first as

Kν j =
∮

a j

ω̂−
ν (r)dω̂ j (r) =

∮
a j

ω̂+
ν (r)dω̂ j (r) + Bν j . (5.23)
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Let r+, τ+ and r−, τ− be points on the left and the right sides of the cut [ζ2 j , ζ2 j+1] ⊂ C1, respec-
tively. Then

ω̂+
ν (r±) =

∫
[ζ0,ζ2 j+1]⊂C1

dω̂ν(r) +
∫

[ζ2 j+1,r ]⊂C1

dω̂ν(τ
±) = ω̂+

ν (ζ2 j+1) ∓ ω̃+
ν j (r), (5.24)

where

ω̃+
ν j (r) =

∫
[r,ζ2 j+1]⊂C1

dω̂ν(τ
+). (5.25)

It follows from (5.24) and∫
[ζ2 j ,ζ2 j+1]

dω̂ν(τ
+) = 1

2

∮
aj

dω̂ν(r) = 0, ν �= j, (5.26)

that

ω̂+
ν (r+) + ω̂+

ν (r−) = 2ω̂+
ν (ζ2 j+1) = 2ω̂+

ν (ζ2 j ). (5.27)

Hence

Kν j = Bν j + ω̂+
ν (ζ2 j ). (5.28)

For a hyperelliptic surfaceR of genus h with the system of cross-sections as in Fig. 3, the integrals
ω̂+

ν (ζ2 j ) can be calculated. By the Cauchy theorem,∮
[ζ0,ζ1]

dω̂ν(r) = −
h∑

j=1

∮
aj

dω̂ν(r) = −1. (5.29)

Therefore

ω̂+
ν (ζ2) =

(∫
[ζ0,ζ1]+⊂C1

+
∫

[ζ1,ζ2]⊂C1

)
dω̂ν(r) = − 1

2 − 1
2Bν1. (5.30)

Similarly, for j = 2

ω̂+
ν (ζ4) = ω̂+

ν (ζ2) + 1
2δν1 +

∫
[ζ3,ζ4]⊂C1

dω̂ν(r) = − 1
2 − 1

2Bν2 + 1
2δν1. (5.31)

For any j � 1, it may be deduced that

ω̂+
ν (ζ2 j ) = − 1

2 − 1
2Bν j + 1

2 (δν1 + δν2 + · · · + δν, j−1). (5.32)

By substituting (5.32) into (5.28) and (5.19), the Riemann constants kν become

kν = −1 + 1
2ν − 1

2

h∑
j=1

Bν j . (5.33)

Notice that the use of another set of the Riemann constants linked to the constants (5.33) by the
relation

k̂ν = kν + m̂ν + n̂ν

h∑
j=1

Bν j (5.34)

(for example, k̂ν = − 1
2ν + 1

2 (Bν1 + · · · + Bνh)) gives also a solution to the Jacobi problem. Here
m̂ν and n̂ν are integers. In this case the Riemann θ -function should be taken in the form

F(q) = θ(ω̂1(q) − ê1, ω̂2(q) − ê2, . . . , ω̂h(q) − êh), êν = d̂ν + k̂ν. (5.35)
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This result follows from the periodicity properties of the Riemann θ -function

θ(ω̂1 + j1, ω̂ν + j2, . . . , ω̂h + jh) = θ(ω̂1, ω̂2, . . . , ω̂h), jν = 0, 1,

θ(ω̂1 + Bν1, ω̂2 + Bν2, . . . , ω̂h + Bνh) = e−π iBνν−2π iω̂ν θ(ω̂1, ω̂2, . . . , ω̂h), ν = 1, 2, . . . , h.
(5.36)

5.2 Affixes of the points q1, q2 and q3

The problem of finding the three zeros of the θ -function

F(q) = θ(ω̂1(q) − e1, ω̂2(q) − e2, ω̂(q) − e3) =
∞∑

t1,t2,t3=−∞
Gt(q) (5.37)

for h = 3 can be reduced to a cubic equation. Here

Gt(q) = exp

⎧⎨
⎩π i

3∑
µ=1

3∑
ν=1

Bµν tµtν + 2π i
3∑

ν=1

tν[ω̂ν(q) − eν]

⎫⎬
⎭ , t = (t1, t2, t3),

eν = d̂ν + kν, kν = − 1
2ν + 1

2 (Bν1 + Bν2 + Bν3), ν = 1, 2, 3, (5.38)

and the coefficients d̂ν are given by (4.24).
Consider the integral

Nν = 1

2π i

∫
∂R̂

τ−νd logF(r) (5.39)

over the boundary ∂R̂ of the surfaceR cut along the cross-sections a1, a2 and a3. By the logarithmic
residue theorem,

Nν =
3∑

j=1

σ−ν
j +

2∑
µ=1

(
res

q=0µ

+ res
q=∞µ

)
ζ−νF′(q)

F(q)
, (5.40)

where 0µ = (0, (−1)µ−1 p1/2(0)) ∈ Cµ, and ∞µ ∈ Cµ (µ = 1, 2) are the two infinite points of
the surface. Without loss of generality, F(0µ) �= 0, and F(∞µ) �= 0, µ = 1, 2. Because of the
asymptotics

ζ−νF′(q)

F(q)
= O(ζ−ν−2), ζ → ∞, ν = 1, 2, 3, (5.41)

the residues at the infinite points ∞µ vanish. The same integral Nν may be represented as

Nν =
3∑

j=1

∮
a j

t−νdω̂+
j (r) = 2

3∑
j=1

3∑
l=1

M jl

∫
[ζ2 j ζ2 j+1]

τ l−ν−1dτ

p1/2(τ+)
, (5.42)

where τ+ ∈ [ζ2 j , ζ2 j+1]+. Comparing the two expressions for Nν yields

1

σν
1

+ 1

σν
2

+ 1

σν
3

= εν, ν = 1, 2, 3, (5.43)

where

εν = 2
3∑

j=1

3∑
l=1

M jl

∫
[ζ2 j ζ2 j+1]

τ l−ν−1dτ

p1/2(τ+)
−

2∑
µ=1

res
q=0µ∈Cµ

ζ−νF′(q)

F(q)
. (5.44)
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Note that the integral (5.39) is different from the one used in (19, 5). The function τ ν is replaced
by the function τ−ν . This change simplifies the task of elevating the coefficients εν . Instead of the
residues at the infinite points ∞µ (µ = 1, 2), it is required to find the residues at the two zeros of
the surfaceR.

The systems of algebraic equations (5.43) is converted into the cubic equation

(ε3
1 − 3ε1ε2 + 2ε3)σ

3 + 3(ε2 − ε2
1)σ

2 + 6ε1σ − 6 = 0 (5.45)

with complex coefficients. The three roots of this equation define the affixes of the zeros of the
θ -function F(q).

5.3 Numerical procedure

The first step of the procedure is to evaluate the matrix of B-periods of the canonical basis ω̂ by
formulae (4.21) and (4.22). This requires the A- and B-periods of the basis ω:

Aν j = 2
∫

[ζ2 j ζ2 j+1]

τ ν−1dτ

p1/2(τ+)
, j = 1, 2, 3,

Bν1 = −2
∫

[ζ1ζ2]

τ ν−1dτ

p1/2(τ )
, Bν2 = Bν1 − 2

∫
[ζ3ζ4]

τ ν−1dτ

p1/2(τ )
,

Bν3 = Bν2 − 2
∫

[ζ5ζ6]

τ ν−1dτ

p1/2(τ )
, ν = 1, 2, 3. (5.46)

These integrals are computed by the Gauss–Chebyshev quadrature formulae. The branch of the
function p1/2(ζ ) in the cut ζ -plane (Fig. 2) has been fixed by the condition p1/2(ζ ) ∼ ζ 4, ζ → ∞.
For numerical purposes, this branch can algorithmically be described as follows. Define

ym = ζ2m+1 − ζ2m (m = 0, 1, 2, 3), βm =
{

tan−1(Im ym/ Re ym), Re ym �= 0,

π/2, Re ym = 0,

µ j = ζ − ζ j ( j = 0, 1, . . . , 7), τ j =

⎧⎪⎨
⎪⎩

tan−1(Im µ j/ Re µ j ), Re µ j �= 0,

π/2, Re µ j = 0, Im µ j > 0,

−π/2, Re µ j = 0, Im µ j < 0.

(5.47)

Then the branch p1/2(ζ ) behaves at infinity as ζ 4 if

p1/2(ζ ) =
√√√√ 7∏

j=0

|µ j | exp

⎧⎨
⎩ i

2

7∑
j=0

θ j

⎫⎬
⎭ , θ j = arg µ j . (5.48)

In the case βm < 0 and ζ /∈ γm the arguments θ j are chosen to be −π + βm < θ j < π + βm

(m = 0, 1, 2, 3). This means that

θ j =

⎧⎪⎨
⎪⎩

τ j , Re µ j � 0,

τ j + π, Re µ j < 0, τ j � βm,

τ j − π, Re µ j < 0, τ j > βm,

m = [ j/2], (5.49)
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where [ j/2] is the integer part of j/2. If βm � 0 and as before ζ /∈ γm , then βm < θ j < 2π + βm .
Therefore,

θ j =

⎧⎪⎨
⎪⎩

τ j + π, Re µ j < 0,

τ j + 2π, Re µ j � 0, τ j < βm,

τ j , Re µ j � 0, τ j � βm,

m = [ j/2]. (5.50)

The evaluation of the A-periods by formulae (5.46) requires defining p1/2(τ+), where τ+ ∈ γ +
m . In

this case for βm < 0,

θ j =
{

βm − π, j = 0, 2, 4, 6,

βm, j = 1, 3, 5, 7,
m = [ j/2], (5.51)

and if βm � 0, then

θ j =
{

βm, j = 0, 2, 4, 6,

βm + π, j = 1, 3, 5, 7,
m = [ j/2]. (5.52)

To compute the coefficients of the cubic equation (5.45) by formulae (5.44) one needs to evaluate
the residues of the function ζ−νF′(q)/F(q) (ν = 1, 2, 3) at the points q = 0µ ∈ Cµ, µ = 1, 2.
They are given by

res
q=0µ∈Cµ

ζ−νF′(q)

F(q)

∣∣∣∣
ν=1

= F
′(q)

F(q)

∣∣∣∣
q=0µ∈Cµ

,

res
q=0µ∈Cµ

ζ−νF′(q)

F(q)

∣∣∣∣
ν=2

=
[
F′′(q)

F(q)
−

(
F′(q)

F(q)

)2
]∣∣∣∣∣

q=0µ∈Cµ

,

res
q=0µ∈Cµ

ζ−νF′(q)

F(q)

∣∣∣∣
ν=3

= 1
2

[
F′′′(q)

F(q)
− 3F′′(q)F′(q)

F2(q)
+ 2

(
F′(q)

F(q)

)3
]∣∣∣∣∣

q=0µ∈Cµ

, (5.53)

where

F′(0µ) = 2π i
∞∑

t1,t2,t3=−∞
σ

(1)
µt Gt(0µ),

F′′(0µ) = 2π i
∞∑

t1,t2,t3=−∞

[
2π i

(
σ

(1)
µt

)2 + σ
(2)
µt

]
Gt(0µ),

F′′′(0µ) = 2π i
∞∑

t1,t2,t3=−∞

[
−4π2

(
σ

(1)
µt

)3 + 6π iσ (1)
µt σ

(2)
µt + σ

(3)
µt

]
Gt(0µ),

σ
(s)
µt =

3∑
ν=1

tνω̂
(s)
ν (0µ). (5.54)



THE EXACT SOLUTION FOR ELECTROMAGNETIC SCATTERING 235

The derivatives ω̂(s)
ν (0µ) of the abelian integrals ω̂ν at the two zeros of the surfaceR are defined as

follows:

ω̂′
ν(0µ) = (−1)µ−1Mν1

p1/2(0)
,

ω̂′′
ν (0µ) = (−1)µ−1

p1/2(0)

[
Mν2 − Mν1 p′(0)

2p(0)

]
,

ω̂′′′
ν (0µ) = (−1)µ−1

p1/2(0)

{
2Mν3 − Mν2 p′(0)

p(0)
− Mν1

2

[
p′′(0)

p(0)
− 3

2

(
p′(0)

p(0)

)2
]}

, (5.55)

where

p′(0)

p(0)
= −

7∑
j=0

1

ζ j
,

p′′(0)

p(0)
=

⎛
⎝ 7∑

j=0

1

ζ j

⎞
⎠

2

−
7∑

j=0

1

ζ 2
j

. (5.56)

To find a root σ1 = x1 + i x2 of equation (5.45) the following procedure is applied. Equation (5.45)
is written as H1 + i H2 = 0, where

H1 = x3
1 − 3x1x2

2 + a1(x
2
1 − x2

2) − 2a2x1x2 + b1x1 − b2x2 + c1,

H2 = −x3
2 + 3x2

1 x2 + a2(x
2
1 − x2

2) + 2a1x1x2 + b1x2 + b2x1 + c2,

a1 + ia2 = 3(ε2 − ε2
1)ε

−1∗ , b1 + ib2 = 6ε1ε
−1∗ ,

c1 + ic2 = −6ε−1∗ , ε∗ = ε3
1 − 3ε1ε2 + 2ε3. (5.57)

The Newton–Raphson iteration for evaluation of x1 and x2

x (n)
j = x (n−1)

j − H1,1 Hj + (−1) j H1,2 H3− j

�
,

� = H2
1,1 + H2

1,2, H1, j = ∂ H1

∂x j
, j = 1, 2, (5.58)

is employed. The standard iteration formula becomes simpler because of the relations H2,2 = H1,1
and H2,1 = −H1,2. The other two roots of equation (5.45) are found from the associated quadratic
equation.

The numerical algorithm proposed can be tested by checking numerically the following
properties.

(i) The matrix B of B-periods is symmetric and ImB is a positive definite matrix.
(ii) The Riemann θ -function meets the conditions (5.36) (h = 3).

(iii) Among each pair of points (σ j , p1/2(σ j ) ∈ C1 and (σ j , −p1/2(σ j ) ∈ C2 ( j = 1, 2, 3) there is
one and only one point q j such that F(q j ) = 0.

(iv) The solution nν (ν = 1, 2, 3) of the algebraic system (5.4) and the numbers mν defined by
(5.5) are integers.

(v) The points q j and the integers m j and n j satisfy the conditions (4.16), and therefore the solu-
tion X (ζ, u) is bounded at infinity.

(vi) The solution of the Jacobi problem is independent of the paths � j , j = 1, 2, 3. It depends on
the location of the free points r1, r2, r3, p11 and p21. However, the solution of Problem 2.2 is
independent of the choice of these points provided the paths � j ( j = 1, 2, 3) do not intersect
the a- and b-loops and the contour L.
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All these properties of the solution have been successfully verified.
For the parameters ρµ and δ j chosen to be

ρµ = µ + 1 (µ = 1, 2), δ j = ζ0 − i j ( j = 1, 2, 3), (5.59)

and for the set of parameters (3.22) it turns out that nν = mν = 0, ν = 1, 2, 3,

σ1 = 0·3104 − 0·4492i, σ2 = −2·5062 − 1·2753i, σ3 = −4·6000 + 2·0691i.

The points q1 and q3 lie on the first sheet C1, and q2 ∈ C2. If β = 1
8π and the other parameters are

the same, then nν = mν = 0, ν = 1, 2, 3, q1 ∈ C1, q2 ∈ C2, q3 ∈ C2, and their affixes are

σ1 = 0·5112 − 0·2745i, σ2 = 6·5251 − 3·8299i, σ3 = −15·8337 + 10·4951i.

It is clear that if |ζ | is large, then even a small error of computation in the affixes of the points q j

may produce a big error for the values of the function X (ζ, u). To overcome this difficulty, in the
case |ζ | > 1, formula (4.12) for the function χ2(ζ ) is replaced by

χ2(ζ ) = 1

ζ 3

{
1

4π i

∫ 1

0
[log l1(

√
τ) − log l2(

√
τ)]

τ 3dτ

p1/2(τ )(τ − ζ )
+ 1

2

∫ ρ1

1

τ 3dτ

p1/2(τ )(τ − ζ )

+1

2

∫ ρ2

1

τ 3dτ

p1/2(τ )(τ − ζ )
+ 1

2

3∑
j=1

(∫
� j

+ m j

∮
a j

+ n j

∮
b j

)
τ 3dτ

η(τ)(τ − ζ )

⎫⎬
⎭ . (5.60)

Notice the above formula is not an asymptotic relation but an exact equality. The right-hand side of
the second formula in (4.12) coincides with (5.60) provided the integers n j and m j and the points
q j ( j = 1, 2, 3) solve the Jacobi problem (4.23). Formula (5.60) guarantees the stability of the
numerical values of the function exp{u(ζ )χ2(ζ )} for large |ζ | and makes the numerical algorithm
efficient for numerical purposes.

6. Solution to the physical problem and definition of the constants

To proceed now with the general solution of Problem 4.1, notice that the function X (ζ, u) defined
by (4.7) has simple zeros at the points p11 = (ρ1, z1) and q j = (σ j , u j ) ( j = 1, 2, 3), where
u j = (−1)µ−1 p1/2(σ j ), µ = 1 if q j ∈ C1 and µ = 2 if q j ∈ C2. Therefore, the general solution
may have removable singularities at these points. Due to the presence of the prescribed poles of
the functions φ±

µ (s) (µ = 1, 2) at s = θ0 and s = ±2π − θ0, the functions Fµ±(w) have simple
poles at the points w = i tan(θ0 ± π)/4 and w = −i tan(θ0 ± π)/4. Thus, the general solution
of the problem (4.3) on the surface R has simple poles at the points of the surface with affixes
α1± = − tan2 1

4 (π ± θ0). Next, the functions φ±
1 (s) and φ±

2 (s) are analytic at s = 1
2π , an inner

point of the strips �±. This point is the image of the infinite points ∞µ (µ = 1, 2) of the Riemann
surface R. Therefore, the functions F±(ζ, u) are bounded at the infinite points. By the generalized
Liouville theorem applied to the analytic continuations of the functions [X+(τ, η)]−1 F+± (τ, η) and
[X−(τ, η)]−1 F−± (τ, η) from the contour L to the surfaceR,

F±(ζ, u) = X (ζ, u)R±(ζ, u), (6.1)
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where

R±(ζ, u) = R1±(ζ ) + u(ζ )R2±(ζ ),

R1±(ζ ) =
3∑

j=1

C±
j u j

ζ − σ j
+ C±

12

ζ − α1±
+ C±

14z1

ζ − ρ1
+ C±

15,

R2±(ζ ) =
3∑

j=1

C±
j

ζ − σ j
+

7∑
j=0

C±
j+4

ζ − ζ j
+ C±

13

ζ − α1±
+ C±

14

ζ − ρ1
, (6.2)

and C±
j ( j = 1, 2, . . . , 15) are arbitrary constants to be defined. From (6.2) it is seen that the rational

functions R±(ζ, u) have simple poles at the points q j = (σ j , u j ), and they are bounded at the points
(σ j , −u j ). Because of the factor u(ζ ) in the first formula (6.2), the points ζ j ( j = 0, 1, . . . , 7) are
simple poles of the functions F±(ζ, u) on the Riemann surface R. The solution has prescribed
poles at the points (α1±, p1/2(α1±)) and (α1±, −p1/2(α1±)). The point (ρ1, p1/2(ρ1)) ∈ C1 is a
removable singular point for the functions F±(ζ, u). This is because z1 = p1/2(ρ1), and the function
X (ζ, u) has a simple zero at the point (ρ1, p1/2(ρ1)). The point (ρ1, −p1/2(ρ1)) ∈ C2 is a regular
point.

The functions F±(ζ, u) have to be bounded at the infinite points ∞µ (µ = 1, 2). Therefore

lim
ζ→∞ ζ ν R2±(ζ ) = 0, ν = 1, 2, 3. (6.3)

Equivalently, these three conditions may be written as

3∑
j=1

C±
j σν−1

j +
7∑

j=0

C±
j+4ζ

ν−1
j + C±

13α
ν−1
1± + C±

14ρ
ν−1
1 = 0, ν = 1, 2, 3. (6.4)

It will be convenient to use the following representations for the rational functions R1±(ζ ) and
R2±(ζ ):

R1±(ζ ) =
15∑
j=1

C±
j ϕ j±(ζ ), R2±(ζ ) =

15∑
j=1

C±
j ψ j±(ζ ), (6.5)

where

ϕ j±(ζ ) = u j

ζ − σ j
, ψ j±(ζ ) = 1

ζ − σ j
, j = 1, 2, 3,

ϕ j±(ζ ) = 0, ψ j±(ζ ) = 1

ζ − ζ j−4
, j = 4, 5, . . . , 11,

ϕ12±(ζ ) = ψ13±(ζ ) = 1

ζ − α1±
, ψ12±(ζ ) = ϕ13±(ζ ) = 0,

ϕ14±(ζ ) = z1

ζ − ρ1
, ψ14±(ζ ) = 1

ζ − ρ1
, ϕ15±(ζ ) = 1, ψ15±(ζ ) = 0. (6.6)

Here z1 = p1/2(ρ1).
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Because of the poles of the function X (ζ, u) at the points rν = (δν, vν) ∈ C1 (ν = 1, 2, 3)
and p21 = (ρ2, −z2) ∈ C2, the general solution (6.1) has inadmissible poles at these points. The
following conditions remove the singularities:

15∑
j=1

[ϕ j±(δν) + vνψ j±(δν)]C
±
j = 0, ν = 1, 2, 3,

15∑
j=1

[ϕ j±(ρ2) − z2ψ j±(ρ2)]C
±
j = 0. (6.7)

To derive the other conditions for the constants C±
j ( j = 1, 2, . . . , 15), expressions for the functions


±
1 (s) and 
±

2 (s) are needed. Inverting the relations (3.9) and using (3.15), (4.2), (4.7), (4.12), and
(6.1) yield


±
1 (s) = F±(ζ, u) + F±(ζ, −u),


±
2 (s) = − f ±

1 (s)[F±(ζ, u) + F±(ζ, −u)] + f 1/2
± (s)[F±(ζ, u) − F±(ζ, −u)], (6.8)

where

F±(ζ, u) = eχ1(ζ )+u(ζ )χ2(ζ )[R1±(ζ ) + u(ζ )R2±(ζ )]. (6.9)

The above formulae may be rewritten in the form


±
1 (s) = 2χ̂1(ζ )[R1±(ζ ) cosh χ̂2(ζ ) + p1/2(ζ )R2±(ζ ) sinh χ̂2(ζ )],


±
2 (s) = − f ±

1 (s)
±
1 (s) + 2 f 1/2

± (s)χ̂1(ζ )[R1±(ζ ) sinh χ̂2(ζ ) + p1/2(ζ )R2±(ζ ) cosh χ̂2(ζ )],

(6.10)

where

χ̂1(ζ ) = eχ1(ζ ), χ̂2(ζ ) = p1/2(ζ )χ2(ζ ). (6.11)

By substituting (6.5) into (6.10), expressions with explicit dependence on the constants C±
j are

obtained:


±
1 (s) = 2χ̂1(ζ )

15∑
j=1

C±
j [ϕ j±(ζ ) cosh χ̂2(ζ ) + p1/2(ζ )ψ j±(ζ ) sinh χ̂2(ζ )],


±
2 (s) = 2χ̂1(ζ )

15∑
j=1

C±
j

{
[− f ±

1 (s)ϕ j±(ζ ) + f 1/2
± (s)p1/2(ζ )ψ j±(ζ )] cosh χ̂2(ζ )

+ [− f ±
1 (s)p1/2(ζ )ψ j±(ζ ) + f 1/2

± (s)ϕ j±(ζ )] sinh χ̂2(ζ )
}

. (6.12)

The functions 
±
1 (s) and 
±

2 (s) have to meet the four conditions (2.17) which give the next four
equations for the constants C±

j ( j = 1, 2, . . . , 15):

15∑
j=1

{
ξ ′
ν±ϕ j±(ξ̂±

ν ) − ξ ′′
ν± p1/2(ξ̂±

ν )ψ j±(ξ̂±
ν )

+ [ξ ′
ν± p1/2(ξ̂±

ν )ψ j±(ξ̂±
ν ) − ξ ′′

ν±ϕ j±(ξ̂±
ν )] tanh χ̂2(ξ̂

±
ν )

}
C±

j = 0, ν = 1, 2, 3, 4, (6.13)
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where

ξ̂±
ν = − cot2 1

4 (π ∓ ξ±
ν ), ξ ′

ν± = − sin ξ±
ν ± η±

2 sin β + cos ξ±
ν cos β f ±

1 (ξ±
ν ),

ξ ′′
ν± = cos ξ±

ν cos β f 1/2
± (ξ±

ν ), ν = 1, 2, 3, 4. (6.14)

The function 
±
2 (s) defined by (6.12) has two simple poles at the points − 1

2π and 1
2π . To remove

these singularities the following conditions have to be imposed:

res
s= 1

2 π

±

2 (s) = 0, res
s=− 1

2 π

±

2 (s) = 0. (6.15)

Because of the symmetry property 
±
2 (s) = 
±

2 (±2π − s), the function 
±
2 (s) is regular at the

points s = ± 3
2π and s = ± 5

2π provided it meets the conditions (6.15). Equations (6.15) can be
rewritten in the form

15∑
j=1

{
β ′ϕ j±(ζ̂ν) + β ′′ sin βp1/2(ζ̂ν)ψ j±(ζ̂ν)

+
[
β ′ p1/2(ζ̂ν)ψ j±(ζ̂ν) + β ′′ sin βϕ j±(ζ̂ν)

]
tanh χ̂2(ζ̂ν)

}
C±

j = 0, ν = 1, 2, (6.16)

where

ζ̂1 = − cot2 1
8π, ζ̂2 = − tan2 1

8π,

β ′ = 1 − g0 sin2 β

sin β
, β ′′ =

√
f ∗

(
− 1

2π
)

=
√

f ∗
(

1
2π

)
= 64p1/2(ζ̂1)

p1/2(1)(ζ̂1 − 1)4
. (6.17)

The last two conditions for the constants can be obtained by fixing the residues of the functions

±

1 (s) and 
±
2 (s) at the geometric optics pole s = θ0:

res
s=θ0


±
1 (s) = e1

(
− sin θ0 ± sin β

η±
1

)
+ e2 cos θ0 cos β,

res
s=θ0


±
2 (s) = e2

(− sin θ0 ± η±
2 sin β

) − e1 cos θ0 cos β. (6.18)

Evaluating the residue of the function (ζ − α1±)−1 at the point s = θ0 yields

θ ′± = res
s=θ0

1

ζ − α1±
= ∓2 sin3 1

4 (π ∓ θ0)

cos 1
4 (π ∓ θ0)

. (6.19)

The conditions (6.18) become therefore

C±
12 + p1/2(α1±) tanh χ̂2(α1±)C±

13

= − 1

2θ ′±χ̂1(α1±) cosh χ̂2(α1±)

[
e1

(
sin θ0 ∓ 1

η±
1

sin β

)
− e2 cos θ0 cos β

]
,

[ f 1/2
± (θ0) tanh χ̂2(α1±) − f ±

1 (θ0)]C
±
12 + [ f 1/2

± (θ0) − f ±
1 (θ0) tanh χ̂2(α1±)]p1/2(α1±)C±

13

= − 1

2θ ′±χ̂1(α1±) cosh χ̂2(α1±)
[e2

(
sin θ0 ∓ η±

2 sin β
) + e1 cos θ0 cos β]. (6.20)
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The solution of the problem is defined by quadratures (2.4) in terms of the spectral functions S1(s)
and S2(s) expressed through the functions 
±

1 (s) and 
±
2 (s) and the integrals (4.12) by formulae

(2.9), (2.10), (6.12) (6.11) and (6.5). The constants C±
j ( j = 0, 1, . . . , 15) solve the two separate

systems of linear algebraic equations (6.4), (6.7), (6.13), (6.16) and (6.20) which can be written in
the form

15∑
j=1

a±
ν jC

±
j = h±

ν , ν = 1, 2, . . . , 15. (6.21)

It turns out, for some physical parameters, the coefficients a±
ν j might be badly scaled. For numerics,

the system (6.21) is rescaled

15∑
j=1

ã±
ν jC

±
j = h̃±

ν , ν = 1, 2, . . . , 15, (6.22)

where

ã±
ν j = 10s±

ν a±
ν j , h̃ν = 10s±

ν h±
ν , s±

ν = [−lg â±
ν ], ν = 1, 2, . . . , 15. (6.23)

For the parameters (3.22) and (5.59), −4 � s+
ν � 0, −5 � s−

ν � 0.
Because of the relations ξ̂+

ν = T ξ̂−
ν (ν = 1, 2, 3, 4), α1+ = T α1−, and θ ′+ = −T θ ′−, the

transformation T maps the constants C+
j into the constants C−

j : T C+
j = C−

j ( j = 1, . . . , 15).

7. Normal incidence

In the case β = 1
2π , the representations (2.10) become

S±
µ (s) = − 
±

µ(s)

sin s ∓ η̂±
µ

, µ = 1, 2. (7.1)

The matrices G±(σ ) are diagonal, and Problem 2.2 is uncoupled


±
µ(σ) = Gµµ(σ)
±

µ(σ − 4π), σ ∈ �±,


±
µ(s) = 
±

µ(±2π − s), s ∈ �±, µ = 1, 2, (7.2)

where

Gµµ(σ) = (sin σ + η̂+
µ )(sin σ + η̂−

µ )

(sin σ − η̂+
µ )(sin σ − η̂−

µ )
. (7.3)

As s → ∞ (Re s is finite), 
±
µ(s) = O(e|s|). The functions 
±

µ(s) have to satisfy the conditions
(2.17) which read


±
µ(ξ±

µν) = 0, µ, ν = 1, 2, (7.4)

where sin ξ±
µν = ±η̂±

µ and Re ξ±
µν ∈ (−π, π). If the impedances η±

1 and η±
2 are real and positive,

then ξ±
µ1 = ± sin−1 η̂±

µ , ξ±
µ2 = ±π − ξ±

µ1. Otherwise ξ±
µν are those numbers

ξ±
µν = −i log

(
±i η̂±

µ − (−1)ν
√

1 − (η̂±
µ )2

)
+ 2πm, m = 0, ±1, . . . , (7.5)

which lie in the strip −π < Re s < π .
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By the mapping (3.13), the difference equations (7.2) reduce to the scalar Riemann–Hilbert prob-
lems on the segment (−1, 1)

F+
µ±(t) = lµ(t)F−

µ±(t), t ∈ (−1, 1),

Fµ±(w) = Fµ±(−w), w = w± =∈ C \ [−1, 1], µ = 1, 2. (7.6)

where

lµ(t) = Gµµ(σ), 
±
µ(s) = Fµ±(w), w = −i tan 1

4 (s ± π). (7.7)

The functions Fµ±(w) grow at the ends

Fµ±(w) = O(|w ∓ 1|−2), w → ±1. (7.8)

The coefficients lµ(t) have the following properties:

lµ(t)lµ(−t) = 1, lµ(0) = lµ(±1) = 1,

[arg lµ(t)][−1,0] = [arg lµ(t)][0,1] = −2π. (7.9)

Here [g(t)][a,b] is the increment of a function g(t) as t traverses the contour [a, b] in the positive
direction. Choose arg lµ(0) = 0. Then arg lµ(±1) = ∓2π. Factorize next the coefficients lµ(t):

lµ(t) = X+
µ (t)

X−
µ (t)

, t ∈ (−1, 1), (7.10)

where X±
µ (t) = Xµ(t ± i0), and

Xµ(w) = (w2 − 1)−1 exp

{
1

2π i

∫ 1

−1

log lµ(t)

t − w
dt

}

= (w2 − 1)−1 exp

{
1

π i

∫ 1

0

log lµ(t)

t2 − w2 tdt

}
. (7.11)

Analysis of the Cauchy integrals (7.11) shows that

Xµ(w) ∼ A±
µ(w ∓ 1)−2, w → ±1, A±

µ = const. (7.12)

Thus, the functions Xµ(w) are even and have the asymptotics at the ends w = ±1 required by the
class of solutions. The generalized Liouville theorem yields the solution

Fµ±(w) = C±
µ Xµ(w)

(
1

w2 − ŵ2±
+ d±

µ1 + d±
µ2w

2
)

, w ∈ C, µ = 1, 2, (7.13)

where C±
µ and d±

µν (µ = 1, 2, ν = 0, 1, 2) are arbitrary constants. The functions Fµ±(w) are even,
bounded at infinity, have the asymptotics (7.8) at the ends w = ±1 and possess the geometrical op-
tics poles at the points w = ±ŵ±, ŵ± = −i tan 1

4 (θ0±π). The conditions (7.4) give the expressions
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for the constants d±
µ1 and d±

µ2

d±
µ1 = (ξ̂±

µ1)
2d̂±

µ2 − (ξ̂±
µ2)

2d̂±
µ1

(ξ̂±
µ2)

2 − (ξ̂±
µ1)

2
, d±

µ2 = d̂±
µ1 − d̂±

µ2

(ξ̂±
µ2)

2 − (ξ̂±
µ1)

2
, (7.14)

where

ξ̂±
µν = −i tan

ξ±
µν ± π

4
, d̂±

µν = 1

(ξ̂±
µν)

2 − ŵ2±
. (7.15)

The physical conditions (2.5) and the invariance of the solution with respect to the transformation
θ → −θ , θ0 → −θ0, and η±

µ → η∓
µ (µ = 1, 2) define the constants C±

µ

C+
µ = −eµ(sin θ0 − η̂+

µ )

Xµ(ŵ+)θ ′+
, C−

µ = −eµ(sin θ0 + η̂−
µ )

Xµ(ŵ−)θ ′−
, µ = 1, 2, (7.16)

where θ ′± are given by (6.19). Formula (7.16) indicates that T C+
µ = C−

µ , µ = 1, 2.

8. High frequency asymptotics. Numerical results

High frequency asymptotics of the electrical and magnetic field can be represented in the form

Ez ∼ Ei
z + Er

z + Es
z + Ed

z ,

Hz ∼ Hi
z + Hr

z + Hs
z + Hd

z , kρ → ∞, (8.1)

where Ei
z and Hi

z are the incident waves, Er
z and Hr

z are the reflected waves, Es
z and Hs

z are the
surface waves, and Ed

z and Hd
z are the diffracted waves. These waves may be recovered by applying

the steepest descent method to the Sommerfeld integrals (2.4). Analysis of the spectral functions
S1(s) and S2(s) shows that the geometrical optics poles should be found among the roots of the
equation

tan2 s ± π

4
= tan2 θ0 ± π

4
, (8.2)

which lie in the strip −π + θ < Re s < π + θ . The pole s = θ0 gives rise to the incident waves
(2.1). The next two poles s = −2π − θ0 and s = 2π − θ0 reproduce the reflected waves provided
that the angle of incidence θ0 and the angle of observation θ satisfy the conditions −π < θ0 < 0
and −π < θ < −π − θ0 in the case s = −2π − θ0, and 0 < θ0 < π and π − θ0 < θ < π in the
case s = 2π − θ0. By the Cauchy theorem the reflected waves become(

Er
z

Hr
z

)
= e−ikz cos β+ikρ sin β cos(θ+θ0)

[(
R−

e

R−
h

)
ωθ(−π, −π − θ0) +

(
R+

e

R+
h

)
ωθ(π − θ0, π)

]
,

(8.3)

where

ωθ(a, b) =
{

1, θ ∈ [a, b],

0, θ /∈ [a, b].
(8.4)
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The reflection coefficients Re and Rh are defined by

(
R±

e

R±
h

)
= 1

2�θ0(1/η+
1 , η+

2 )

(
sin θ0 + η+

2 sin β − cos θ0 cos β

cos θ0 cos β sin θ0 + 1/η+
1 sin β

)
res

s=−θ0±2π

(

+

1 (s)


+
2 (s)

)

+ 1

2�θ0(−1/η−
1 , −η−

2 )

(
sin θ0 − η−

2 sin β − cos θ0 cos β

cos θ0 cos β sin θ0 − 1/η−
1 sin β

)

× res
s=−θ0±2π

(

−

1 (s)


−
2 (s)

)
. (8.5)

To evaluate the residues

res
s=−θ0−2π

(

+

1 (s)


+
2 (s)

)
and res

s=−θ0+2π

(

−

1 (s)


−
2 (s)

)
, (8.6)

the vector functions 


+(s) and 


−(s) should be continued analytically into the strips −5π <
Re s < −π and π < Re s < 5π , respectively. This can be done by the relations




+(s) = [G+(s)]−1


+(s + 4π), −5π < Re s < −π.




−(s) = G−(s)


−(s − 4π), π < Re s < 5π. (8.7)

Clearly, the residues in (8.5) can be expressed explicitly through the angles θ0 and β and the param-
eters η±

µ , e1, and e2. To find them, there is no need to solve Problem 2.2 since the residues (2.5) are
prescribed.

Because of the conditions (2.17) the points s = −θ + ξ±
j ( j = 1, 2, 3, 4) are removable points of

the functions S1(s + θ) and S2(s + θ). However, outside the strip −π < Re(s + θ) < π , the points
s = −θ+ξ±

j +2πm (m = ±1, ±2, . . .) are simple poles of the functions S1(s) and S2(s). The poles
s = −θ + ξ±

j + 2π and −θ + ξ±
j − 2π ∈ �̃ may give rise to the surface waves. The domain �̃ is a

curved strip. The right-hand boundary is described by the equation Re s = π + gd(Im s) sgn(Im s),
where gd x is the Gudermann function gd x = cos−1(1/ cosh x). This curve is symmetric with
respect to the point s = π . Its starting and ending points are s = 1

2π − i∞ and s = 3
2π + i∞,

respectively. The lines Re s = 1
2π and Re s = 3

2π are the asymptotes of the lower and upper parts
of the path. The left-hand boundary of the domain �̃ is symmetric to the the right-hand side with
respect to the point s = 0. Since θ ∈ (−π, π) and Re ξ±

j ∈ (0, π) ( j = 1, 2, 3, 4) for Re η±
µ > 0,

the surface waves are given by

(
Es

z

Hs
z

)
=

4∑
j=1

[(
W+−

ej

W+−
hj

)
ωθ(−π, −π + g+

j ) +
(

W++
ej

W++
hj

)
ωθ(π + g+

j , π)

]

× e−ikz cos β+ikρ sin β cos(ξ+
j −θ) +

4∑
j=1

[(
W−−

ej

W−−
hj

)
ωθ(−π, −π + g−

j )

+
(

W−+
ej

W−+
hj

)
ωθ(π + g−

j , π)

]
e−ikz cos β+ikρ sin β cos(ξ−

j −θ)
, (8.8)
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where

W+±
ej = 1

2�̃+
j

[(− sin ξ+
j + η+

2 sin β)
+
1 (ξ+

j ± 2π) − cos ξ+
j cos β
+

2 (ξ+
j ± 2π)],

W+±
hj = 1

2�̃+
j

[(
− sin ξ+

j + 1

η+
1

sin β

)

+

2 (ξ+
j ± 2π) + cos ξ+

j cos β
+
1 (ξ+

j ± 2π)

]
,

W−±
ej = 1

2�̃−
j

[(− sin ξ−
j − η−

2 sin β)
−
1 (ξ−

j ± 2π) − cos ξ−
j cos β
−

2 (ξ−
j ± 2π)],

W−±
hj = 1

2�̃−
j

[(
− sin ξ−

j − 1

η−
1

sin β

)

−

2 (ξ−
j ± 2π) + cos ξ−

j cos β
−
1 (ξ−

j ± 2π)

]
,

g±
j = Re ξ±

j − gd(Im ξ±
j ) sgn(Im ξ±

j ),

�̃±
j = d

ds
�s

(
∓ 1

η±
1

, ∓η±
2

)∣∣∣∣
s=ξ±

j

. (8.9)

The steepest descent method applied to (2.4) for kρ → ∞ yields the diffracted field(
Ed

z

Hd
z

)
= e−ik(z cos β+ρ sin β)

√
kρ

(
De(θ)

Dh(θ)

)
, (8.10)

where the diffraction coefficients De(θ) and Dh(θ) are expressed through the spectral functions
S1(s) and S2(s) as follows:

D∗
µ(θ) = e−iπ/4

√
2π sin βe1

[Sµ(θ − π) − Sµ(θ + π)], µ = 1, 2, (8.11)

and D∗
1 = e−1

1 De and D∗
2 = Z0e−1

1 Dh . Since the functions S1(s) and S2(s) have a simple pole at
the point s = θ0, the diffraction coefficients are infinite at the points θ = π−|θ0| and θ = −π+|θ0|.
To evaluate the diffraction coefficients by formulae (8.11), one needs to use formulae (2.9), (2.10),
and the analytical continuation (8.7). If s = ξ±

j ( j = 1, 2, 3, 4) is a real zero of the function
�s(∓1/η±

1 , ∓η±
2 ), and −π + ξ±

j ∈ (−π, 0) (π + ξ±
j ∈ (0, π)), then the diffraction coefficients are

infinite at the point θ = −π + ξ±
j (θ = π + ξ±

j ). Since T C+
j = C−

j ( j = 1, . . . , 15), analysis
of formulae (2.9), (2.10), (2.12) and (8.11) shows that the diffraction coefficients are invariant with
respect to the transformation T defined by (2.8).

When the upper and lower sides of the screen have the same impedances η±
µ = ηµ, and β = 1

2π ,
formula (8.11) becomes simpler:

D∗
µ(θ) = e−iπ/4

2
√

2πe1

[

+

µ(θ − π)

− sin θ − η̂µ
+ 
−

µ(θ − π)

− sin θ + η̂µ
+ 
+

µ(θ + π)

sin θ + η̂µ
+ 
−

µ(θ + π)

sin θ − η̂µ

]
, µ = 1, 2.

(8.12)

Here 
−
µ(θ+π) = Gµµ(θ+π)
−

µ(θ−3π) if 0 < θ < π , and 
+
µ(θ−π) = 
+

µ(θ+3π)/Gµµ(θ−
π) if −π < θ < 0. Since C+

µ (θ0) = C−
µ (−θ0) and


±
1 (θ − π) = 
∓

1 (−θ + π), 
±
1 (θ + π) = 
∓

1 (−θ − π), (8.13)
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Fig. 6 Normal incidence. The real and imaginary parts of the diffraction coefficient D∗
1 (θ) for θ0 = 1

3π ,
η+

1 = 1 − i , η+
2 = 0·1 − i , η−

1 = 2 − i , and η−
2 = 1 + i

Fig. 7 Normal incidence. The real and imaginary parts of the diffraction coefficient D∗
2 (θ) for θ0 = 1

3π ,
η+

1 = 1 − i , η+
2 = 0·1 − i , η−

1 = 2 − i , and η−
2 = 1 + i

the diffraction coefficients are invariant with respect to the transformation θ → −θ and θ0 → −θ0:
Dµ(θ, θ0) = Dµ(−θ, −θ0). For the case of normal incidence (β = 1

2π ) numerical calculations
for the diffraction coefficients D∗

1(θ) and D∗
2(θ) are illustrated in Figs 6 and 7 for the impedance

parameters (3.22), θ0 = 1
3π , and e∗ = e1/e2 = 1. Numerical values are the same if θ , θ0, and η±

j
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( j = 1, 2) are replaced by −θ , −θ0, and η∓
j . As θ = ±π , the diffraction coefficients D∗

µ (µ = 1, 2)
vanish. As θ approaches the angles − 2

3π and 2
3π , that is, the angles ∓π ±θ0, the real and imaginary

parts of the diffraction coefficients grow to infinity.
The skew incidence case is presented in Figs 8 to 10 for the same impedance parameters when

θ0 = 1
3π , e∗ = 1, and β = 1

4π . The numerical values are symmetric with respect to the
transformation T . The surface waves poles are not close to the real axis, and the graphs are smooth
curves. However, for some sets of parameters these poles could be real or close to the real axis. For
example, for the impedance parameters (3.22) and β = 1

3π , the zeros ξ±
j of the of the functions

�s(∓1/η±
1 , ∓η±

2 ) are

ξ+
1 = 2·7363 − 0·6508i, ξ+

2 = 0·1342, −1·0348i,

ξ+
3 = 0·4053 + 0·6508i, ξ+

4 = 3·007 + 1·0348i,

ξ−
1 = −2·5114 + 1·3157i, ξ−

2 = −0·4547 + 0·0129i,

ξ−
3 = −0·6302 − 1·3157i, ξ−

4 = −2·6869 − 0·0129i.

Because the imaginary part of the zeros ξ−
2 and ξ−

4 is small, the graphs of the real and imaginary
parts of the diffraction coefficients change sharply (Fig. 11) in small neighbourhoods of the points
π − Re ξ−

2 and π − Re ξ−
4 , namely as θ = 154◦ and θ = 26◦. It is known (21) that (8.10) is valid

for large kρ and in those regions where the reflected and surface waves are not present. For angles θ
close to these critical values, the total field should be evaluated separately by using methods of the
uniform geometrical theory of diffraction (20, 21).

In Fig. 12, the real and imaginary parts of the diffraction coefficient D∗
1 are given for β = 0·49π .

It is seen that as β → 1
2π , the skew incidence coefficient D∗

1 approaches the values of the normal
incidence diffraction coefficient D∗

1 . The same tendency is observed for the second coefficient D∗
2 .

Fig. 8 Skew incidence. The real and imaginary parts of the diffraction coefficients D∗
1 (θ) and D∗

2 (θ) for
−π < θ < −π + θ0, θ0 = 1

3π, β = 1
4π , η+

1 = 1 − i , η+
2 = 0·1 − i , η−

1 = 2 − i , and η−
2 = 1 + i
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Fig. 9 Skew incidence. The real and imaginary parts of the diffraction coefficients D∗
1 (θ) and D∗

2 (θ) for
−π + θ0 < θ < π − θ0, θ0 = 1

3π, β = 1
4π , η+

1 = 1 − i , η+
2 = 0.1 − i , η−

1 = 2 − i , and η−
2 = 1 + i .

Fig. 10 Skew incidence. The real and imaginary parts of the diffraction coefficients D∗
1 (θ) and D∗

2 (θ) for
π − θ0 < θ < π , θ0 = 1

3π, β = 1
4π , η+

1 = 1 − i , η+
2 = 0·1 − i , η−

1 = 2 − i , and η−
2 = 1 + i
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Fig. 11 Skew incidence. The real and imaginary parts of the diffraction coefficients D∗
1 (θ) and D∗

2 (θ) for
−π + θ0 < θ < π , θ0 = 1

3π, β = 1
3π , η+

1 = 1 − i , η+
2 = 0·1 − i , η−

1 = 2 − i , and η−
2 = 1 + i

Fig. 12 Skew incidence. The real and imaginary parts of the diffraction coefficient D∗
1 (θ) for

θ0 = 1
3π, β = 0·49π , η+

1 = 1 − i , η+
2 = 0·1 − i , η−

1 = 2 − i , and η−
2 = 1 + i
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Fig. 13 Skew incidence. The real and imaginary parts of the diffraction coefficient D∗
1 (θ) and D∗

2 (θ) for
θ0 = 1

3π, θ = − 5
6π , η+

1 = 1 − i , η+
2 = 0·1 − i , η−

1 = 2 − i , and η−
2 = 1 + i

For β → 1
2π , the branch points ζ j approach the images of the second-order zeros of the function

f ∗(s) = (cos2 s + g0 − 1)2 (β = 1
2π ). For example, for β = 0·499π , the branch points are

ζ0 = −1·1414 − 2·0527i, ζ1 = −1·0124, −2·0090i,

ζ2 = 0·0166 − 0·1168i, ζ3 = 0·0271 − 0·1167i, ‘

ζ4 = −0·2069 + 0·3721i, ζ5 = −0·2000 + 0·3970i,

ζ6 = 1·8877 + 8·1293i, ζ7 = 1·1927 + 8·3925i.

Notice that the point ζ = 0 is to the right of the segment ζ3ζ4. As β → 1
2π , the accuracy of the

numerical solution to the Jacobi problem increases. For β → 0 or β → π , the distance between
the branch points ζ0 and ζ7 grows. For β = 1

10π and the impedance parameters (3.22), for example,
|ζ7 − ζ0| = 39·654. The values of the function p1/2(ζ ) become large even for small values of ζ .
Therefore, the solution of the problem requires higher accuracy for small or close to π incidence
angles. The dependence of the coefficients D∗

1 and D∗
2 on the angle of incidence β is shown in

Fig. 13.

9. Conclusion

Scattering of a plane wave at skew incidence from an anisotropic impedance half-plane for two
different matrix impedances Z+ and Z− is a long-standing problem of diffraction theory (13). Only
some particular cases were studied in the literature. It turns out, using a new technique by Antipov
and Silvestrov (6), the problem in its general formulation with arbitrary complex entries of the
impedance matrices is exactly solvable. The key step of the method is to formulate the govern-
ing system of difference equations as a scalar Riemann–Hilbert problem on two unit segments of
a hyperelliptic surface of genus 3. Its solution has been found in terms of singular integrals with
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the Weierstrass kernel on a Riemann surface. Initially, the solution had an essential singularity at
infinity and possessed some free parameters. The singularity has been removed by fixing these pa-
rameters which solve the associated Jacobi inversion problem for the surface. Regardless of which
analogue of the Cauchy kernel on the Riemann surface is chosen, in general, the solution of the Ja-
cobi problem cannot be bypassed. In this paper, a constructive numerical procedure for the inversion
problem for a surface of any finite genus has been proposed and described in detail. This technique
made it possible to recover the total electric and magnetic fields and compute the edge diffraction
coefficients. The solution has been found in closed form in terms of a finite number of quadratures.
It possesses three transcendents which are the roots of a certain cubic equation with known complex
coefficients and also 15 constants which solve a non-homogeneous system of 15 linear equations.
It has been proved that the solution is invariant with respect to the symmetric transformation of
the angles θ , θ0 and β and the impedance parameters η±

j ( j = 1, 2). As the angle of incidence
β approaches 1

2π , the diffraction coefficients approach the limiting values for the case of normal
incidence.

The technique employed here can be applied for more complicated boundary-value problems for-
mulated either as a system of the Maliuzhinets difference equations, or a system of the Wiener–Hopf
functional equations. If, ultimately, the problem reduces to a scalar Riemann–Hilbert problem on a
hyperelliptic surface of high genera, then the procedure proposed should be modified accordingly.
The method of the paper has the potential to be extended to those systems of the Maliuzhinets and
the Wiener–Hopf equations which are equivalent to a scalar Riemann–Hilbert problem on n-sheeted
(n � 3) Riemann surfaces.
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