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◮ V (or V (G)) is a finite set whose elements are called vertices;
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Definition of a graph

Definition 1.1

A graph G is a triple (V,E, I) where

◮ V (or V (G)) is a finite set whose elements are called vertices;

◮ E (or E(G)) is a finite set disjoint from V whose elements are called
edges; and

◮ I, called the incidence relation, is a subset of V ×E in which each edge is
in relation with exactly one or two vertices.

Example 1.2

◮ V = {v1, v2, v3, v4}
◮ E = {e1, e2, e3, e4, e5, e6, e7}
◮ I = {(v1, e1), (v1, e4), (v1, e5), (v1, e6),

(v2, e1), (v2, e2), (v3, e2), (v3, e3), (v3, e5),
(v3, e6), (v4, e3), (v4, e4), (v4, e7)}
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Simple graphs

Definition 1.3

◮ Edges incident with just one vertex are loops.
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◮ Edges incident with just one vertex are loops.

◮ Edges incident with the same pair of vertices are parallel.

v3

v2

v4

v1e1

e2

e3

e4
e5

e6

e7



Simple graphs

Definition 1.3

◮ Edges incident with just one vertex are loops.

◮ Edges incident with the same pair of vertices are parallel.

◮ Graphs with no parallel edges and no loops are called simple.

v3

v2

v4

v1

The simplification of the
original graph.



Simple graphs

Definition 1.3

◮ Edges incident with just one vertex are loops.

◮ Edges incident with the same pair of vertices are parallel.

◮ Graphs with no parallel edges and no loops are called simple.

v3

v2

v4

v1

The simplification of the
original graph.

Edges of a simple graph can be described as
two-element subsets of the vertex set.



Simple graphs

Definition 1.3

◮ Edges incident with just one vertex are loops.

◮ Edges incident with the same pair of vertices are parallel.

◮ Graphs with no parallel edges and no loops are called simple.

v3

v2

v4

v1

The simplification of the
original graph.

Edges of a simple graph can be described as
two-element subsets of the vertex set.

Example 1.4

E = {{v1, v2}, {v2, v3}, {v3, v4},
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Simple graphs

Definition 1.3

◮ Edges incident with just one vertex are loops.

◮ Edges incident with the same pair of vertices are parallel.

◮ Graphs with no parallel edges and no loops are called simple.

v3

v2

v4

v1

The simplification of the
original graph.

Edges of a simple graph can be described as
two-element subsets of the vertex set.

Example 1.4

E = {{v1, v2}, {v2, v3}, {v3, v4},
{v1, v4}, {v1, v3}}.

Note 1.5

In some books, what we defined as a graph
is called a multigraph and what we defined
as a simple graph is called a graph.
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Graph Terminology

Definition 1.6

◮ The graph G is empty if V = ∅, and is trivial if E = ∅.
◮ The cardinality of the vertex-set of a graph G is called the order of G and

denoted |G|.
◮ The cardinality of the edge-set of a graph G is called the size of G and

denoted ‖G‖.
◮ Two vertices incident with the same edge are adjacent or neighbors.

◮ Similarly, two edges incident with the same vertex are adjacent.

◮ The number of edges incident with a vertex v of G, with loops counted
twice, is the degree of v and is written as d(v) or dG(v).

◮ The set of neighbors of a vertex v of G, other than v itself, is denoted by
N(v) or by NG(v).

◮ Similarly, if U is a subset of the vertex set of G, then N(U) is the set of
those vertices that are not in U , but are adjacent to a vertex in U .
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isomorphism.
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Isomorphism

Definition 1.7

The graphs G1 = (V1, E1, I1) and G2 = (V2, E2, I2) are isomorphic, written
G1

∼= G2, if there are bijections ϕ : V1 → V2 and ψ : E1 → E2 such that
(v, e) ∈ I1 if and only if (ϕ(v), ψ(e)) ∈ I2. Such a pair of bijections is an
isomorphism.

Note 1.8

◮ If G1 and G2 are simple, then an isomorphism may be defined as a
bijection ϕ : V1 → V2 such that u and v are adjacent in G1 if and only if
ϕ(u) and ϕ(v) are adjacent in G2.

◮ Isomorphic graphs are usually considered “the same”.

Theorem 1.9 (Babai, 2015–2016)

Graph isomorphism problem can be solved in quasi-polynomial time.
There is a constant c and an algorithm that can decide whether two graphs on
n vertices are isomorphic or not in at most 2O((log n)c) steps.
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Which of the following graphs are isomorphic?
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G1
∼= G2 ≇ G3
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Automorphism

Definition 1.11

An automorphism of a graph is an isomorphism from the graph to itself.

Note 1.12

◮ The automorphisms of a graph form a group.

◮ Computer software for finding automorphism groups of graphs is a part of
the Sage system, available at http://sagemath.org.

Theorem 1.13 (Frucht, 1938)

For every finite group X there is a graph whose automorphism group is X.

Problem 1

For every positive integer n, construct a simple graph with exactly n
automorphisms.
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Subgraphs

Definition 1.14

A graph G1 = (V1, E1, I1) is a subgraph of a graph G2 = (V2, E2, I2), written
G1 6s G2, if

◮ V1 ⊆ V2,

◮ E1 ⊆ E2, and

◮ I1 is induced by I2.

Alternately, we may think of G1 as obtained from G2 by

◮ Deleting vertices (denoted G− v or G− U), and

◮ Deleting edges (denoted G \ e or G \ F ).

Definition 1.15

G1 is an induced subgraph of G2 if E1 consists of all those elements of E2

whose incident vertices lie in V1.

Altrenately, we may think of G1 as obtained from G2 by deleting only vertices.
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Subgraph Example

Example 1.16

G1 G2 G3

◮ G2 is a subgraph of G1, but it is not an induced subgraph.

◮ G3 is an induced subgraph of G1.
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Reconstruction Conjectures

The deck of a graph G is the collection of graphs G − v over all v ∈ V (G). A
graph is reconstructible if no other graph (up to isomorphism) has the same
deck.

Conjecture 1.17 (Reconstruction Conjecture)

Every simple graph on at least three vertices is reconstructible.

The edge-deck of a graph G is the collection of graphs G \ e over all e ∈ E(G).
A graph is edge-reconstructible is no other graph has the same edge-deck.

Conjecture 1.18 (Edge-Reconstruction Conjecture)

Every simple graph on at least four edges is edge-reconstructible.
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Walks, Trails, Paths, and Cycles

Definition 1.19

◮ A walk is a sequence v0, e1, v1, e2, v2, . . . , en, vn, where each edge ei is
incident with vertices vi−1 and vi.

◮ The length of a walk is the number of edges in it.

◮ A walk is closed if its first and last vertices coincide.

◮ A trail is a walk in which no edge is repeated.

◮ A path is a trail with no repeated vertices.

◮ A cycle is a trail with no vertices repeated except that the first vertex is
the same as the last.

◮ For a path or a cycle, we will often blur the distinction between the
sequence of vertices and edges, and the graph it forms.

◮ The graph that is a path on n vertices (which has length n− 1) will be
denoted as Pn.

◮ The graph that is a cycle on n vertices (which has length n) will be
denoted as Cn.

◮ A graph is connected if each pair of its vertices can be connected by a
walk (equivalently, a trail or a path).
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Complete Graphs and Complements

Definition 1.20

◮ A complete graph on n vertices, denoted by Kn, is a simple graph in
which every two of its n vertices are connected by an edge.

◮ If G is a simple graph, then the complement of G, denoted by G, is the
simple graph on the same vertex set as G, and in which two vertices are
adjacent if and only if they are not adjacent in G.

◮ A simple graph is self-complementary if it is isomorphic to its own
complement.

Problem 2

Suppose that G is a non-trivial simple graph such that both G and G are
connected. Prove that G has P4 as an induced subgraph.

Problem 3

(a) Show that the order of a self-complementary graph is congruent to 0 or 1
modulo 4.
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Problem 3

(a) Show that the order of a self-complementary graph is congruent to 0 or 1
modulo 4.

(b) Construct a self-complementary graph of order n for every positive integer
n congruent to 0 or 1 modulo 4.



Hand-Shaking Lemma

Theorem 1.21 (Hand-Shaking Lemma)

∑

v∈V (G)

d(v) = 2‖G‖

Corollary 1.22

The number of vertices of odd degree is even.
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Trees

Definition 2.1

◮ A graph having no cycles is acyclic or a forest.

◮ A connected forest is a tree.

◮ A leaf or a pendant vertex is a vertex of degree one.

◮ A subgraph of G is spanning if it has all the vertices of G.

◮ The distance between vertices u and v of G, written d(u, v) or dG(u, v), is
the length of the shortest path in G that contains both u and v. (Such a
path is called a uv-path and u and v are its ends.) If a uv-path does not
exist, then d(u, v) = ∞.

◮ The distance between sets U and W of vertices of G, written d(U,W ), is
the length of a shortest uw-path where u ∈ U and w ∈ W , or infinity if no
such path exists.
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Induction for Trees

Theorem 2.2

Every tree with at least two vertices has at least two leaves. Deleting a leaf
from a tree of order n produces a tree of order n− 1.

Proof.

In an acyclic graph, the ends of a maximal non-trivial path have degree one.
Let v be a leaf of a tree T and let T ′ = T − v.
Then T ′ is acyclic.
Suppose u and w are vertices of T ′. Then, in T there is a uw-path P .
But P cannot contain v as dT (v) = 1, and so it also lies in T ′.
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Characterization of Trees

Theorem 2.3

For a simple graph G of order n the following are equivalent:

(A) G is connected and acyclic;

(B) G is connected and has size n− 1;

(C) G is acyclic and has size n− 1; and

(D) For every two vertices u and v, the graph G contains exactly one uv-path.

A ⇒ B.

Induction on n. Trivial for n = 1. For the inductive step, let v be a leaf, which
exists by 2.2, and consider G− v. By the induction hypothesis, G− v has size
n− 2, so G has size n− 1.

B ⇒ C.

Delete edges from G, one by one, until the graph has no cycles, and call the
resulting connected and acyclic graph G′. Then G′ satisfies (A), and so also
satisfies (B), and so has size n− 1. This implies that G′ = G.

The remainder of the proof is left as an exercise.
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Edge Exchange

Theorem 2.4

If T and T ′ are two spanning trees of a connected graph G and
e ∈ E(T ) \E(T ′), then there is an edge e′ ∈ E(T ′) \E(T ) such that T \ e ∪ e′
is a spanning tree of G.

Proof.

Consider T \ e: it is disconnected with exactly two connected components
(maximal connected subgraphs) S and S′. Since T ′ is connected, it must have
an edge e′ with one endpoint in each S and S′. Clearly, T \ e ∪ e′ is a
spanning tree of G.
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Theorem 2.7 (Kruskal)

In a connected graph, Kruskal’s Algorithm produces a minimum-cost spanning
tree.

Proof.

It is clear that the algorithm produces a spanning tree.
Let T be the resulting graph, and suppose T ′ is a spanning tree of minimum
cost. If T ′ = T , then there is nothing to prove. If T 6= T ′, let e be the first
edge chosen for T that is not in T ′. Adding e to T ′ creates a cycle C, but
since T does not have cycles, T ′ has an edge e′ /∈ E(T ). Consider the
spanning tree T ′ \ e′ ∪ e.
Since T ′ contains e′ and all edges of T chosen before e, both e and e′ are
available when the algorithm chooses e, and hence c(e) ≤ c(e′). Thus
T ′ \ e′ ∪ e is a spanning tree with cost at most T ′ that agrees with T for a
longer initial list of edges than T ′ does. Repeating this argument yields a
minimum-cost spanning tree that equals T , proving that the costs of T and T ′

are the same.
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Enumerating Labeled Trees

We would like to know how many different (and here we really mean different
rather than non-isomorphic) trees with the vertex set {1, 2, . . . , n} are there?

Theorem 2.8 (Cayley’s Formula due to Borchardt (1860))

There are nn−2 trees with vertex set {1, 2, . . . , n}.

Proof.

There are nn−2 sequences of length n− 2 with entries from {1, 2, . . . , n}. We
will establish a bijection between such sequences and trees on the vertex set
{1, 2, . . . , n}.
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Prüfer sequence:
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To find a Prüfer sequence f(T ) of a labeled tree T ,

◮ delete the leaf with the smallest label, and

◮ append the label of its neighbor to the sequence until one edge remains.

Example 2.9

b4 b 5

b

2

b

6
b

9

b 10

b

8
b

1

b 7

b 11
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To find a Prüfer sequence f(T ) of a labeled tree T ,

◮ delete the leaf with the smallest label, and

◮ append the label of its neighbor to the sequence until one edge remains.

Example 2.9

b 5

b

2

b

6
b

9

b 10

b

8
b

1

b 7

b 11
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◮ delete the leaf with the smallest label, and

◮ append the label of its neighbor to the sequence until one edge remains.
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To find a Prüfer sequence f(T ) of a labeled tree T ,

◮ delete the leaf with the smallest label, and

◮ append the label of its neighbor to the sequence until one edge remains.
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To find a Prüfer sequence f(T ) of a labeled tree T ,

◮ delete the leaf with the smallest label, and

◮ append the label of its neighbor to the sequence until one edge remains.
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Prüfer Sequences

To find a Prüfer sequence f(T ) of a labeled tree T ,

◮ delete the leaf with the smallest label, and

◮ append the label of its neighbor to the sequence until one edge remains.

Example 2.9
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Now we describe how to produce a tree from a Prüfer sequence.

◮ Begin with a forest having n isolated vertices labeled 1, 2, . . . , n.
◮ Proceed with all n− 2 elements of the sequence, and, at the ith step,

◮ let x be the label in position i.
◮ let y be the smallest label that does not appear at the ith or later position

and has not yet been marked as “finished”.
◮ add the edge xy, and
◮ mark y as finished.

◮ Join the two remaining unfinished vertices with an edge.
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Trees from Sequences

Now we describe how to produce a tree from a Prüfer sequence.

◮ Begin with a forest having n isolated vertices labeled 1, 2, . . . , n.
◮ Proceed with all n− 2 elements of the sequence, and, at the ith step,

◮ let x be the label in position i.
◮ let y be the smallest label that does not appear at the ith or later position

and has not yet been marked as “finished”.
◮ add the edge xy, and
◮ mark y as finished.

◮ Join the two remaining unfinished vertices with an edge.

Example 2.10
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Trees from Sequences

Now we describe how to produce a tree from a Prüfer sequence.

◮ Begin with a forest having n isolated vertices labeled 1, 2, . . . , n.
◮ Proceed with all n− 2 elements of the sequence, and, at the ith step,

◮ let x be the label in position i.
◮ let y be the smallest label that does not appear at the ith or later position

and has not yet been marked as “finished”.
◮ add the edge xy, and
◮ mark y as finished.

◮ Join the two remaining unfinished vertices with an edge.

Example 2.10
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Trees from Sequences

Now we describe how to produce a tree from a Prüfer sequence.

◮ Begin with a forest having n isolated vertices labeled 1, 2, . . . , n.
◮ Proceed with all n− 2 elements of the sequence, and, at the ith step,

◮ let x be the label in position i.
◮ let y be the smallest label that does not appear at the ith or later position

and has not yet been marked as “finished”.
◮ add the edge xy, and
◮ mark y as finished.

◮ Join the two remaining unfinished vertices with an edge.

Example 2.10
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Trees from Sequences

Now we describe how to produce a tree from a Prüfer sequence.

◮ Begin with a forest having n isolated vertices labeled 1, 2, . . . , n.
◮ Proceed with all n− 2 elements of the sequence, and, at the ith step,

◮ let x be the label in position i.
◮ let y be the smallest label that does not appear at the ith or later position

and has not yet been marked as “finished”.
◮ add the edge xy, and
◮ mark y as finished.

◮ Join the two remaining unfinished vertices with an edge.
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Trees from Sequences

Now we describe how to produce a tree from a Prüfer sequence.

◮ Begin with a forest having n isolated vertices labeled 1, 2, . . . , n.
◮ Proceed with all n− 2 elements of the sequence, and, at the ith step,

◮ let x be the label in position i.
◮ let y be the smallest label that does not appear at the ith or later position

and has not yet been marked as “finished”.
◮ add the edge xy, and
◮ mark y as finished.

◮ Join the two remaining unfinished vertices with an edge.

Example 2.10
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Trees from Sequences

Now we describe how to produce a tree from a Prüfer sequence.

◮ Begin with a forest having n isolated vertices labeled 1, 2, . . . , n.
◮ Proceed with all n− 2 elements of the sequence, and, at the ith step,

◮ let x be the label in position i.
◮ let y be the smallest label that does not appear at the ith or later position

and has not yet been marked as “finished”.
◮ add the edge xy, and
◮ mark y as finished.

◮ Join the two remaining unfinished vertices with an edge.

Example 2.10
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b

3

b4 b 5

b

2

b

6
b

9

b 10

b

8
b

1

b 7

b 11



Trees from Sequences

Now we describe how to produce a tree from a Prüfer sequence.

◮ Begin with a forest having n isolated vertices labeled 1, 2, . . . , n.
◮ Proceed with all n− 2 elements of the sequence, and, at the ith step,

◮ let x be the label in position i.
◮ let y be the smallest label that does not appear at the ith or later position

and has not yet been marked as “finished”.
◮ add the edge xy, and
◮ mark y as finished.

◮ Join the two remaining unfinished vertices with an edge.
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Trees from Sequences

Now we describe how to produce a tree from a Prüfer sequence.

◮ Begin with a forest having n isolated vertices labeled 1, 2, . . . , n.
◮ Proceed with all n− 2 elements of the sequence, and, at the ith step,

◮ let x be the label in position i.
◮ let y be the smallest label that does not appear at the ith or later position

and has not yet been marked as “finished”.
◮ add the edge xy, and
◮ mark y as finished.

◮ Join the two remaining unfinished vertices with an edge.
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Trees from Sequences

Now we describe how to produce a tree from a Prüfer sequence.

◮ Begin with a forest having n isolated vertices labeled 1, 2, . . . , n.
◮ Proceed with all n− 2 elements of the sequence, and, at the ith step,

◮ let x be the label in position i.
◮ let y be the smallest label that does not appear at the ith or later position

and has not yet been marked as “finished”.
◮ add the edge xy, and
◮ mark y as finished.

◮ Join the two remaining unfinished vertices with an edge.
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Trees from Sequences

Now we describe how to produce a tree from a Prüfer sequence.

◮ Begin with a forest having n isolated vertices labeled 1, 2, . . . , n.
◮ Proceed with all n− 2 elements of the sequence, and, at the ith step,

◮ let x be the label in position i.
◮ let y be the smallest label that does not appear at the ith or later position

and has not yet been marked as “finished”.
◮ add the edge xy, and
◮ mark y as finished.

◮ Join the two remaining unfinished vertices with an edge.

Example 2.10

Sequence: 6, 2, 2, 6, 1, 8, 8, 1, 7 Finished: 3, 4, 5, 2, 6, 9, 10, 8, 1
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Proof of Cayley’s Formula

Now we show that the two operations described previously are inverses of each
other.
First, we show that when we start with a sequence, we indeed produce a tree.
Note that we start of the ith step with n− i+ 1 unfinished vertices and
n− i− 1 remaining vertices in the sequence. Therefore y can be chosen as
described, and the algorithm produces a graph of order n and size n− 1. Each
step joins two unfinished vertices and marks one of them as finished. Thus
after i steps the graph has n− i components, each containing exactly one
unfinished vertex. The final step connects the graph thereby creating a tree.
Now we need to show that the obtained tree is the same as the one that
created the sequence. In each step of computing the sequence, we can mark
the deleted leaf as “finished”. The labels that do not yet appear in the
remainder of the sequence we generate are the unfinished vertices that are not
leaves. Because the next leaf deleted is the least, the edge deleted in each
stage of computing the sequence is precisely the edge added when constructing
the graph. Therefore the correspondence between the sequences and labeled
trees is a bijection.
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Counting Trees with Prescribed Degrees

Corollary 2.11

The number of trees with vertex set {1, 2, . . . , n} in which vertices 1, 2, . . . , n
have respective degrees d1, d2, . . . , dn is

(n− 2)!
∏

(di − 1)!
.

Proof.

When we delete vertex x from T when constructing the Prüfer sequence, all
neighbors of x except for one have already been deleted. We record x in the
sequence once for each deleted neighbor and x does not appear in the sequence
again. Hence x appears in the sequence d(x)− 1 times.
Therefore we count the trees by counting sequences of length n− 2 having
di − 1 copies of i, for each i. If we distinguish between various copies of i, then
there are (n− 2)! such sequences. Since we really cannot distinguish between
the copies, we have over-counted by a factor of (di − 1)! for each i.
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Minors

Definition 2.12

◮ If e is an edge of G incident with two distinct vertices u and v, then the
contraction of e is the operation of deleting e and identifying u and v.

◮ Contracting a loop is the same as deleting it.

◮ The graph obtained from G by contracting e is denoted G/e (extended to
G/F if F ⊆ E(G)).

◮ A graph H is a minor of G if it can be obtained from G by a sequence of
operation each of which is one of the following:
◮ deleting an edge;
◮ deleting an isolated vertex; and
◮ contracting an edge.

◮ We write H 6m G to indicate that H is isomorphic to a minor of G.

Note 2.13

The order of operations of deleting and contracting to get a minor of a graph is
irrelevant.
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Theorem 2.14

Let τ (G) denote the number of distinct spanning trees of a (labeled) graph G.
If e is a non-loop edge of G, then τ (G) = τ (G \ e) + τ (G/e).
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τ (G) = τ (G \ e) + τ (G/e) = 4 + 4 = 8
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Proof of Spanning Tree Formula

◮ The spanning trees of G \ e are precisely the spanning trees of G that
avoid e.

◮ The spanning trees of G/e correspond to the spanning trees of G using e.
(If T is a spanning tree of G/e, then E(T ) ∪ e form the edge-set of a
spanning tree of G.)

◮ The formula follows.

Using the deletion-contraction formula for calculating the number of spanning
trees is inefficient. A much more efficient method is to construct a special
matrix, called the Laplacian of the graph, and to compute its determinant.
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Characterization of Bipartite Graphs

Theorem 3.3

A graph is bipartite if and only if it has no cycles of odd length.

Proof.

Necessity is clear: every cycle of G must alternate between a vertex in X and a
vertex in Y , and so it must be of even length.
For sufficiency, we may assume that G is connected. Now, pick a vertex x of
G, and let X be the set of vertices whose distance from x is even, and let Y be
the set of vertices whose distance from x is odd. Clearly, {X, Y } is a partition
of V (G). Suppose now that some two vertices of X or some two vertices of Y ,
say x1 and x2, are adjacent. Let P1 be a shortest path from x to x1 and let P2

be a shortest path from x to x2. Let u be vertex on P1 ∩ P2 that the the
farthest from x, and let P ′

1 and P ′
2 be the subpaths of, respectively, P1 and P2,

from u to x1 and from u to x2. Then P
′
1 and P ′

2 have the same length, and so
the cycle P ′

1 ∪ P ′
2 ∪ x1x2 has odd length. This proves that x1 and x2 cannot be

adjacent.
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◮ A matching is a set of pairwise non-adjacent edges.

◮ A matching is perfect (is a 1-factor) if it meets every vertex of the graph.

◮ A matching saturates the set X of vertices if each vertex in X is incident
with an edge in the matching.
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Does G have a matching
that saturates all vertices on
the left side?
No! Look at S, which has 3
elements, and N(S), which
has only 2 elements.
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Augmenting Paths

Theorem 3.9 (Berge 1957)

A matching M in a bipartite graph G is a maximum matching in G if and only
if G has no M -augmenting path.

Proof.

It is clear that if G has an M -augmenting path, then M is not maximum.
Suppose now that G has a matching M ′ that is larger than M and let F be
the subgraph of G induced by the symmetric difference of M and M ′, that is,
by all those edges that are in exactly one of M and M ′. The the maximum
degree of F is at most 2, each component of F is a path or a cycle. Every path
and every cycle in F alternates between edges in M and edges in M ′. Thus
each cycle in F has the same number of edges from M and from M ′. Since
|M ′| > |M |, there must be a component of F that is a path with more edges
from M ′ than from M—an M -augmenting path.
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Proof of Hall’s Theorem

Recall the Hall’s Condition: |N(S)| ≥ |S| for every S ⊆ X.
Necessity is clear.
To prove sufficiency, suppose the Hall’s condition holds, let M be a maximum
matching, and suppose u ∈ X is unsaturated. Let S and T be subsets of X
and Y , respectively, that are reachable from u by M -alternating paths. These
paths reach Y from u along edges not in M , and reach X along edges in M .
Hence every vertex in S − u is reached along an edge in M from a vertex in T .
Since there are no augmenting paths, every vertex in T is saturated. Hence the
edges of M establish a bijection between T and S − u. Note that an edge
between S and y ∈ Y − T would be an edge not in M , and thus create an
M -augmenting path to y, which contradicts y /∈ T . Hence T = N(S), and
|N(S)| = |T | = |S| − 1 < |S|; a contradiction.
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Definition 3.10

◮ A graph is regular if all vertices have the same degree.

◮ If every vertex degree has the same value k, then the graph is k-regular.

◮ A 3-regular graph is sometimes called cubic.

Corollary 3.11

If G is a k-regular bipartite graph for some k > 0, then G has a perfect
matching.

Proof.

Counting the edges by endpoints in X and by endpoints in Y , we conclude that
k|X| = k|Y |, and so |X| = |Y |, and so every matching saturating X is perfect.
Consider S ⊆ X, and suppose that there are m edges between S and N(S).
Since G is k-regular, we have m = k|S|. Since these m edges are incident to
N(S), we have m ≤ k|N(S)|. Hence k|S| ≤ k|N(S)| and the Hall’s condition
holds.
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Definition 3.12

◮ A vertex cover of G is a set S of vertices such that every edge of G is
incident with at least one element of S.

◮ The vertices in S cover the edges of G.

Theorem 3.13 (König-Egerváry 1931)

If G is a bipartite graph, then the maximum size of a matching in G equals the
minimum size of a vertex cover in G.

Easy Direction.

Since distinct vertices must be used to cover the edges of a matching, we have
|U | ≥ |M | whenever U is a vertex cover and M is a matching.
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Proof of König-Egerváry Theorem, Continued

Given a minimum vertex cover U , we
construct a matching of size |U |. Suppose
G has bipartition {X, Y }. Let R = U ∩X
and T = U ∩ Y . Let H and H ′ be the
subgraphs of G induced by R∪ (Y −T ) and
T ∪ (X −R), respectively. We use 3.6 to
show H has a matching saturating R, and
H ′ has a matching saturating T . Suppose
S ⊆ R and consider NH (S) ⊆ Y − T . If
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satisfies the Hall’s condition and so has a
matching of size |R|.
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construct a matching of size |U |. Suppose
G has bipartition {X, Y }. Let R = U ∩X
and T = U ∩ Y . Let H and H ′ be the
subgraphs of G induced by R ∪ (Y − T )
and T ∪ (X −R), respectively. We use 3.6
to show H has a matching saturating R,
and H ′ has a matching saturating T .
Suppose S ⊆ R and consider
NH(S) ⊆ Y − T . If |NH(S)| < |S|, then
we can substitute NH(S) for S in U to
obtain a smaller vertex cover, which is
impossible. Hence H satisfies the Hall’s
condition and so has a matching of size |R|.
Likewise, H ′ has a matching of size |T |.
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Given a minimum vertex cover U , we
construct a matching of size |U |. Suppose
G has bipartition {X, Y }. Let R = U ∩X
and T = U ∩ Y . Let H and H ′ be the
subgraphs of G induced by R ∪ (Y − T )
and T ∪ (X −R), respectively. We use 3.6
to show H has a matching saturating R,
and H ′ has a matching saturating T .
Suppose S ⊆ R and consider
NH(S) ⊆ Y − T . If |NH(S)| < |S|, then
we can substitute NH(S) for S in U to
obtain a smaller vertex cover, which is
impossible. Hence H satisfies the Hall’s
condition and so has a matching of size |R|.
Likewise, H ′ has a matching of size |T |.
The union of these two matchings is a
matching of G of size |U |.
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Matchings in Non-Bipartite Graphs

Note 3.14

◮ Hall’s Marriage Theorem 3.6 does not make sense for non-bipartite graphs.

◮ König-Egerváry Theorem 3.13 fails, in general, for non-bipartite graphs.

Does the graph below have a perfect matching?
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No, since removing the two vertices in the middle leaves more than two
components of odd order.
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Tutte’s 1-Factor Theorem

Definition 3.15

◮ A graph (or component) is odd (even) if it has odd (even) order.

◮ The number of odd components in a graph G will be denoted by q(G).

Theorem 3.16 (Tutte 1-Factor)

A graph G has a perfect matching if and only if q(G− S) ≤ |S| for every
S ⊆ V (G).

Necessity.

If Q is an odd component of G− S, then a perfect matching must contain at
least one edge between Q and S. Since edges in a matching are non-adjacent,
the condition follows.
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Proof of Tutte’s 1-Factor Theorem

Recall the Tutte Condition: q(G− S) ≤ |S| for every S ⊆ V (G).
We assume that the condition holds and produce a perfect matching. We
proceed by induction on the order of G. The claim is trivial if |G| ≤ 2.

Now suppose that the Tutte Condition holds for G, which has order n > 2, and
that the theorem holds for all graphs of smaller order. First note that
q(G− v) = 1 = |{v}|, and so we may pick S0 to be a maximal subset of V (G)
such that q(G− S0) = |S0|. Let Q1, Q2, . . . , Qm be the odd components of
G− S0, and let D1, D2, . . . , Dk be the even components of G − S0. We will
show that:

(1) each Dj has a perfect matching;

(2) if v ∈ V (Qi), then Qi − v has a perfect matching; and

(3) G contains a set s1v1, s2v2, . . . , smvm of edges such that
S0 = {s1, s2, . . . , sm} and vi ∈ V (Qi) for all i.

Note that after (1)–(3) are established, the proof is complete.
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To prove (1), which says that every Dj has a perfect matching, we want to
apply the induction hypothesis, and so we need to verify that every Dj satisfies
the Tutte Condition. Suppose S ⊆ V (Dj). Since the Tutte Condition holds for
G, we have q(G− (S ∪ S0)) ≤ |S ∪ S0| = |S|+ |S0|.
To count the odd components of G − (S ∪ S0) = (G− S0)− S, note that
when S is deleted from G− S0, none of the Qi’s is affected, and so
q(G− (S ∪ S0)) = q(G− S0) + q(Dj − S) = |S0|+ q(Dj − S). Combining the
previous inequality with the last equation, we get
|S0|+ q(Dj − S) ≤ |S|+ |S0|, and so q(Dj − S) ≤ |S|, which means that
Tutte Condition holds for Dj , as required.
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= q(G− S0)− 1 + q(Qi − v − S) ≥ |S0| − 1 + |S|+ 2. But that implies that
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and so (2) follows.
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of edges such that S0 = {s1, s2, . . . , sm} and vi ∈ V (Qi) for all i. For that, we
form a bipartite graph H with X = {Q1, Q2, . . . , Qm} and Y = S0, in which
Qi is joined to a vertex sj in S0 if and only if G has an edge from sj to Qi. To
prove (3), we need to show that H has a perfect matching. We need to check
that H satisfies the Hall Condition. Let A ⊆ X. But NH(A) is also a set of
vertices of G, so G satisfies the Tutte Condition for NH(A), that is,
q(G−NH(A)) ≤ |NH(A)|. But every odd component Q of G− S0 that is in
A is also a component of G−NH(A). Thus q(G−NH (A)) ≥ |A|, and so
|NH (A)| ≥ |A|, as required. Hence H has a perfect matching, and hence (3) is
proved, and so is Tutte’s 1-Factor Theorem.
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Homework Set 2

Problem 4

Derive the sufficiency (the non-obvious direction) of the Hall’s Marriage
Theorem from the Tutte’s 1-Factor Theorem.

Problem 5

Prove that a 3-regular simple graph has a 1-factor if and only if it decomposes
into copies of P4.

Problem 6

Prove that a tree T has a perfect matching if and only if q(T − v) = 1 for
every v ∈ V (T ). Do not invoke Tutte’s 1-Factor Theorem.
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A an edge e of G is a cut-edge if G \ e has more connected components than G.

Corollary 3.18 (Petersen 1891)

Every simple 3-regular graph with no cut-edge has a perfect matching.

Proof.

We prove that G satisfies the Tutte Condition. Let S ⊆ V (G), and count the
edges between S and the odd components of G−S. Since G is 3-regular, every
vertex in S is incident to at most three such edges. If each odd component H
of G− S is incident to at least three such edges, then 3q(G− S) ≤ 3|S|, and
the Tutte Condition holds. Let m be the number of edges from S to H . The
sum of vertex degrees in H is 3|H | −m, which must be even. Since |H | is odd,
m must be also odd, but it cannot be 1 since G would have a cut-edge. Thus
m must be at least 3 and the Tutte Condition holds.
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Characterization of Eulerian Graphs

Theorem 4.3 (Euler 1873)

A graph is Eulerian if and only if all its vertices have even degrees and all of its
edges belong to a single component.

Lemma 4.4

Non-trivial maximal trails in graphs with all degrees even are closed.

Proof.

Let T be a maximal non-trivial trail in some graph G with all degrees even.
Since T is maximal, it includes all edges of G incident with its final vertex v. If
T is not closed, then the degree of v must be odd, which is impossible.
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Proof of Euler’s Theorem

Necessity is clear.
For sufficiency, suppose that G is non-trivial with all degrees even and all edges
in same component. Let T be a trail of maximum length. By Lemma 4.4, T is
closed. Let G′ = G \ E(T ) and suppose G′ is non-trivial. Since the degree of
every vertex in G and in T is even, so it is in G′. Since all edges of G lie in the
same component, there is an edge e of G′ adjacent to an edge in T . Let T ′ be
a maximal trail in G′ with e as its first edge. Again by Lemma 4.4, T ′ is closed.
Hence we may detour T along T ′ to produce a longer trail; a contradiction.
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Vertex Connectivity

Definition 5.1

◮ A separating set or a vertex cut of a graph G is a set S ⊆ V (G) such that
G− S has more than one component.

◮ Vertex connectivity or connectivity κ(G) of a graph G is defined as
follows:
◮ κ(G) = 0 if G is disconnected;
◮ κ(G) = |G| − 1 if G is connected, but has no pair of distinct non-adjacent

vertices.
◮ κ(G) = j if G is connected, but has a pair of non-adjacent vertices, and j is

the smallest integer such that G has a j-element vertex cut.

◮ If k is a positive integer, then G is k-connected or k-vertex-connected if
k ≤ κ(G).

Note 5.2

◮ Vertex connectivity is not affected by adding or deleting loops and parallel
edges.

◮ K1 is connected although κ(K1) = 0.
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Connectivity Examples

Example 5.3

◮ κ(Kn) = n− 1 for n ≥ 2;

◮ κ(Km,n) = min(m,n);

◮ If T is a non-trivial tree, then κ(T ) = 1.

◮ κ(Cn) = 2 for all n ≥ 3.

◮ An n-wheel Wn is obtained from Cn by adding a new vertex and joining it
to all vertices of Cn. If n ≥ 3, then κ(Wn) = 3.
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in [S, S].



Whitney’s Theorem

Note 5.6

The edge connectivity of a graph is unaffected by adding or deleting loops, but
is affected by adding and deleting edges in parallel.

Theorem 5.7 (Whitney 1932)

If G is graph with |G| > 1, then κ(G) ≤ κ′(G) ≤ δ(G).

Proof.

The edges incident to a vertex form a disconnecting set, so κ′ ≤ δ.
Clearly, κ(G) ≤ |G| − 1. Suppose [S, S] is a minimum edge cut of size
k′ = κ′(G). If every vertex in S is adjacent to every vertex in S, then
k′ = |S||S| ≥ |G| − 1, and the inequality follows. Hence we may assume that
there are vertices s ∈ S and s ∈ S that are non-adjacent. Let T be the vertex
set consisting of all neighbors of s in S and all vertices in S − s that have
neighbors in S. Then T is a vertex cut consisting of one endpoint of each edge
in [S, S]. Hence κ ≤ κ′.
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κ = 1 < κ′ = 2 < δ = 3

Theorem 5.9

If G is a connected graph and S is a non-empty proper subset of V (G), then
F = [S, S] is a bond if and only if G \ F has two components. Equivalently, if
and only if the subgraphs of G induced by each of S and S are connected.

Proof.

If G \ F has two components, then F is a bond, since G \ F ′ is connected for
every proper subset F ′ of F .
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no edges between A and B.
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Theorem 5.9

If G is a connected graph and S is a non-empty proper subset of V (G), then
F = [S, S] is a bond if and only if G \ F has two components. Equivalently, if
and only if the subgraphs of G induced by each of S and S are connected.

Proof.

If G \ F has two components, then F is a bond, since G \ F ′ is connected for
every proper subset F ′ of F .
If G \ F has more than two components, then we may assume S = A ∪B with
no edges between A and B. Then [A,A] is an edge cut which is a proper
subset of F ; a contradiction.
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Tutte Connectivity vs. Vertex Connectivity

Theorem 5.12

If G is a graph on at least 3 vertices and G ≇ K3, then the Tutte connectivity
of G is min(κ(G), g(G)), where g(G) is the girth of G, that is, the length of a
shortest cycle in G.

Proof: Exercise.

Definition 5.13

◮ A component of a graph G is a maximal subgraph of G that has Tutte
connectivity at least 1.

◮ A block of a graph G is a maximal subgraph of G that has Tutte
connectivity at least 2.

Note 5.14

A block of a non-empty graph is an isolated vertex, a loop-graph, a graph on
two vertices with a positive number of edges between those vertices, or is
vertex-2-connected.
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Whitney’s Characterization of 2-Connected Graphs

Definition 5.18

Two paths are internally-disjoint if neither contains a non-endpoint of the other.

Theorem 5.19 (Whitney)

A graph with at least three vertices is 2-connected if and only if each pair u
and v of vertices is connected by a pair internally-disjoint uv-paths.

Proof.

If G has two internally-disjoint uv-paths, then deletion of one vertex cannot
separate u from v. Hence G has no one-element vertex-cuts and so is
2-connected.
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For the converse, suppose that G is 2-connected. We prove by induction on
d(u, v) that G has two internally-disjoint uv-paths. When d(u, v) = 1, the
graph G \ uv is connected since κ′(G) ≥ κ(G) ≥ 2. A uv-path in G \ uv is
internally disjoint from the uv-path consisting of the edge uv only.
For the induction step, consider d(u, v) = k > 1 and assume that G has
internally-disjoint xy-paths whenever 1 ≤ d(x, y) < k. Let w be the vertex just
before v on a shortest uv-path. Then d(u,w) = k − 1 and, by the induction
hypothesis, G has two internally-disjoint uw-paths P and Q. Since G− w is
connected, it has a uv-path R. If R meets P and Q only in u, then the
conclusion follows. Let z be the last vertex on R that belongs to P ∪Q. By
symmetry, we may assume that z ∈ V (P ). We combine the uz-subpath of P
with the zv-subpath of R to obtain a uv-path internally-disjoint from Q ∪ wv.
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Expansion Lemma

Lemma 5.20 (Expansion Lemma)

If G is a k-connected graph and G′ is obtained from G by adding a new vertex
y adjacent to at least k vertices of G, then G′ is also k-connected.

Proof.

Suppose S is a separating set of G′. If y ∈ S, then S − y separates G, so
|S| ≥ k + 1. If y /∈ S and N(y) ⊆ S, then |S| ≥ k. Otherwise, S must
separate G, and again |S| ≥ k.
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Theorem 5.21

If G is simple and |G| ≥ 3, then the following are equivalent (and characterize
simple 2-connected graphs):

(A) G is connected and has no cut-vertex;

(B) For every two vertices x and y of G, there are two internally-disjoint
xy-paths;

(C) For every two vertices x and y of G, there is a cycle through x and y.

(D) δ ≥ 1 and every pair of edges of G lies on a common cycle.

Proof.

Whitney’s Theorem 5.19 establishes the equivalence of (A) and (B). Clearly,
(B) and (C) are equivalent. To see that (D) implies (C), apply (D) to edges
incident to the desired x and y.
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(A) G is connected and has no cut-vertex;

(C) For every two vertices x and y of G, there is a cycle through x and y.

(D) δ ≥ 1 and every pair of edges of G lies on a common cycle.

We prove that (A) and (C) imply (D). Suppose G is 2-connected and uv and
xy are edges of G. Add to G vertices w and z, and connect w with u and v,
and connect z to x and y. By The Expansion Lemma 5.20, the resulting graph
G′ is also 2-connected. Hence w and z lie on a common cycle C′ of G′.
Replace the paths uwv and xyz by uv and xz, respectively, to obtain the
desired cycle of G.
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Definition 5.22

◮ Subdividing an edge uv of a graph G is the operation of deleting uv and
adding a path uwv through a new vertex w.

◮ A graph G is a subdivision of a graph H if G can be obtained from H by
successively subdividing (zero or more) edges.

◮ A graph H is a topological minor of G, written H 6t G, if a subgraph of
G is a subdivision of H .

◮ A graph is a topological minor of G if it can be obtained from G by a
sequence of operations each of which is one of the following:
◮ deleting an edge;
◮ deleting a vertex; and
◮ contracting an edge incident with a vertex of degree two (un-subdividing an

edge).
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Corollary 5.23

A subdivision of a 2-connected graph is also 2-connected.

Proof.

Suppose G′ is formed by subdividing an edge uv of G with a new vertex w. By
Theorem 5.21, it suffices to find a cycle through two arbitrary edges e and f of
G′. If e, f ∈ E(G), then we can use the cycle of G, unless it uses uv, in which
case we reroute the cycle through w. When e ∈ E(G) and f ∈ {uw, wv}, we
modify a cycle passing through e and uv. When {e, f} = {uw, wv}, we modify
a cycle through uv.
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Theorem 5.26 (Whitney’s Ear Decomposition)

A simple graph is 2-connected if and only if it has an ear decomposition.
Furthermore, every cycle in a 2-connected graph is the initial cycle of some ear
decomposition.

Proof.

First we prove that graph with an ear decomposition is 2-connected. Since
cycles in simple graphs are 2-connected, it suffices to show that path addition
preserves 2-connectedness. Let u and v be the endpoints of an ear P to be
added to a 2-connected graph G. Adding an edge e joining u and v (if u and v
are non-adjacent) cannot reduce vertex-connectivity, so G ∪ e is 2-connected.
A succession of subdivions covers G ∪ e into G ∪ P . By Corollary 5.23, each
subdivision preserves 2-connectedness.
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Now, given a 2-connected graph G, we build an ear decomposition of G from a
cycle C of G. Let G0 = C. Suppose we have built up a subgraph Gi by adding
ears. If Gi 6= G, then we may choose an edge uv of G \E(Gi) and an edge
xy ∈ E(Gi). Because G is 2-connected, uv and xy lie on a common cycle C′.
Let P be the path of C that contains uv and exactly two vertices of Gi, one at
each end of P . Now P is an ear that can be added to Gi to obtain a larger
subgraph Gi+1 of G. The process ends when all edges of G have been
absorbed.
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Closed-Ear Decomposition

Definition 5.27

A closed-ear decomposition of a graph G is a partition of E(G) into sets R0,
R1, . . . , Rk such that R0 is a cycle and Ri for i > 0 is either a path addition
or a cycle with exactly one vertex in R0 ∪R1 ∪ . . . Ri−1 (closed ear).

Theorem 5.28

A simple graph is 2-edge-connected if and only if it has a closed-ear
decomposition. Moreover, every cycle in a 2-edge-connected graph is the initial
cycle in some closed-ear decomposition.

Proof omitted.



The Menger Theorem

Theorem 5.29 (Menger 1927)

If x and y are non-adjacent distinct vertices of a graph G, then the minimum
size of a vertex-cut separating x from y equals the maximum number of
pairwise internally-disjoint xy-paths.



The Menger Theorem

Theorem 5.29 (Menger 1927)

If x and y are non-adjacent distinct vertices of a graph G, then the minimum
size of a vertex-cut separating x from y equals the maximum number of
pairwise internally-disjoint xy-paths.

Proof.

Let κ(x, y) denote the minimum size of a vertex-cut separating x from y.



The Menger Theorem

Theorem 5.29 (Menger 1927)

If x and y are non-adjacent distinct vertices of a graph G, then the minimum
size of a vertex-cut separating x from y equals the maximum number of
pairwise internally-disjoint xy-paths.

Proof.

Let κ(x, y) denote the minimum size of a vertex-cut separating x from y. Let
λ(x, y) denote the maximum number of pairwise internally-disjoint xy-paths.



The Menger Theorem

Theorem 5.29 (Menger 1927)

If x and y are non-adjacent distinct vertices of a graph G, then the minimum
size of a vertex-cut separating x from y equals the maximum number of
pairwise internally-disjoint xy-paths.

Proof.

Let κ(x, y) denote the minimum size of a vertex-cut separating x from y. Let
λ(x, y) denote the maximum number of pairwise internally-disjoint xy-paths.
An vertex-cut separating x from y must contain an internal vertex from every
xy-path, and so κ(x, y) ≥ λ(x, y).



The Menger Theorem

Theorem 5.29 (Menger 1927)

If x and y are non-adjacent distinct vertices of a graph G, then the minimum
size of a vertex-cut separating x from y equals the maximum number of
pairwise internally-disjoint xy-paths.

Proof.

Let κ(x, y) denote the minimum size of a vertex-cut separating x from y. Let
λ(x, y) denote the maximum number of pairwise internally-disjoint xy-paths.
An vertex-cut separating x from y must contain an internal vertex from every
xy-path, and so κ(x, y) ≥ λ(x, y).
To prove the opposite inequality, we use induction on |G|.



The Menger Theorem

Theorem 5.29 (Menger 1927)

If x and y are non-adjacent distinct vertices of a graph G, then the minimum
size of a vertex-cut separating x from y equals the maximum number of
pairwise internally-disjoint xy-paths.

Proof.

Let κ(x, y) denote the minimum size of a vertex-cut separating x from y. Let
λ(x, y) denote the maximum number of pairwise internally-disjoint xy-paths.
An vertex-cut separating x from y must contain an internal vertex from every
xy-path, and so κ(x, y) ≥ λ(x, y).
To prove the opposite inequality, we use induction on |G|. If |G| = 2, then
κ(x, y) = λ(x, y) = 0.



The Menger Theorem

Theorem 5.29 (Menger 1927)

If x and y are non-adjacent distinct vertices of a graph G, then the minimum
size of a vertex-cut separating x from y equals the maximum number of
pairwise internally-disjoint xy-paths.

Proof.

Let κ(x, y) denote the minimum size of a vertex-cut separating x from y. Let
λ(x, y) denote the maximum number of pairwise internally-disjoint xy-paths.
An vertex-cut separating x from y must contain an internal vertex from every
xy-path, and so κ(x, y) ≥ λ(x, y).
To prove the opposite inequality, we use induction on |G|. If |G| = 2, then
κ(x, y) = λ(x, y) = 0. For the induction step, suppose |G| > 2 and let
k = κ(x, y); we construct k pairwise internally-disjoint xy-paths.



Proof of the Menger Theorem, Case 1

Case 1: G has a minimum xy-vertex-cut S not containing N(x) and not
containing N(y).



Proof of the Menger Theorem, Case 1

Case 1: G has a minimum xy-vertex-cut S not containing N(x) and not
containing N(y). Let V1 be the set of vertices on xS-paths, and let V2 be the
set of vertices on Sy-paths.



Proof of the Menger Theorem, Case 1

Case 1: G has a minimum xy-vertex-cut S not containing N(x) and not
containing N(y). Let V1 be the set of vertices on xS-paths, and let V2 be the
set of vertices on Sy-paths. Clearly, V1 ∩ V2 = S.



Proof of the Menger Theorem, Case 1

Case 1: G has a minimum xy-vertex-cut S not containing N(x) and not
containing N(y). Let V1 be the set of vertices on xS-paths, and let V2 be the
set of vertices on Sy-paths. Clearly, V1 ∩ V2 = S. Form H1 from the subgraph
of G induced by V1 by adding a vertex y′ and connecting it to all edges in S.



Proof of the Menger Theorem, Case 1

Case 1: G has a minimum xy-vertex-cut S not containing N(x) and not
containing N(y). Let V1 be the set of vertices on xS-paths, and let V2 be the
set of vertices on Sy-paths. Clearly, V1 ∩ V2 = S. Form H1 from the subgraph
of G induced by V1 by adding a vertex y′ and connecting it to all edges in S.
Similarly, form H2 from the subgraph of G induced by V2 by adding a vertex x′

and connecting it to all edges in S.



Proof of the Menger Theorem, Case 1

Case 1: G has a minimum xy-vertex-cut S not containing N(x) and not
containing N(y). Let V1 be the set of vertices on xS-paths, and let V2 be the
set of vertices on Sy-paths. Clearly, V1 ∩ V2 = S. Form H1 from the subgraph
of G induced by V1 by adding a vertex y′ and connecting it to all edges in S.
Similarly, form H2 from the subgraph of G induced by V2 by adding a vertex x′

and connecting it to all edges in S. Every xy-path in G starts with an xS-path
(which is contained in H1),



Proof of the Menger Theorem, Case 1

Case 1: G has a minimum xy-vertex-cut S not containing N(x) and not
containing N(y). Let V1 be the set of vertices on xS-paths, and let V2 be the
set of vertices on Sy-paths. Clearly, V1 ∩ V2 = S. Form H1 from the subgraph
of G induced by V1 by adding a vertex y′ and connecting it to all edges in S.
Similarly, form H2 from the subgraph of G induced by V2 by adding a vertex x′

and connecting it to all edges in S. Every xy-path in G starts with an xS-path
(which is contained in H1), so every xy′-cut in H1 is an xy-cut in G.



Proof of the Menger Theorem, Case 1

Case 1: G has a minimum xy-vertex-cut S not containing N(x) and not
containing N(y). Let V1 be the set of vertices on xS-paths, and let V2 be the
set of vertices on Sy-paths. Clearly, V1 ∩ V2 = S. Form H1 from the subgraph
of G induced by V1 by adding a vertex y′ and connecting it to all edges in S.
Similarly, form H2 from the subgraph of G induced by V2 by adding a vertex x′

and connecting it to all edges in S. Every xy-path in G starts with an xS-path
(which is contained in H1), so every xy′-cut in H1 is an xy-cut in G. Hence
κH1

(x, y′) = k.



Proof of the Menger Theorem, Case 1

Case 1: G has a minimum xy-vertex-cut S not containing N(x) and not
containing N(y). Let V1 be the set of vertices on xS-paths, and let V2 be the
set of vertices on Sy-paths. Clearly, V1 ∩ V2 = S. Form H1 from the subgraph
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Case 2: Every minimum xy-vertex-cut contains N(x) or N(y). Since N(x) and
N(y) are themselves xy-vertex-cuts, the condition implies that that there are
no minimum xy-vertex-cuts other than N(x) and N(y).
If G has a vertex v outside {x, y} ∪N(x) ∪N(y), then v is in no minimum
xy-vertex-cut; hence κG−v(x, y) = k and applying the induction hypothesis to
G− v yields the desired xy-paths in G.
If v ∈ N(x) ∩N(y), then v appears in every xy-vertex-cut, and so
kG−v(x, y) = k − 1. Now, applying the induction hypothesis to G − v yields
k − 1 xy-paths, which combine with the path xvy to get the desired k paths.
We may thus assume that N(x) and N(y) are disjoint and together with {x, y}
form the entire V (G). Let G′ be the bipartite graph with bipartition N(x) and
N(y) and the edge set [N(x), N(y)]. Every xy-path in G uses some edge of
G′, and so the xy-vertex-cuts are precisely the vertex covers of G′. By the
König-Egerváry Theorem 3.13, G has a matching of size k. The edges of the
matching together with the edges incident with x and y form the desired k
paths.
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Modify G to obtain G′ by adding two vertices s and t and two new edges sx
and yt. This operation does not affect κ′(x, y) and λ′(x, y). A set of edges
disconnects x from y in G if and only if the corresponding vertices of L(G′)
form a set of edges separating sx from yt. Similarly, edge-disjoint xy-paths in
G become internally-disjoint paths from sx to yt in L(G′), and vice versa.
Applying the vertex version of the Menger Theorem 5.29 yields
κ′
G(x, y) = κL(G′)(sx, yt) = λL(G′)(sx, yt) = λ′

G(x, y).
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The connectivity of G equals the maximum k such that λ(x, y) ≥ k for all
vertices x and y of G. The edge connectivity of G equals the maximum k such
that λ′(x, y) ≥ k for all vertices x and y of G.

Proof.

The edge version follows immediately from Theorem 5.30 since
κ′(G) = minx,y∈V (G) κ

′(x, y). For connectivity, we get κ(x, y) = λ(x, y) if x
and y are non-adjacent, and κ(G) is the minimum of these values. If x and y
are adjacent, we get
λG(x, y) = 1 + λG\xy(x, y) = 1 + κG\xy(x, y) ≥ 1 + κ(G \ xy) ≥ κ(G).
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If G is a Tutte-3-connected graph on at least four vertices that is not a wheel,
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Lemma 5.35 (Thomassen 1980)

Every 3-connected graph G on at least five vertices has an edge e such that
G/e is 3-connected.
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Assume that for each edge e the graph G/e is not 3-connected, and so has a
2-element vertex cut. Since G is 3-connected, one of the elements of this
vertex cut must come from contracting e = xy. Let z be the other element of
this vertex cut. Then {x, y, z} is a vertex cut in G. Choose e = xy and the
corresponding z so that the graph G − {x, y, z} has a component H with the
largest possible order. Let H ′ be another component of G− {x, y, z}. Since
{x, y, z} is a minimal vertex cut, each of x, y, and z has a neighbor in ech of
H and H ′. Let u be a neighbor of z in H ′, and let v be a vertex such that
{z, u, v} disconnects G. The subgraph of G induced by V (H) ∪ {x, y} is
connected. Deleting v from this subgraph (if it occurs there) cannot disconnect
it, since then {z, v} would disconnect G. Therefore all elements of
V (H) ∪ {x, y} − v belong to the same component of G− {z, u, v}, which has
more vertices than H ; a contradiction.
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Case 1: u 6= v0
Look at G/uvk. If this graph is not 3-connected, then G has a vertex-cut of
size 3 containing u and vk. But we concluded that the degree of vk is 3, which
means that the vertex cut containing u and vk separates vk−1 from c, which
are adjacent; a contradiction. This means that G/uvk is not simple. One
possibility of this happening is that u, c, and vk form a triangle, but that would
imply that G has a larger k-fan; a contradiction. Otherwise, u, vk−1, and vk
form a triangle. But then, if k − 1 > 0, the vertex vk−1 would be adjacent to
vk−2, vk, c, and u, which is impossible, the degree of vk−1 is 3. So k − 1 = 0.
In that case, however, v0, v1, c, and u form a 2-fan; again a contradiction.
Case 2: u = v0
Note that v1, v2, . . . , vk have degree 3. So if G contained another vertex, say
z, it would be disconnected from v1, v2, . . . , vk, by deleting v0 and c; which is
impossible. It follows that G is a (k + 1)-wheel, which completes the proof.
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◮ A clique-sum of two graphs G and H is obtained from the disjoint union
of G and H by identifying a complete subgraph of G with a complete
subgraph (of the same order) of H , and then deleting the edges of the
identified subgraph.

◮ If the identified complete subgraph has order k, then the clique-sum is
called k-sum and written G⊕k H .

Example 5.37

◮ A 0-sum is a disjoint union.

◮ A 1-sum consists of two subgraphs that share exactly one vertex.

◮ Every graph can be obtained by repeatedly 0-summing graphs, starting
with connected graphs.

◮ Every connected graph can be obtained by repeatedly 1-summing graphs,
starting with blocks.
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Decomposition of 2-Connected Graphs

Definition 5.38

A 3-block is a cycle of length at least 3, a loopless graph on two vertices with
at least 3 edges between them (co-cycles), or Tutte-3-connected graph.

Theorem 5.39

Every Tutte-2-connected graph of size at least 3 can be obtained by repeatedly
2-summing graphs, starting with 3-blocks. Moreover, in this process, no two
cycles are 2-summed together, and two co-cycles are 2-summed together. The
decomposition is unique.
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Homework Set 3

Problem 7

Suppose G is a graph that is non-trivial, connected, and such that every edge e
is in some two cycles that meet only at e. What is the highest
edge-connectivity of G that can be inferred from these properties?

Problem 8

Find all non-negative integers k for which the following statement is true:
For every simple k-regular graph G on at least two vertices, κ(G) = κ′(G).

Problem 9

Suppose G is a simple r-connected graph of even order with no K1,r+1 as an
induced subgraph for a positive integer r. Prove that G has a perfect matching.
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Polygonal Paths

Note 6.1

A graph may be viewed as a topological space when

◮ the vertices are points;

◮ the edges are homeomorphic images of the unit interval; and

◮ the incidences are reflected by the vertices (points) being in the closure of
the edges.

Definition 6.2

A polygonal curve in the plane is the union of finitely many line segments such
that each segment starts at the end of the previous one and no point lies in
more than one segment, except the end of one segment and the beginning of
the next one coincide.
A simple open polygonal curve is one homeomorphic to a closed interval.
A simple closed polygonal curve is one homeomorphic to a unit circle.
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Plane Graphs

Definition 6.3

◮ A drawing of a graph G is a function that maps each vertex v ∈ V (G) to
a point f(v) in the plane, and each uv-edge to a simple polygonal
f(u)f(v)-curve in the plane.

◮ A point f(e) ∩ f(e′) other than the a common endpoint is a crossing.

◮ A graph is planar if it has a drawing without crossings. Such a drawing is
a planar embedding of G.

◮ A plane graph is a particular drawing of a a graph in the plane with no
crossings.

Note 6.4

A plane embedding corresponds to an embedding of the graph in the sphere
through a stereographic projection.
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Faces

Theorem 6.5 (Jordan Curve Theorem)

If C is a simple closed polygonal curve in the plane, then the complement of C
in the plane consists of two connected components each with C as the
boundary.

Definition 6.6

◮ The connected components of the complement of a plane graph are the
faces of the embedding.

◮ The length of a face is the number of edges in the boundary of the face,
with cut-edges counted twice.

◮ The dual graph G∗ of a non-empty plane graph G is the graph such that
◮ the vertices of G∗ are the faces of G;
◮ the edges of G∗ are the edges of G;
◮ a vertex and an edge of G∗ are incident if and only if the edge is the

boundary of the corresponding face of G.
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Properties of Dual Graphs

Note 6.8

Different graphs may have the same dual. (G∗)∗ = G if and only if G is
connected.

Theorem 6.9

Edges in a plane graph form a cycle if and only if the edges in the dual graph
form a bond.

Proof.

Suppose D is a set of edges of G that contains a cycle. By Jordan Curve
Theorem 6.5, some face u∗ of G lies inside this cycle, and some other v∗ lies
outside. Then every u∗v∗-path in G∗ must contain an edge of D∗.
Conversely, suppose D contains no cycle. Then it is possible to reach every
face of G∗ from every other without crossing D∗. Hence G∗ \D∗ is connected
so D∗ contains no bond.
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Properties of Dual Graphs, Continued

Theorem 6.10

If a plane graph G is connected, then the Tutte connectivity of G is the same
as the Tutte connectivity of G∗.

Proof: Exercise.

Theorem 6.11

The following are equivalent for a plane graph G:

(A) G is bipartite;

(B) every face of G has even length;

(C) G∗ is Eulerian.

Proof.

To see that (A) implies (B), note that the boundary of every face of G is the
union of closed walks, and if the total length is odd, then one of the walks
must be of odd length, and so contain an odd-length cycle.
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laid out as a simple closed polygonal curve. Let F be the region enclosed by C.
Every face of G is completely within F , or completely outside of F . Summing
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Proof, Continued

Conversely, suppose that G has an odd cycle C. Since G has no crossings, C is
laid out as a simple closed polygonal curve. Let F be the region enclosed by C.
Every face of G is completely within F , or completely outside of F . Summing
up the face lengths for the faces inside F gives an even number since every
face is even. This sum counts each edge of C once, and every edge inside F
twice. Hence C is even; a contradiction.
The equivalence of (B) and (C) follows from the fact the the dual graph is
connected and its vertex degrees are the face lengths of G.

Note 6.12

◮ Deleting an edge or a vertex from a plane graph results in a plane graph.

◮ Contracting an edge in a plane graph can be visualized as sliding the two
endvertices towards each other until they meet, pulling all incident edges
along.

◮ Thus the class of planar graphs is minor-closed, that is, all minors of
planar graphs are also planar.
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Theorem 6.13 (Euler’s Formula)

If a connected non-empty plane graph has v vertices, e edges, and f faces,
then v − e+ f = 2.

Proof.

We proceed by induction on v. If v = 1, then G has only loops, each a closed
curve in the embedding. If e = 0, then f = 1, and the formula holds. Each
added loop adds one more edge and one more face, and so the formula holds
when v = 1.
Suppose v > 1. Since G is connected, it has a non-loop edge. Contract such
an edge to obtain a plane graph with v′ = v − 1 vertices, e′ = e− 1 edges, and
f ′ = f faces. Applying the inductive hypothesis, we get v′ − e′ + f ′ = 2, and
so (v − 1) − (e− 1) + (f) = v − e+ f = 2, as desired.
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Corollaries of Euler’s Formula

Note 6.14

◮ Euler’s Formula implies that all plane embeddings of connected graphs
have the same number of faces.

◮ Contracting a non-loop edge of G has the effect of deleting the
corresponding edge in G∗. Similarly, deleting a non-cut edge of G has the
effect of contracting the corresponding edge in G∗.

◮ Euler’s Formula (as stated) fails for disconnected graphs.

Corollary 6.15

If G is a planar graph whose order v is at least 3, whose size is e, and whose
girth g is at least 3 but finite, then

e ≤ (v − 2)g

g − 2
.

If G is simple, then e ≤ 3v − 6.
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Proof

Without loss of generality, we may assume that G is plane and connected. Let
fi denote the number of faces of G of length i. Since every edge appears in
two faces or in the same face twice, we have 2e =

∑

ifi ≥ gf . Substituting
this into Euler’s Formula gives v − e+ 2e/g ≥ 2.

e(
2

g
− 1) ≥ 2− v

e ≤ v − 2
2
g
− g

g

=
(v − 2)g

g − 2

Note that when G is simple, g ≥ 3 and so e ≤ 3v − 6.

Example 6.16

Is K5 planar?
No, since e = 10 > 3v − 6 = 9.
Is K3,3 planar?
No, since

e = 9 >
(v − 2)g

g − 2
= 8.
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Platonic Solids

We want to find all graphs that are

◮ planar,

◮ simple,

◮ 3-connected,

◮ k-regular (k ≥ 3),

◮ l-co-regular (that is, each face has same length l ≥ 3).

We have kv = 2e = lf , and so the Euler’s Formula 6.13 gives us
2e/k − e+ 2e/l = 2. Thus e(2/k − 1 + 2/l) = 2 and

e =
2kl

2k + 2l − kl
.

Then −kl + 2l + 2k > 0, and so −kl + 2l + 2k − 4 > −4, And so
(k − 2)(l − 2) < 4, and so k, l ≥ 3 and k, l ≤ 5.
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Statement of the Kuratowski Theorem

Theorem 6.17 (Kuratowski 1930)

A graph is planar if and only if it has neither K5 nor K3,3 as a topological
minor.

Theorem 6.18 (Wagner)

A graph is planar if and only if it has neither K5 nor K3,3 as a minor.

Lemma 6.19

If F is the edge-set of the boundary of a face of a plane graph G, then G has
an plane embedding in which F is the boundary of the infinite face.

Proof.

Apply stereographic projection twice.
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Minimally No-Planar Graphs

Definition 6.20

A graph is minimally non-planar if it is non-planar, but every proper subgraph
of it is planar.

Lemma 6.21

Every minimal non-planar graph is 2-connected.

Proof.

If G is disconnected, we can embed one component of G inside one face of the
rest of G. Similarly, if G has a cut-vertex v, let G1, G2, . . . , Gk be the
subgraphs of G induced by v together with the components of G − v. By the
minimality of G, these subgraphs are planar. It is easy to see that the plane
embeddings of these subgraphs can be put together to form a plane embedding
of G.
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Kuratowski Graphs and Topological Minors

Lemma 6.22

Suppose G = H1 ⊕2 H2 is non-planar. Then at least one of H1 and H2 is
non-planar.

Proof.

Let e be the common edge of H1 and H2. Suppose both H1 and H2 are
planar. By Lemma 6.19, each of H1 and H2 can be embedded in the plane
with e in the boundary of the infinite face. It is now easy to put together the
embeddings of H1 and H2 into a plane embedding of G.

Definition 6.23

◮ A Kuratowski subgraph is a subgraph isomorphic to a subdivision of K5 or
of K3,3.

◮ A vertex of a graph G is a branch vertex of a Kuratowski subgraph H of
G, if its degree in H exceeds two.
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Lemma 6.24

If G/e has a Kuratowski subgraph, then so does G.

Proof.

Let H be a Kuratowski subgraph of G′ = G/e, and let z be the vertex of G′

obtained by contracting e = xy. If z is not a branch vertex of H , then G also
has a Kuratowski subgraph obtained from H by lengthening a path through z if
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If G/e has a Kuratowski subgraph, then so does G.

Proof.

Let H be a Kuratowski subgraph of G′ = G/e, and let z be the vertex of G′

obtained by contracting e = xy. If z is not a branch vertex of H , then G also
has a Kuratowski subgraph obtained from H by lengthening a path through z if
necessary. If z is a branch vertex of H and at most one of the edges incident to
z in H is incident to x in G, then z can be expanded into xy to lengthen that
path, and y becomes the corresponding branch vertex of a Kuratowski
subgraph of G.
The only remaining case to consider is when H is a subdivision of K5, z is a
branch vertex of H , and each of x and y is incident in G to two of the four
edges incident to z in H . Let u1, u2 be the branch vertices of H that are at
the other ends of paths leaving z on the edges incident with x, and let v1, v2
be the other branch vertices of H . By deleting the edges of the u1u2-path and
the v1v2-path, we obtain a subdivision of K3,3.
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Definition 6.25

A plane embedding is convex if every face except the infinite one is a convex
polygon.

Theorem 6.26 (Tutte 1960–63)

If G is a simple 3-connected graph with neither K5 nor K3,3 as the topological
minor, then G has a convex embedding in the plane with no three vertices on a
line.

Proof.

We proceed by induction on |G|. The only 3-connected simple graph on at
most 4 vertices is K4 and it has such an embedding. Let G be a graph on
n ≥ 5 vertices and suppose the theorem holds for all graphs on fewer than n
vertices.
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2. y has neighbors u, v in C that are in different components of
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Proof of Kuratowski Theorem

Recall: G is planar if and only if neither K5 nor K3,3 is a topological minor of
G.

Proof.

Without loss of generality, we may asume that G is simple. We showed in
Example 6.16 that K5 and K3,3 are both non-planar. Therefore any subdivision
of K3 or of K3,3 is also non-planar, as is any supergraph of such a subdivision.
Suppose the converse implication fails, and G is a counter-example of the
possible smallest order, that is, G is non-planar but has no Kuratowski
subgraph. Then G is minimally non-planar, and, by Lemma 6.21, G is
2-connected. Now, Lemma 6.22 implies that G is 3-connected. But then we
get a contradiction with the Tutte Theorem 6.26, which states that a
3-connected graph with no Kuratowski subgraph is planar.
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Problem 10

Prove that every n-vertex plane graph isomorphic to its dual has 2n− 2 edges.
For each n ≥ 4, construct a simple n-vertex plane graph isomorphic to its dual.

Problem 11

Let G be a connected plane graph such that every vertex of G is incident with
two faces of length four, one face of length six, and no other faces. Use Euler’s
Formula to determine the number of vertices, edges, and faces of G. Draw G.

Problem 12

A plane graph is outerplane if it has a face incident with all the vertices. A
graph is outerplanar if it isomorphic to an outerplane graph. Prove that a graph
is outerplanar if and only if it has neither K4 nor K2,3 as a topological minor.
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◮ A k-coloring of a graph G is a labeling f : V (G) → {1, 2, . . . , k}.
◮ The labels are colors.

◮ The vertices with color i are a color class.

◮ A k-coloring f is proper if f(x) 6= f(y) whenever x and y are adjacent.

◮ The chromatic number χ(G) is the minimum k such that G is k-colorable.

◮ If χ(G) = k, then G is k-chromatic.

◮ If χ(G) = k, but χ(H) < k for every proper subgraph H of G, then G is
k-color-critical or k-critical.

◮ Let ω(G) denote the clique number of G, that is, the order of a largest
complete subgraph of G.

◮ Let α(G) denote the independence number of G, that is, the largest
number of vertices of G no two of which are adjacent.
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If G is a connected simple graph other than a clique and an odd cycle, then
χ(G) ≤ ∆(G).

Proof.

Suppose G is connected, not a clique, not an odd cycle, and let k = ∆(G).
If G is not not regular, then choose vn so that d(vn) < k. Since G is
connected, we can grow a spanning tree of G from vn, assigning indices in the
decreasing order as we reach vertices. Then each vertex vi, other than vn, has
at least one neighbor among vi+1, vi+2, . . . , vn, and so each vertex vi
(including vn) has at most k − 1 neighbors among v1, v2, . . . , vi−1. Hence the
greedy coloring requires at most k colors. In the remaining case, G is k-regular.
If G has a cut-vertex x, then let G′ be the subgraph of G induced by a
component of G− x together with x. Then the degree of x in G′ is less than k,
and so G′ has a proper k-coloring. After permuting the colors, if necessary, it is
easy to combine the k-colorings of such subgraphs into a k-coloring of G.
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3-vertex path with vertices we label v1, vn, v2, in order, such that G− {v1, v2}
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Hence, it suffices to show that every 2-connected k-regular graph G with
k ≥ 3, not a clique, not an odd cycle, has 3-vertex induced path v1, vn, v2
such that G − {v1, v2} is connected. Choose a vertex x. If κ(G− x) ≥ 2, then
let v1 = x, and let v2 be a vertex of distance two from x, which exists, since G
is connected, regular and not a clique. If κ(G − x) = 1, then x has a neighbor
in every block of G− x that is a leaf in the block tree of G− x, since G has no
cut-vertex. Neighbors v1 and v2 of x in two such blocks are non-adjacent.
Furthermore, G− {x, v1, v2} is connected, since blocks have no cut-vertices.
Now, G− {v1, v2} is also connected, since k ≥ 3 and so x has a neighbor other
than v1 and v2. Let vn = x to complete the proof.
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Every loopless planar graph has a proper 5-coloring.

Proof.

Suppose G is a plane graph that is a minimal counter-example. Then G is
simple, and so ‖G‖ ≤ 3|G| − 6 by Corollary 6.15. It follows that G has a vertex
v of degree 5 or less. Then G− v has a 5-coloring f by the minimality of G.
Since G is not 5-colorable, each color appears at one of the neighbors of v (and
so d(v) = 5). We may assume that the colors on the neighbors of v appear as
1, 2, 3, 4, and 5 as they are inspected clockwise. Let Gi,j denote the subgraph
of G− v induced by the colors i and j. Note that we an exchange the two
colors on any component of Gi,j to obtain another proper coloring of G− v. If
some two neighbors of v were in different components of Gi,j , then switching
colors on one such component would result in two neighbors of G being colored
the same, Thus allowing to extend the coloring to v. Thus we may assume that
every two neighbors of v are in the same component of Gi,j .
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Let Pi,j be a path in Gi,j joining the neighbors of v colored i and j. Consider
the cycle C of G induced by P1,3 together with v, which separates the neighbor
of v colored 2 from the one colored 4. Hence P2,4 must cross C, which is
impossible.

Theorem 7.4 (4-Color Theorem, Appel and Haken 1977)

Every loopless planar graph has a proper 4-coloring.

Proof omitted.
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Suppose G is a plane triangulation with δ(G) ≥ 5. Then G contains two
adjacent vertices one of which has degree 5, and the other has degree 5 or 6.

Proof.

Suppose G is as described, but the conclusion fails. Let v, e, and f be,
respectively, the number of vertices, edges, and faces of G. Since G is a plane
triangulation, 3f = 2e, and the Euler Formula implies e = 3v − 6. To each
vertex u, assign a charge of 6− d(u). Note that the sum of all the charges in
G is

∑

u∈V (G)

(6− d(u)) = 6v − 2e = 6v − 2(3v − 6) = 12.

Now, set the discharging rule that each degree-5 vertex sends 1/5 to each of
its neighbors. The final charge of vertices of degree 5 or 6 is zero. If
d(u) ≥ 7, then the final charge of u is at most 6− d(u) + d(u)/5, and so it can
be positive only if d(u) = 7. But a degree-7 vertex with a positive final charge
would have to have six neighbors of degree 5, which implies that two of such
neighbors must be adjacent since G is a triangulation; a contradiction.
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Let PG(x) denote the number of ways to properly color a (labeled) graph G
with x colors. If G has loops, then PG(x) = 0. If G is edgeless of order n,
then PG(x) = xn. If e is a non-loop non-multiple edge of G incident with u
and v, then the proper colorings of G \ e with x colors can be partitioned into
two sets: A, in which u and v receive the same color, and B, in which they do
not. Then A corresponds to proper colorings of G/e with x colors, and B
corresponds to proper colorings of G. Hence

PG(x) = PG\e(x)− PG/e(x).

PG(x) is called the chromatic polynomial of G.

Theorem 7.6 (Four-Color Theorem, restated)

If G is a planar loopless graph, then PG(4) > 0.
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Perfect Graphs

Definition 7.7

A graph G is perfect if χ(H) = ω(H) for every induced subgraph H of G.

Theorem 7.8 (Perfect Graph Theorem, Lovász 1972)

A graph is perfect if and only if its complement is perfect.

Theorem 7.9 (Strong Graph Theorem (formerly Berge’s Strong Graph
Conjecture), Chudnovsky, Robertson, Seymour, Thomas 2002)

A graph is perfect if and only if it has no induced subgraph that is an odd cycle
of length at least five or its complement.
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Edge Colorings

Definition 7.10

◮ A k-edge-coloring of a graph G is a labeling f : E(G) → {1, 2, . . . , k}.
◮ The labels are colors and the edge-set with one color is a color class.

◮ A k-edge-coloring is proper if adjacent edges have different colors, or
equivalently, if every color class is a matching.

◮ A graph is k-edge-colorable if it has a proper k-edge-coloring.

◮ The chromatic index or edge chromatic number χ′(G) of a loopless graph
G is the least k such that G is k-edge-colorable.

Note 7.11

∆(G) ≤ χ′(G).
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Edge-Coloring of Bipartite Graphs

Theorem 7.12 (König 1916)

If G is bipartite, then χ′(G) = ∆(G).

Proof.

We showed in Corollary 3.11 that every non-trivial regular bipartite graph H
has a perfect matching. By induction on ∆(H), this yields a proper
∆-edge-coloring of H . Thus it suffices to prove that every bipartite graph G of
maximum degree k is a subgraph of a k-regular bipartite graph H . Add the
vertices to the smaller side to equalize the sides, if necessary. If the resulting
graph is not k-regular, then each side has a vertex with degree less than k. Add
an edge joining such a pair of vertices. Continue adding edges until the graph
becomes regular (although not necessarily simple).
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proper subgraph G′ of G. After possibly re-coloring some edges, we extend this
coloring to include uv; call this an augmentation. After an appropriate number
of augmentations, we obtain a proper (∆(G) + 1)-edge-coloring of G. Since
the number of colors exceeds ∆(G), every vertex has some color not appearing
on its incident edges. Let a0 be a color missing at u and let a1 be a color
missing at v. We may assume that a1 appears at u, or it could be used for the
edge uv. Let v1 be the neighbor of u along the edge colored a1. At v1 some
color a2 is missing. We may assume that a2 appears at u, or we could re-color
uv1 from a1 to a2, and then use a1 on uv to augment the coloring.
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For i ≥ 2, we continue this process: Having selected a new color ai that
appears at u, let vi be the neighbor of u along the edge colored ai. If ai+1 is
missing at u, then we shift color aj from uvj to uvj−1 for 1 ≤ j ≤ i (where
v0 = v) to complete the augmentation (downshifting from i). We are finished
unless ai+1 appears at u, in which case the process continues. Since we have
∆(G) + 1 to choose from, this iterative process of selecting ai+1 eventually
repeats a color. (Note that we do not need the fact that each vertex has at
most ∆ neighbors to augment the coloring by one edge; we just need that
there is a color missing at each vertex.) Let l be the smallest index such that
the color al+1 missing at vl is in the list a1, a2, . . . , al; suppose al+1 = ak.
Note that if a0 is missing at vl, then we downshift from vl and use color a0 on
uvl to complete the augmentation.
Hence we may assume that a0 appears at vl, but ak does not. Let P be the
(unique) maximal path of edges colored a0 or ak that begins at vl. Switching
on P means interchanging the colors a0 and ak on the edges of P .
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If P reaches vk, then it does so along an edge colored a0, continues along the
edge colored ak, and stops at u. In this case, we downshift from k and switch
on P . Similarly, if P reaches vk−1, then it does so along an edge colored a0,
and stops there. In that case, we downshift from k − 1, give color a0 to uvk−1,
and switch on P . Finally, suppose that P reaches neither vk nor vk−1, and so
it ends outside {u, vl, vk, vk−1}. In that case, we downshift from l, give color
a0 to uvl, and switch on P .
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Suppose G is a graph with the vertex set V , and L = (Lv)v∈V associates with
each vertex v a list Lv of colors available to color v. We say that G admits an
L-coloring if there is a proper coloring of G such that, for every vertex v, the
color of v is in the list Lv. The graph G is k-list-colorable or k-choosable if G
admits an L-coloring for every L = (Lv)v∈V with |Lv | = k for every vertex v.
The smallest k such that G is k-choosable is called the list-chromatic number
of G and is denoted by ch(G).
List colorings of edges are defined analogously, as is the list-chromatic index
ch′(G). Note that if L = (Lv)v∈V is such that all Lv ’s are identical and of
cardinality k, then G admitting an L-coloring is equvalent to G being
k-colorable. An analogous statement holds for edge-colorings. Thus

ch(G) ≥ χ(G) and ch′(G) ≥ χ′(G).

But there are graphs for which ch(G) 6= χ(G). Consider K3,3 where each
side of the bipartition has lists {1, 2}, {1, 3}, and {2, 3}. The list-chromatic
number of this graph is 3, while the chromatic number is 2.
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Every Planar Graph Is 5-Choosable

Theorem 7.14 (Thomassen 1994)

Every planar graph is 5-choosable.

In fact, we will prove a somewhat stronger statement:

Suppose that G is a plane graph such that each internal face is a
triangle, and the external face is bounded by a cycle C with vertices
v1, v2, . . . vk (in this order). Let L = (Lv)v∈V (G) be the set of lists
such that Lv1 = {1}, Lv2 = {2}, |Lvi | ≤ 3 for all i ∈ {3, 4, . . . , k},
and |Lw| = 5 for all vertices w not on C. Then G admits an L-coloring.

We prove this by induction. The claim is obvious for the smallest graph for
which it makes sense, that is, a triangle. Suppose the claim is true for every
graph on fewer than n vertices, and suppose that G is like described above,
and |G| = n.
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Suppose that C has a chord vw. By re-indexing the vertices if necessary, we
may assume that v2 = w. Consider the two cycles C1 and C2 contained in
C ∪ vw with v1 lying on C1 but not on C2, and the graphs G1 and G2

bounded by C1 and C2, respectively. Create a list L1 by restricting L to
V (G1). Applying the inductive hypothesis to G1 we get an L1 coloring of G1.
Let c be the color assigned by the coloring of G1 to v, which must be different
from the color of w. Construct a list L2 by restricting L to V (G2 − v) and
assigning {c} as the list for v. Now, applying the inductive hypothesis to G2,
we get an L2-coloring of G2, which can be combined with the coloring of G1

to get an L-coloring of G.
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Suppose now that C has no chord. Consider the neighbors of vk that are v1,
u1, u2, . . . , um, vk−1, in this order. Let j, and l be two colors in Lvk that are
different from 1, and remove j and l (if present) from Lui

for all
i ∈ {1, 2, . . . ,m} to create a list L′. Applying the inductive hypothesis to
G− vk results in an L′-coloring of G− vk. Extend the coloring to an
L-coloring of G by assigning to vk the color from {j, l} that is different from
the color of vk−1.
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There are simple planar graphs that are not 4-choosable.

Conjecture 7.16

ch′(G) = χ′(G).
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◮ A function f : ~E → H is a circulation or H-circulation if

(F1) f(e, x, y) = −f(e, y, x) for all (e, x, y) ∈ ~E; and
(F2) f(x, V (G)) = 0 for all x ∈ V (G) (Kirchhoff’s Law)

◮ A function f : ~E → H is nowhere-zero if f(~e) 6= 0 for all ~e ∈ ~E.

◮ A nowhere-zero H-circulation is called an H-flow.

Note 7.19

◮ If f satisfies (F1), then f(X,X) = 0 for all X ⊆ V .

◮ If f satisfies (F2), then f(X, V ) = 0.

◮ If f is a circulation, then f(X,X) = 0 for every X ⊆ V .

◮ If f is a circulation and e = xy is a cut-edge, then f(e, x, y) = 0.
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Suppose |H| = x and let G be a graph. We want to find the number FG(x) of
H-flows in G. If G has a cut-edge, then FG(x) = 0. If G has n loops and no
other edges, then FG(x) = (x− 1)n. Let e be a non-loop edge with endpoints
u and v of G. Count the number of H-flows in G/e. Those flows can be
partitioned into two sets: A, those that induce a flow in G \ e, and B, those
that do not. Those flows in A cannot be extended to a flow on G, whereas
those in B can. So

FG(x) = FG/e(x)− FG\e(x).

Clearly, FG(x) is a polynomial, and is called the flow polynomial of G. It
follows:

Corollary 7.20

If H and H′ are two finite abelian groups of equal order, then G has an H-flow
if and only if it has an H′-flow.
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Definition 7.21

◮ A Z-flow f such that 0 < |f(~e)| < k for all ~e ∈ ~E is a k-flow.

◮ The flow number of a graph G, denoted by ϕ(G), is the smallest k such
that G has a k-flow, or infinite if no k-flow exists.

Theorem 7.22 (Tutte 1950)

A graph admits a k-flow if and only if it admits a Zk-flow.

Proof of ⇒ only.

Use the natural map i 7→ i from Z to Zk.
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Theorem 7.23

A graph has a 2-flow if and only if all vertices have even degree.

Proof.

By Corollary 7.22, a graph has a 2-flow if and only if it has a Z2-flow, that is,
the constant map ~E → Z2 with value 1 satisfies (F2). This is the case if and
only if every vertex degree is even.

Theorem 7.24 (Tutte 1949)

A cubic graph has a 3-flow if and only if it is bipartite.

Proof.

Let G be a cubic graph. Suppose first that G has a 3-flow, and thus a Z3-flow.
We show that every cycle C = x0x1 . . . xlx0 has even length. Consider two
consecutive edges of C: ei−1 = xi−1xi and ei = x1xi+1. If
f(ei−1, xi−1, xi) = f(ei, xi, xi+1), then f could not satisfy (F2) at xi due to a
non-zero value of the third edge at xi. Therefore f assigns 1 and 2 to the
edges of C alternately, and so C must be even.
Conversely, let G be bipartite with bipartition (X,Y ). Since G is cubic, the

map ~E → Z3 defined by f(e, x, y) = 1 and (e, y, x) = 2 for all edges xy with
x ∈ X and y ∈ Y is a Z3-flow.
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2 if n is odd;

4 if n = 4; and

3 if n is even and exceeds 4.

Proof.

The case for n odd follows from Theorem 7.23, and n = 4 can be checked
directly. We handle the remaining cases by induction.
Note that K6 is the edge-disjoint union of G1, G2, and G3 where
G1

∼= G2
∼= K3 and G3

∼= K3,3. Each of G1 and G2 has a 2-flow, while K3,3

has a 3-flow by Theorem 7.24. The union of these flows is a 3-flow on G.
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Now let n be even and greater than 6, and assume that the assertion holds for
n− 2. Now G can be written as edge-disjoint union of Kn−2 and
G′ = Kn−2 ∨K2. The Kn−2 has a 3-flow by induction hypothesis. Therefore
it suffices to find a Z3-flow on G′. Let x and y be the vertices of K2. Then
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Now let n be even and greater than 6, and assume that the assertion holds for
n− 2. Now G can be written as edge-disjoint union of Kn−2 and
G′ = Kn−2 ∨K2. The Kn−2 has a 3-flow by induction hypothesis. Therefore
it suffices to find a Z3-flow on G′. Let x and y be the vertices of K2. Then
each triangle xyz has a constant Z3-flow. Adding all of those flows produces a
circulation on G′ that is non-zero, except possibly on xy. If that is the case,
the multiply exactly one of the flows by 2 before adding them all up. The result
follows.
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(i) A graph has a 4-flow if and only if it is the union of two subgraphs whose
vertices have all degrees even.

(ii) A cubic graph has a 4-flow if and only if it is 3-edge-colorable.

Proof.

Let H = Z2 × Z2. By Theorems 7.20 and 7.22, a graph has a 4-flow if and only
if it as an H-flow. Now (i) follows immediately from Theorem 7.23.
Assume a cubic graph G has an H-flow f . It is easy to check that f gives a
3-edge-coloring. Conversely, since the non-zero elements of H sum up to 0,
every proper 3-edge-coloring of G using colors H \ 0 defines an H-flow on G.
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Flow-Coloring Duality

Theorem 7.27 (Tait 1878)

A simple 2-edge-connected 3-regular plane graph G is 3-edge-colorable if and
only if its dual is 4-colorable.

Proof.

Suppose G is 4-face-colored with elements of Z2 ×Z2. For each edge, assign to
it the color that is the sum of the colors of the two incident faces. Then it is
easy to check that this results in proper 3-edge-coloring.
Conversely, suppose the edges of G can be colored with colors from
Z2 × Z2 \ {(0, 0)}. Let H1 be the subgraph induced by the edges colored (1, 0)
or (1, 1), and let H2 be the subgraph induced by the edges colored (0, 1) or
(1, 1). Note that each of H1 and H2 is the disjoint union of cycles. To each
face of G, assign the color (p1, p2) where pi is the parity (0 for even, 1 for odd)
of the number of cycles that contain it inside.



Problem Set 5

Problem 13

Prove that every loopless planar graph on fewer than thirteen vertices admits a
proper 4-coloring. In other words, prove the Four-Color Theorem for graphs on
at most twelve vertices.

Problem 14

Show that every graph without a cut-edge admits a flow.

Problem 15

Show that if a graph has a spanning cycle, then it admits a 4-flow.
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Conjecture 7.28 (Tutte)

◮ (5-Flow Conjecture, 1954) Every graph with no cut-edge has a 5-flow.

◮ (4-Flow Conjecture, 1966) Every graph with no cut-edge and no Petersen
graph minor has a 4-flow.

◮ (3-Flow Conjecture, 1972) Every graph with no edge-cuts of size 1 and 3
has a 3-flow.

Theorem 7.29 (Seymour 1981)

Every graph with no cut-edge has a 6-flow.

Theorem 7.30 (Robertson, Sanders, Seymour, Thomas 2000)

Every cubic graph with no cut-edge and no Petersen graph minor has a 4-flow.

Theorem 7.31 (Grötzsch 1959)

Every planar graph with no edge-cuts of size 1 and 3 has a 3-flow.
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Miscellany of Coloring Results

Theorem 7.32 (Tutte 1954)

χ(G) = ϕ(G∗)

Proof.

Conjecture 7.33 (Hadwiger 1943)

If n is an integer exceeding 1, and G has no Kn-minor, then χ(G) < n.

Note 7.34

◮ Trivial for n = 2.

◮ Obvious for n = 3.

◮ Easy for n = 4.

◮ Equivalent to Four-Color Theorem for n = 5.

◮ Proved by Robertson, Seymour, and Thomas for n = 6.

◮ Unknown for n ≥ 7.
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◮ A graph is Hamiltonian if it has a Hamilton cycle.
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Theorem 8.2 (Dirac 1952)

Every graph of order n ≥ 3 and δ ≥ n/2 is Hamiltonian.

Proof.

Let G be a graph as described. Note that G is connected; otherwise a vertex in
a smallest component would have degree less than n/2.
Let P = x0x1 . . . xk be a longest path in G. By the maximality of P , all
neighbors of x0 and all neighbors of xk lie on P . Hence at least n/2 of the
vertices x0, x1, . . . , xk−1 are adjacent to xk, and at least n/2 of the same
k < n vertices xi are such that x0xi+1 ∈ E(G). By the Pigeon-Hole Principle,
there is a vertex xi that has both properties, that is, x0xi+1 ∈ E(G) and
xixk ∈ E(G). Let C be the cycle obtained from P by deleting the edge xixi+1

and adding edges x0xi+1 and xixk. If C is not Hamilton, then, since G is
connected, C would have a neighbor in G−C, which would yield a path longer
than P ; a contradiction.
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Note 8.3

Note that n/2 in Dirac’s Theorem 8.2 is the best possible. We cannot replace
it with ⌊n/2⌋ if n is odd, since then G which is a 1-sum of two copies of
K⌈n/2⌉ would have δ = ⌊n/2⌋, but no Hamilton cycle.
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Theorem 8.4

Every graph G with |G| ≥ 3 and κ(G) ≥ α(G) is Hamiltonian.

Proof.

Let k = κ(G) and let C be a longest cycle in G. Enumerate the vertices of C
cyclically so that V (C) = {vi : i ∈ Zn} with vivi+1 ∈ E(C) for all i ∈ Zn. If C
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Proof.

Let k = κ(G) and let C be a longest cycle in G. Enumerate the vertices of C
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i+ 1 /∈ I , otherwise (C ∪ Pi ∪ Pi+1) \ vivi+1 would be a cycle longer than C.
Thus |I | < |C| and hence |I | = |F| ≥ k. Furthermore, vi+1vj+1 /∈ E(G) for all
i, j ∈ I , as otherwise (C ∪ Pi ∪ Pj ∪ vi+1vj+1) \ vivi+1 \ vjvj+1 would be a
cycle longer than C. Hence {vi+1 : i ∈ I} ∪ {v} is a set of at least k + 1
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A Necessary Condition

Theorem 8.5

If G is a Hamiltonian graph, then for every set ∅ 6= S ⊆ V (G), the graph
G− S has at most S components.

Proof.

When leaving a component of G− S, a Hamilton cycle can go only to S and
the arrivals in S must occur at different vertices of S. Hence S must have at
least as many vertices as G− S has components.
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Note that if we managed to prove that every 3-connected cubic plane graph is
Hamiltonian, then we woud have proved that every such graph has a 4-flow,
and so is 3-edge-colorable, and so is 4-face-colorable. Unfortunately, there are
3-connected cubic plane graphs that are not Hamiltonian.
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If G is a loopless plane graph with a Hamilton cycle C, and G has f ′
i faces of

length i inside C and f ′′
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Want to show that
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i . It suffices to show that

∑

i(i− 2)f ′
i remains invariant as we add edges inside a cycle C of length n. If

there are no edges inside C, then the sum is n− 2. Suppose
∑

i(i− 2)f ′
i = n− 2 for any graph with k edges inside C. We can obtain any

graph with k + 1 edges inside C by adding an edge to such graph. The edge
addition cuts a face of length r into faces of lengths s and t. We have
s+ t = r + 2, and so (s− 2) + (t− 2) = r − 2 and so the total contribution
remains the same.
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Corollary 8.7

The Tutte graph is not Hamiltonian.

Theorem 8.8 (Tutte 1956)

Every 4-connected planar graph is Hamiltonian.

Theorem 8.9 (Thomas, Yu 1994)

Every 4-connected projective graph is Hamiltonian.

Theorem 8.10 (Thomas, Yu 1997)

Every 5-connected toroidal graph is Hamiltonian.
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Suppose we have a finite family F of pairwise disjoint convex polygons (with
interiors) in the plane with all sides of length 1. Suppose that all these
polygons together have m sides σ1, σ2, . . . , σm where m is even. Orient
arbitrarily each of the sides σi by choosing one of its endpoints as the initial
point, and choose an arbitrary partition of the sides into pairs. From the
disjoint union of polygons F, form a topological space S by identifying sides in
each pair of our partition so that the orientations agree. If S is connected
(which will be assumed from now on), we get a surface S, that is, a compact
Hausdorff space that is locally homeomorphic to the unit disk in the plane. The
identified edges of the polygons can be viewed as edges of a graph, the
endpoints of those edges as vertices, and the interiors of the polygons are faces.
What results is an embedding of a connected graph into some surface, which
will be called 2-cell embedding.

Theorem 9.1

Every surface is homeomorphic to a triangulated surface.

Proof omitted.
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come from, or whether they come from distinct faces.
Consider the sphere S0 (tetrahedron). If we add h handles to S0, then we
obtain Sh, which we call the orientable surface of genus h. If we add h
crosscaps to S0, we obtain Nh, the non-orientable surface of genus h.
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The surfaces S1, S2, N1, and N2 are called, respectively torus, double torus,
projective plane, and Klein bottle.
A twisted handle can be always replaced with two crosscaps, and, as long as
there is a crosscap, a handle can also be replaced by two crosscaps.

Theorem 9.2

Let S be the surface obtained from the sphere by adding h handles, t twisted
handles, and c crosscaps. If t = c = 0, then S = Sh. Otherwise, S = N2h+2t+c.

Theorem 9.3

Let S be a surface and let G be a graph that is 2-cell embedded in S with v
vertices, e edges and f faces. Then S is homeomorphic to either Sh or Nk,
where v − e+ f = 2− 2h = 2− k.



Euler’s Characteristic

Definition 9.4

The Euler characteristic χ(S) of a surface S is defined as

χ(S) =

{

2− 2h, if S = Sh;

2− k, if S = Nk.



π-Walks

Suppose G is a connected non-trivial graph.



π-Walks

Suppose G is a connected non-trivial graph. Suppose that for each v ∈ V (G)
we have a cyclic permutation πv of edges incident with v.



π-Walks

Suppose G is a connected non-trivial graph. Suppose that for each v ∈ V (G)
we have a cyclic permutation πv of edges incident with v. Let’s consider a
closed walk W = v1e1v2e2v3 . . . vkekv1,



π-Walks

Suppose G is a connected non-trivial graph. Suppose that for each v ∈ V (G)
we have a cyclic permutation πv of edges incident with v. Let’s consider a
closed walk W = v1e1v2e2v3 . . . vkekv1, which is determined by the first edge
e1 = v1v2 and the requirement that for each i we have πvi(ei) = ei+1 where
ek+1 = e1 and k is minimal with this property.



π-Walks

Suppose G is a connected non-trivial graph. Suppose that for each v ∈ V (G)
we have a cyclic permutation πv of edges incident with v. Let’s consider a
closed walk W = v1e1v2e2v3 . . . vkekv1, which is determined by the first edge
e1 = v1v2 and the requirement that for each i we have πvi(ei) = ei+1 where
ek+1 = e1 and k is minimal with this property. Note, however, that some edges
might occur in W twice, traversed in opposite directions.



π-Walks

Suppose G is a connected non-trivial graph. Suppose that for each v ∈ V (G)
we have a cyclic permutation πv of edges incident with v. Let’s consider a
closed walk W = v1e1v2e2v3 . . . vkekv1, which is determined by the first edge
e1 = v1v2 and the requirement that for each i we have πvi(ei) = ei+1 where
ek+1 = e1 and k is minimal with this property. Note, however, that some edges
might occur in W twice, traversed in opposite directions. We will not
distinguish W from its cyclic shifts.



π-Walks

Suppose G is a connected non-trivial graph. Suppose that for each v ∈ V (G)
we have a cyclic permutation πv of edges incident with v. Let’s consider a
closed walk W = v1e1v2e2v3 . . . vkekv1, which is determined by the first edge
e1 = v1v2 and the requirement that for each i we have πvi(ei) = ei+1 where
ek+1 = e1 and k is minimal with this property. Note, however, that some edges
might occur in W twice, traversed in opposite directions. We will not
distinguish W from its cyclic shifts. If π = {πv : v ∈ V (G)} (the rotation
system), then W is a π-walk.



π-Walks

Suppose G is a connected non-trivial graph. Suppose that for each v ∈ V (G)
we have a cyclic permutation πv of edges incident with v. Let’s consider a
closed walk W = v1e1v2e2v3 . . . vkekv1, which is determined by the first edge
e1 = v1v2 and the requirement that for each i we have πvi(ei) = ei+1 where
ek+1 = e1 and k is minimal with this property. Note, however, that some edges
might occur in W twice, traversed in opposite directions. We will not
distinguish W from its cyclic shifts. If π = {πv : v ∈ V (G)} (the rotation
system), then W is a π-walk. For each π-walk, take a polygon with as many
sides as the length of the walk, disjoint from other polygons—call it a
π-polygon.



π-Walks

Suppose G is a connected non-trivial graph. Suppose that for each v ∈ V (G)
we have a cyclic permutation πv of edges incident with v. Let’s consider a
closed walk W = v1e1v2e2v3 . . . vkekv1, which is determined by the first edge
e1 = v1v2 and the requirement that for each i we have πvi(ei) = ei+1 where
ek+1 = e1 and k is minimal with this property. Note, however, that some edges
might occur in W twice, traversed in opposite directions. We will not
distinguish W from its cyclic shifts. If π = {πv : v ∈ V (G)} (the rotation
system), then W is a π-walk. For each π-walk, take a polygon with as many
sides as the length of the walk, disjoint from other polygons—call it a
π-polygon. Now take all π-polygons.



π-Walks

Suppose G is a connected non-trivial graph. Suppose that for each v ∈ V (G)
we have a cyclic permutation πv of edges incident with v. Let’s consider a
closed walk W = v1e1v2e2v3 . . . vkekv1, which is determined by the first edge
e1 = v1v2 and the requirement that for each i we have πvi(ei) = ei+1 where
ek+1 = e1 and k is minimal with this property. Note, however, that some edges
might occur in W twice, traversed in opposite directions. We will not
distinguish W from its cyclic shifts. If π = {πv : v ∈ V (G)} (the rotation
system), then W is a π-walk. For each π-walk, take a polygon with as many
sides as the length of the walk, disjoint from other polygons—call it a
π-polygon. Now take all π-polygons. Each edge appears exactly twice in the
π-walks, and this determines their orientation.



π-Walks

Suppose G is a connected non-trivial graph. Suppose that for each v ∈ V (G)
we have a cyclic permutation πv of edges incident with v. Let’s consider a
closed walk W = v1e1v2e2v3 . . . vkekv1, which is determined by the first edge
e1 = v1v2 and the requirement that for each i we have πvi(ei) = ei+1 where
ek+1 = e1 and k is minimal with this property. Note, however, that some edges
might occur in W twice, traversed in opposite directions. We will not
distinguish W from its cyclic shifts. If π = {πv : v ∈ V (G)} (the rotation
system), then W is a π-walk. For each π-walk, take a polygon with as many
sides as the length of the walk, disjoint from other polygons—call it a
π-polygon. Now take all π-polygons. Each edge appears exactly twice in the
π-walks, and this determines their orientation. By identifying each side with its
mate we obtain a 2-cell embedding of graph isomorphic to G in some
orientable surface.



π-Walks

Suppose G is a connected non-trivial graph. Suppose that for each v ∈ V (G)
we have a cyclic permutation πv of edges incident with v. Let’s consider a
closed walk W = v1e1v2e2v3 . . . vkekv1, which is determined by the first edge
e1 = v1v2 and the requirement that for each i we have πvi(ei) = ei+1 where
ek+1 = e1 and k is minimal with this property. Note, however, that some edges
might occur in W twice, traversed in opposite directions. We will not
distinguish W from its cyclic shifts. If π = {πv : v ∈ V (G)} (the rotation
system), then W is a π-walk. For each π-walk, take a polygon with as many
sides as the length of the walk, disjoint from other polygons—call it a
π-polygon. Now take all π-polygons. Each edge appears exactly twice in the
π-walks, and this determines their orientation. By identifying each side with its
mate we obtain a 2-cell embedding of graph isomorphic to G in some
orientable surface.

Theorem 9.5

Every cellular embedding (an embedding where each face is homeomorphic to
an open disk) into an orientable surface is determined by its rotation system.
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An embedding scheme is a pair Π = (π, λ) where π is a rotation system, and
λ : E(G) → {−1, 1} is a signature. Two embedding schemes are equivalent if
one can be obtained from the other by a sequence of operations, each involving
a change of clockwise to counter-clockwise orientation at a vertex v and the
corresponding change of signatures of edges incident with v. Now we define a
surface embedding using π-walks and π-polygons as before, with the following
modification. Whenever we traverse an edge of negative signature, we switch
the permutation at a vertex from π(v) to π−1(v). Traversing a π-walk stops
whenever we are about to traverse the same edge in the same direction and we
are in the same mode (clockwise or counter-clockwise). The resulting surface is
non-orientable if and only if G contains a cycle with an odd number of edges of
negative signature.

Theorem 9.6

Every cellular embedding of a graph in some surface is uniquely determined, up
to homeomorphism, by its embedding scheme.
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Genus of a Graph

Definition 9.7

The genus γ(G) and the non-orientable genus γ̃(G) of a graph G are the
minimum h and the minimum k, respectively, such that G has an embedding
into the surface Sh, respectively into Nk. An embedding into such surface of
minimum genus is minimum genus, respectively minimum non-orientable genus,
embedding.

Theorem 9.8

Every minimum (orientable) genus embedding of a connected graph is cellular.

Theorem 9.9

Let G be a connected graph. If γ̃(G) < 2γ(G) + 1, then every non-orientable
minimum genus embedding of G is cellular. If γ̃(G) = 2γ(G) + 1 and G is not
a tree, then G has both a cellular and a non-cellular embedding in Nγ̃(G).
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Cycle Double-Cover Conjecture

Conjecture 9.10 (Cycle Double-Cover Conjecture)

Every 2-edge-connected graph G can be expressed as a union of cycles so that
every edge of G appears in exactly two cycles.

Conjecture 9.11

Every 2-edge-connected graph has an embedding in some surface so that every
face with the boundary is homeomorphic to the closed unit disk. Holds for
4-connected graphs.
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Comparisons of Graph Topological Parameters

◮ Euler Characteristic: χ = v − e+ f

◮ Orientable Genus: χ = 2− 2γ =⇒ γ = 1− χ
2

◮ Non-Orientable Genus: χ = 2− γ̃ =⇒ γ̃ = 2− χ

◮ Euler Genus: g = 2− χ =⇒ g = 2γ & g = γ̃
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Theorem 9.12

Let G be a simple connected graph with v vertices (v ≥ 3) and e edges. Then

γ ≥
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and γ̃ ≥
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Proof.

Let f denote the number of facial walks. The sum of lengths of those walks is
2e. Since the graph is simple, 2e ≥ 3f . By Euler’s Formula,
3χ = 3v − 3e+ 3f ≤ 3v − e, and so χ ≤ v − e/3. Note that γ = 1− χ/2 and
γ̃ = 2− χ. In the orientable case, we have

γ ≥ 1− v − e/3

2
=
e

6
− v

2
+ 1.

Similarly, in the nonorientable case, we have

γ̃ ≥ 2− (v − e

3
) =

e

3
− v + 2.

The theorem follows now from the fact that both γ and γ̃ are integers.



Genera of Complete Graphs

Corollary 9.13

γ(Kn) ≥
⌈

(n− 3)(n− 4)

12

⌉

and γ̃(Kn) ≥
⌈

(n− 3)(n− 4)

6

⌉



Heawood’s Theorem

Theorem 9.14 (Ringel, Youngs)

If n ≥ 3 and n 6= 7, then

γ(Kn) =

⌈

(n− 3)(n− 4)

12

⌉

and γ̃(Kn) =

⌈

(n− 3)(n− 4)

6

⌉
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7 +
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Theorem 9.12, we have e ≤ 3v − 6 + 3g, and so 2e ≤ 6v − 12 + 6g. The
minimality of G implies that δ(G) ≥ c− 1. Clearly, δv ≤ 2e, and since
c− 1 ≤ δ, as implied by the minimality of G, we have (c− 1)v ≤ 2e.
Combining this with an earlier inequality, we get (c− 1)v ≤ 6v − 12 + 6g, and
so (c− 7)v + 12− 6g ≤ 0. Since (c− 7) ≥ 0 and c ≤ v, we have
c2 − 7c+ 12− 6g ≤ 0. Using the quadratic formula finishes the proof.
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loopless graph embedded in S. Then
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Proof.

Suppose the theorem fails and G is a minimal counter-example. Let c = χ(G),
and note that since g > 0 and G is a counter-example, we have c ≥ 7. From
Theorem 9.12, we have e ≤ 3v − 6 + 3g, and so 2e ≤ 6v − 12 + 6g. The
minimality of G implies that δ(G) ≥ c− 1. Clearly, δv ≤ 2e, and since
c− 1 ≤ δ, as implied by the minimality of G, we have (c− 1)v ≤ 2e.
Combining this with an earlier inequality, we get (c− 1)v ≤ 6v − 12 + 6g, and
so (c− 7)v + 12− 6g ≤ 0. Since (c− 7) ≥ 0 and c ≤ v, we have
c2 − 7c+ 12− 6g ≤ 0. Using the quadratic formula finishes the proof.

Theorem 9.16 (Ringel–Youngs)

The bound in Heawood’s Formula is the best possible, except that maximum
chromatic number of graphs embedded in the Klein bottle is 6.



Homework

Problem 16

Prove that for every number n there is a bipartite graph whose choosability
number is greater than n.

Problem 17

Find the (orientable) genus of the Petersen graph.

Problem 18

Does K5 have cellular embeddings into two different orientable surfaces? Into
two different non-orientable surfaces?
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Definition 10.1

◮ A relation is a quasi-ordering if it is reflexive and transitive.

◮ A quasi-ordering 4 on X is a well-quasi-ordering, or a wqo, if for every
infinite sequence x0, x1, . . . in X there are indices i < j such that
xi 4 xj .

◮ Then (xi, xj) is a good pair for the sequence.

◮ An infinite sequence containing a good pair is good; otherwise it is bad.
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Theorem 10.2

A quasi ordering 4 on X is a wqo if and only if X contains neither an infinite
antichain nor an infinite strictly descending chain x0 ≻ x1 ≻ . . . .

Proof.

The forward implication is obvious. Conversely, let x = x0, x1, . . . be a bad
sequence in X. We define infinite subsequences y, x0, x1 . . . of x, and two
sets A and B as follows.
We start with y as the empty sequence, A and B as empty sets, and x0 = x.
Suppose that for some i = 0, 1, . . . , the first i elements of y and the sequence
xi have been defined, and each of the first i elements of y has been placed in
exactly one of A and B. Consider the first element x of xi.

◮ If infinitely many elements of xi are incomparable with x, make xi+1 be
an infinite subsequence of xi consisting of the elements incomparable with
x, and put x into A.

◮ If this doesn’t happen, there are infinitely many elements of xi smaller
than x. In that case, let xi+1 be an infinite subsequence of xi consisting
of the elements x′ such that x ≻ x′ and put x into B.
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Proof, Continued

After this inductive construction, at least one of the sets A and B is infinite. If
A is infinite, its elements form an antichain. If B is infinite, the sequence y

restricted to B is an infinite strictly descending sequence.

Theorem 10.3

If X is a wqo, then every infinite sequence in X has an infinite increasing
subsequence.

Proof: Exercise.



Ordering of Sequences

Definition 10.4

◮ The set of all finite sequences of elements of a set X will be denoted by
X<ω.



Ordering of Sequences

Definition 10.4

◮ The set of all finite sequences of elements of a set X will be denoted by
X<ω.

◮ The set of all finite subsets of elements of a set X will be denoted by
[X]<ω .



Ordering of Sequences

Definition 10.4

◮ The set of all finite sequences of elements of a set X will be denoted by
X<ω.

◮ The set of all finite subsets of elements of a set X will be denoted by
[X]<ω .

◮ The relation 4 on X is extended to X<ω as follows: If
x = (x1, x2, . . . , xm) and y = (y1, y2, . . . , yn), we write x 4 y whenever
there is a strictly increasing function f : {1, 2, . . . ,m} → {1, 2, . . . , n}
such that xi 4 yf(i) for all i ∈ {1, 2, . . . ,m}.



Ordering of Sequences

Definition 10.4

◮ The set of all finite sequences of elements of a set X will be denoted by
X<ω.

◮ The set of all finite subsets of elements of a set X will be denoted by
[X]<ω .

◮ The relation 4 on X is extended to X<ω as follows: If
x = (x1, x2, . . . , xm) and y = (y1, y2, . . . , yn), we write x 4 y whenever
there is a strictly increasing function f : {1, 2, . . . ,m} → {1, 2, . . . , n}
such that xi 4 yf(i) for all i ∈ {1, 2, . . . ,m}.

◮ The relation 4 on X is extended to [X]<ω by saying that two elements x
and y of [X]<ω satisfy x 4 y whenever there is a injection f from x to y

such that x 4 f(x) for all x ∈ x.
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Definition 10.4

◮ The set of all finite sequences of elements of a set X will be denoted by
X<ω.

◮ The set of all finite subsets of elements of a set X will be denoted by
[X]<ω .

◮ The relation 4 on X is extended to X<ω as follows: If
x = (x1, x2, . . . , xm) and y = (y1, y2, . . . , yn), we write x 4 y whenever
there is a strictly increasing function f : {1, 2, . . . ,m} → {1, 2, . . . , n}
such that xi 4 yf(i) for all i ∈ {1, 2, . . . ,m}.

◮ The relation 4 on X is extended to [X]<ω by saying that two elements x
and y of [X]<ω satisfy x 4 y whenever there is a injection f from x to y

such that x 4 f(x) for all x ∈ x.

◮ A quasi-order X is well-founded if it has no infinite strictly descending
chains.
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Theorem 10.5 (Higman)

If X is well-quasi-ordered by 4, then so is X<ω.

Proof.

Suppose X<ω is not a wqo. Observe that X<ω is well-founded. We construct
a minimal bad sequence (xn)n∈N in X<ω. Given n ∈ N, assume inductively
that xi has been defined for every i < n and that there is a bad sequence in
X<ω starting with x0, x1, . . . , xn−1. This is clearly true for n = 0. Choose
xn ∈ X<ω so that some bad sequence starts with x0, x1, . . . , xn and xn is
minimal with this property (exists as X<ω is well-founded).
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Proof of Higman’s Theorem, Continued

Clearly, (xn)n∈N is a bad sequence. For each n, let yn be xn with the last
element xn deleted. By Theorem 10.3, the sequence (xn)n∈N has an infinite
increasing subsequence (xni

)i∈N. By the minimality of xn0
, the sequence x0,

x1, . . . , xn0−1, yn0
, yn1

, . . . is good, so it has a good pair. This good pair
must be of the form (yi,yj). Extending the injection yi 7→ yj by xi 7→ xj , we
get a good pair (xi,xj); a contradiction.

Corollary 10.6

If X is well-quasi-ordered by 4, then so is [X]<ω .

Note 10.7 (Rado)

Higman’s Theorem does not extend to infinite sequences.
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Ordering Trees

Consider two trees T and T ′ with roots, respectively r and r′. Note that the
root r induces a natural partial order on the vertices of the tree T . Specifically,
u 6T v if u lies on the rv-path. We write T 4 T ′ if there is an isomorphism ϕ
from some subdivision S of T to a subtree of S′ of T ′ that preserves the tree
order, that is, u 6S v if and only if ϕ(u) 6S′ ϕ(v). Note that if T 4 T ′, then
T is a topological minor of T ′.

Theorem 10.8 (Kruskal 1960)

Trees are well-quasi-ordered by the topological minors relation.
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We show that rooted trees are well-quasi-ordered by 4. Suppose not. Let T0,
T1, . . . be a minimal bad sequence, with ri being the root of Ti. For each n, let
An denote the set of components of Tn − rn, made into rooted trees by
choosing the neighbors of rn as the roots.
First, we show that A =

⋃

An is a wqo. Let (Sk)k∈N be a sequence of
elements of A. For each k, let n = n(k) denote the An that contains Sk. Pick
a k with the smallest n(k). Then T0, T1, . . . , Tn(k)−1, Sk, Sk+1, . . . is a good
sequence, by the minimality of (Tn). Clearly, a good pair of that sequence
must be of the form (Si, Sj).
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Proof of Kruskal’s Theorem, Continued

By Corollary 10.6, the sequence (An)n∈N has a good pair (Ai, Aj). Let
f : Ai → Aj be an injection such that T 4 f(T ) for all T ∈ Ai. We extend the
union of those embeddings to a map ϕ from V (Ti) to V (Tj) by letting
ϕ(ri) = rj . The map ϕ is an embedding that preserves the tree order, proving
that (Ti, Tj) is a good pair; a contradiction.
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sets Vt ⊆ V (G) (called bags).

Definition 10.9

The pair (T,V) is called a tree-decomposition of G if

(T1) V (G) =
⋃

t∈V (T ) Vt;

(T2) For every edge e of G, there is a t ∈ V (T ) such that both endpoints of e
are in Vt; and

(T3) Vr ∩ Vt ⊆ Vs whenever s lies between r and t in T .

(T3) (Alternate version) For every v ∈ V (G), the subgraph Tv induced by those
t for which v ∈ Vt is connected.
The width of the decomposition (T,V) is the maximum of |Vt| − 1 taken
over all v ∈ V (T ). The tree-width of G, denoted by tw(G) is the
minimum width over all possible tree-decomposisions.
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If H is a subgraph of G, and (T, {Vt}t∈V (T )) is a tree-decomposition of G,
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Both t1 and t2 lie on every s1s2-path in T with s1 ∈ V (T1) and s2 ∈ V (T2).
Therefore U1 ∩ U2 ⊆ Vt1 ∩ Vt2 by (T3). What is left to show is that G has no
edge u1u2 with u1 ∈ U1 − U2 and u2 ∈ U2 − U1. If G has such an edge u1u2,
then (T2) implies that there is a t ∈ V (T ) such that Vt contains both u1 and
u2. But t can be in neither T1 nor in T2; a contradiction.
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For every W ⊆ V (G), one of the following holds:

(i) there is a t ∈ V (T ) such that W ⊆ Vt;

(ii) there are vertices w1 and w2 in W and an edge t1t2 of T such that w1

and w2 lie outside of Vt1 ∩ Vt2 and are separated by it in G.

Proof.

We orient the edges of T as follows. For each edge t1t2 of T , define U1 and U2

as in Lemma 10.11; then Vt1 ∩ Vt2 separates U1 from U2. If Vt1 ∩ Vt2 does not
separate any two vertices of W , then W ⊆ Ui for some i ∈ {1, 2}; we orient
t1t2 towards that ti.
Let t be the last vertex of a maximal directed path in T ; we claim that W ⊆ Vt.
Suppose w ∈W and let t′ ∈ V (T ) be such that w ∈ Vt′ . If t

′ 6= t, then the
edge e at t that separates t from t′ is directed towards t, so w also lies in Vt′′

for some t′′ in the component of T \ e containing t. Therefore w ∈ Vt by (T3).
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Corollary 10.13

If H is a complete subgraph of G, and (T, {Vt}t∈V (T )) is a tree-decomposition
of G, then there is a bag Vt that contains all vertices of H .

Theorem 10.14

If G is a minor of H , then tw(G) ≤ tw(H).

Proof.

If G is obtained from H by deleting an edge, then a tree-decomposition of H is
also a tree-decomposition of G. If G is obtained from H by deleting a vertex,
then a tree-decomposition of H may be modified by removing the vertex from
all bags to form a tree-decomposition of G. If G is obtained from H by
ontracting an edge uv to a new vertex w, then a tree-decomposition of H may
be modified by replacing each occurence by u and v by w to form a
tree-decomposition of G.
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Corollary 10.15

For every integer k, the class of graphs of tree-width at most k is closed under
the taking of minors.

Theorem 10.16 (Robertson-Seymour 1990)

For every positive integer k, the graphs of tree-width less than k are
well-quasi-ordered by the minor relation.

Theorem 10.17

◮ tw(G) < 2 if and only if K3 is not a minor of G.

◮ tw(G) < 3 if and only if K4 is not a minor of G.
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Brambles

Definition 10.18

◮ Two subsets U and W of V (G) touch if a vertex of U is in W or is a
neighbor of a vertex in W .

◮ A set of mutually touching connected vertex sets in G is a bramble.

◮ A subset of V (G) covers a bramble if it meets each of its elements.

◮ The smallest number of vertices that cover a bramble is the order of the
bramble.

Lemma 10.19

Any set of vertices separating two covers of a bramble also covers that bramble.

Proof.

Since each set in a bramble is connected and meets both of the covers, it also
meets any set separating these covers.
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Let k be a non-negative integer. tw(G) ≥ k if and only if G contains a bramble
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Tree-width vs. Bramble

Theorem 10.20 (Seymour-Thomas 1993)

Let k be a non-negative integer. tw(G) ≥ k if and only if G contains a bramble
of order greater than k.

Let B be a bramble in G. We show that every tree-decomposition
(T, (Vt)t∈V (T )) of G has a bag that covers B. Orient the edges t1t2 as in the
proof of Lemma 10.12. If X = Vt1 ∩ Vt2 covers B, the conclusion holds. If
not, then for each B ∈ B disjoint from X there is an i ∈ {1, 2} such that
B ⊆ Ui \X. This i is the same for all such B, because they touch. Orient
the edge t1t2 towards ti. Then if t is the last vertex of a maximal directed
path in T , then Vt covers B.
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Theorem 10.21

The tree-width of an n× n grid (n > 1) is n.

Theorem 10.22 (Robertson-Seymour 1986)

For every integer r there is an integer k such that every graph of tree-width at
least k has an r × r grid minor.

Theorem 10.23

Every planar graph is a minor of a sufficiently large grid.

Theorem 10.24 (Robertson-Seymour)

Planar graphs are well-quasi-ordered by the minor relation.
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Representativity

Definition 10.25

Suppose G is a graph embedded in a surface S. The representativity of G is the
smallest number of points that a homotopically non-trivial cruve in S intersects
the graph. The S-representativity of an abstract graph H is the smallest
representativity of all embbedings of H in S, or zero if no embedding exists.

Theorem 10.26 (Robertson-Seymour)

Every graph embeddable on a surface S is a minor of a graph of sufficiently
high S-representativity.

Theorem 10.27

For every surface S (orientable or not), the graphs embeddable in S are
well-quasi-ordered by the minors relation.
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Graphs Almost Embedded on Surfaces

Let r, s, t, and u be non-negative integers. Let H(r, s, t, u) is the class of
graphs G such that after deleting at most r vortices each of depth at most s
from G, and after deleting at most t vertices, the resulting graph has Euler
genus at most u. Let G(r, s, t, u) be the class of graphs that are obtained by
repeated clique-summing graphs from H(r, s, t, u).
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Graph Minors Theorem

Theorem 10.29 (Robertson-Seymour)

For every integer k there are integers r, s, t, and u such that every graph
without Kk-minor belongs to G(r, s, t, u).

Corollary 10.30

Every minor-closed class of graphs other than the class of all graphs is a
subclass of some G(r, s, t, u).

Corollary 10.31

The class of all (finite) graphs is well-quasi-ordered by the minor relation.



Problem 19

For each integer n exceeding one, find a bramble of order n+ 1 in the n× n
grid.

Problem 20

A tree T is a caterpillar if T contains a path P such that every vertex of T
either lies on P or is adjacent to a vertex of P . A caterpillar forest is a disjoint
union of caterpillars. Find the minor-minimal graphs that are not caterpillar
forests.

Problem 21

What is the tree-width of the graph obtained from the Petersen graph by
deleting one edge?
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The Turán Graph

Question: Given a graph H , what is the greatest possible number of edges in a
simple graph of order n that does not have H as a subgraph? We will answer
this question when H is a complete graph.

Definition 11.1

The unique complete r-partite graph on n ≥ r vertices whose partition sets
differ by at most 1 is called the Turán graph T r(n). The size of T r(n) will be
denoted by tr(n).

Theorem 11.2 (Turán 1941)

Given integers r and n exceeding 1, the unique simple graph of order n without
Kr as a subgraph of maximum possible size is T r−1(n).
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Proof of Turán’s Theorem

First, observe that among all simple k-partite (k < r) graphs on n vertices,
T r−1(n) has the largest size. Observe also that T r−1(n) does not have Kr as
a subgraph, but T r(n) does. Thus it suffices to show that a simple graph G
of order n, the maximum size without Kr as a subgraph is complete
multipartite.
By duplicating a vertex v, we mean adding a new vertex v′ and joining it to all
neighbors of v (but not v itself).
If not, then non-adjacency is not an equivalence relation on V (G), that is,
there are vertices y1, x, and y2 such that y1x and xy2 do not form edges of G,
but y1y2 does. If d(y1) > d(x), then deleting x and duplicating y1 yields
another Kr-free graph with more edges than G. So d(y1) ≤ d(x) and
d(y2) ≤ d(x). But then deleting y1 and y2 and duplicating x twice gives a
Kr-free graph with more edges than G; a contradiction.
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Erdős-Stone Theorem

Corollary 11.3

If G is a simple graph of order n and size more than tr−1(n), then G contains
Kr as a subgraph.

Theorem 11.4 (Erdős-Stone, 1946)
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For all integers r ≥ 2 and s ≥ 1, and every ǫ > 0, there is an integer n0 such
that every simple graph of order n ≥ n0 and size at least tr−1(n) + ǫn2

contains the complete r-partite graph with each part of cardinality s.

Proof omitted.

Definition 11.5

Given a simple graph H and an integer n, let hn(H) denote the maximum
edge density that a simple H-free graph of order n can have;
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Then Lemma 11.6 finishes the proof.
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(i)–(iii) hold trivially.
Inductively, |Vi−1 \ {vi−1}| = 22r−1−i − 1, and Vi−1 \ {vi−1} contains a subset
Vi satisfying (i)–(iii); pick vi arbitrarily in Vi. Among the vertices v1, v2
. . . , v2r−3, at least r − 1 show the same behavior described in (iii). Those
r − 1 vertices together with v2r−2 induce either Kr or Kr.
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Given a c-coloring, that is, partitioning into c classes, of elements of [X]k, we
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Then Ramsey’s Theorem can be re-stated as: For every r there is an n such
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Theorem 11.9

Let k and c be positive integers, and let X be an infinite set. If [X]k is
c-colored, then X has an infinite monochromatic subset.
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xi ∈ Xi, we c-color [Xi \ {xi}]k−1 by giving each set Z the color of {xi} ∪ Z
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arbitrarily.
Since c is finite, one of the colors is associated with infinitely many xi—they
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Let V0, V1, . . . be an infinite sequence of disjoint non-empty finite sets, and let
G be an infinite graph on their union. Assume that every vertex v in Vn, for
n ≥ 1, has a neighbor f(v) in Vn−1. Then G contains a ray, that is a
one-way-infinite path, v0v1 . . . with vn ∈ Vn for all n.

Proof.

Let P be the set of all finite paths of the form vf(v)f(f(v)) . . . . Since V0 is
finite, but P is infinite, infinitely many of the paths in P begin at the same
vertex v0. On these infinitely many paths, infinitely many agree on v1 ∈ V1,
because V1 is finite. This gives rise to the inductive definition of vn for every
n so that v0v1 . . . form a ray.
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every m ≥ k, all colorings gn with n ≥ m agree on [m]k, so for each Y ∈ [N]k

the value gn(Y ) coincides for all n > maxY . We define g(Y ) as this common
value gn(Y ).
Then g is a bad coloring of [N] since every r-element subset S of N is
contained in some sufficiently large [n], and so S cannot be monochromatic
since g coincides on [n]k with the bad coloring gn. This contradicts 11.9.
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Ramsey numbers

Definition 11.12

The least integer n associated with k, c, and r as in Theorem 11.11 is the
Ramsey number for k, c and r, and is denoted by R(k, c, r). We will also use
the notation R(H1,H2) to denote the least order n such that H1 is a subgraph
of G or H2 is a subgraph of G for every graph G of order n. If H1 = H2,
then R(H1,H2) may be written as R(H1).

We proved before that R(2, 2, 3) = 6, and that R(K3,K3) = 6. In most
cases the exact Ramsey numbers are not known. Most known values and
bounds are listed at http://mathworld.wolfram.com/RamseyNumber.html



Theorem 11.13

Let s and t be positive integers, and let T be a tree of order t. Then
R(T,Ks) = (s− 1)(t− 1) + 1.



Theorem 11.13

Let s and t be positive integers, and let T be a tree of order t. Then
R(T,Ks) = (s− 1)(t− 1) + 1.

Proof.

The disjoint union of s− 1 copies of Kt−1 contains no copy of T ,



Theorem 11.13

Let s and t be positive integers, and let T be a tree of order t. Then
R(T,Ks) = (s− 1)(t− 1) + 1.

Proof.

The disjoint union of s− 1 copies of Kt−1 contains no copy of T , while the
complement of this graph, the complete s− 1-partite graph Kt−1

s−1, does not
contain Ks.



Theorem 11.13

Let s and t be positive integers, and let T be a tree of order t. Then
R(T,Ks) = (s− 1)(t− 1) + 1.

Proof.

The disjoint union of s− 1 copies of Kt−1 contains no copy of T , while the
complement of this graph, the complete s− 1-partite graph Kt−1

s−1, does not
contain Ks. Thus R(T,Ks) ≥ (s− 1)(t− 1) + 1.



Theorem 11.13

Let s and t be positive integers, and let T be a tree of order t. Then
R(T,Ks) = (s− 1)(t− 1) + 1.

Proof.

The disjoint union of s− 1 copies of Kt−1 contains no copy of T , while the
complement of this graph, the complete s− 1-partite graph Kt−1

s−1, does not
contain Ks. Thus R(T,Ks) ≥ (s− 1)(t− 1) + 1.
Conversely, suppose that G is any graph of order n = (s− 1)(t− 1) + 1 whose
complement contains no copy of Ks.



Theorem 11.13

Let s and t be positive integers, and let T be a tree of order t. Then
R(T,Ks) = (s− 1)(t− 1) + 1.

Proof.

The disjoint union of s− 1 copies of Kt−1 contains no copy of T , while the
complement of this graph, the complete s− 1-partite graph Kt−1

s−1, does not
contain Ks. Thus R(T,Ks) ≥ (s− 1)(t− 1) + 1.
Conversely, suppose that G is any graph of order n = (s− 1)(t− 1) + 1 whose
complement contains no copy of Ks. Then s > 1 and in any proper vertex
coloring of G, at most s− 1 vertices can get the same color.



Theorem 11.13

Let s and t be positive integers, and let T be a tree of order t. Then
R(T,Ks) = (s− 1)(t− 1) + 1.

Proof.

The disjoint union of s− 1 copies of Kt−1 contains no copy of T , while the
complement of this graph, the complete s− 1-partite graph Kt−1

s−1, does not
contain Ks. Thus R(T,Ks) ≥ (s− 1)(t− 1) + 1.
Conversely, suppose that G is any graph of order n = (s− 1)(t− 1) + 1 whose
complement contains no copy of Ks. Then s > 1 and in any proper vertex
coloring of G, at most s− 1 vertices can get the same color. Hence
χ(G) ≥ ⌈n/(s − 1)⌉ = t,



Theorem 11.13

Let s and t be positive integers, and let T be a tree of order t. Then
R(T,Ks) = (s− 1)(t− 1) + 1.

Proof.

The disjoint union of s− 1 copies of Kt−1 contains no copy of T , while the
complement of this graph, the complete s− 1-partite graph Kt−1

s−1, does not
contain Ks. Thus R(T,Ks) ≥ (s− 1)(t− 1) + 1.
Conversely, suppose that G is any graph of order n = (s− 1)(t− 1) + 1 whose
complement contains no copy of Ks. Then s > 1 and in any proper vertex
coloring of G, at most s− 1 vertices can get the same color. Hence
χ(G) ≥ ⌈n/(s − 1)⌉ = t, and so G has a subgraph H with δ(H) ≥ t− 1
(greedy coloring).



Theorem 11.13

Let s and t be positive integers, and let T be a tree of order t. Then
R(T,Ks) = (s− 1)(t− 1) + 1.

Proof.

The disjoint union of s− 1 copies of Kt−1 contains no copy of T , while the
complement of this graph, the complete s− 1-partite graph Kt−1

s−1, does not
contain Ks. Thus R(T,Ks) ≥ (s− 1)(t− 1) + 1.
Conversely, suppose that G is any graph of order n = (s− 1)(t− 1) + 1 whose
complement contains no copy of Ks. Then s > 1 and in any proper vertex
coloring of G, at most s− 1 vertices can get the same color. Hence
χ(G) ≥ ⌈n/(s − 1)⌉ = t, and so G has a subgraph H with δ(H) ≥ t− 1
(greedy coloring). Then H contains T as a subgraph.
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For every positive integer ∆ there is a constant c such that R(H) ≤ c|H | for
all graphs H with ∆(H) ≤ ∆.

Proof omitted—uses the Regularity Lemma.
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Ramsey’s Theorem can be restated as follows: For every graph H = Kr there
is a graph G such that every 2-coloring of the edges of G gives an induced
monochromatic subgraph isomorphic to H . (In fact, a sufficiently large
complete graph will work for G.)
Question: Given an arbitrary graph H , is there a graph G such that every
2-coloring of G gives an induced monochromatic subgraph isomorphic to H?

Theorem 11.15 (Deuber; Erdős, Hajnal, Pósa; Rödl 1973)

Every graph has a Ramsey graph. For every graph H there is a graph G such
that, for every partition {E1, E2} of E(G), has an induced subgraph H with
E(H) ⊆ E1 or E(H) ⊆ E2.



Proof

Given two graphs G = (V,E) and H , and U ⊆ V , we write G[U → H ] to
denote the graph obtained from G by replacing each vertex u in U by a copy
H(u) of H ,



Proof

Given two graphs G = (V,E) and H , and U ⊆ V , we write G[U → H ] to
denote the graph obtained from G by replacing each vertex u in U by a copy
H(u) of H , joining H(u) completely to H(u′) whenever uu′ ∈ E,



Proof

Given two graphs G = (V,E) and H , and U ⊆ V , we write G[U → H ] to
denote the graph obtained from G by replacing each vertex u in U by a copy
H(u) of H , joining H(u) completely to H(u′) whenever uu′ ∈ E, and
joining each H(u) to v whenever uv ∈ E and v ∈ V \ U .



Proof

Given two graphs G = (V,E) and H , and U ⊆ V , we write G[U → H ] to
denote the graph obtained from G by replacing each vertex u in U by a copy
H(u) of H , joining H(u) completely to H(u′) whenever uu′ ∈ E, and
joining each H(u) to v whenever uv ∈ E and v ∈ V \ U . We will prove the
following strengthening of the theorem
(*) For any two graphs H1 and H2, there is a graph G = G(H1,H2) such that
every edge-coloring of G with colors 1 and 2 yields either an induced H1 ⊆ G
with all edges colored 1, or an induced H2 ⊆ G with all edges colored 2.



Proof

Given two graphs G = (V,E) and H , and U ⊆ V , we write G[U → H ] to
denote the graph obtained from G by replacing each vertex u in U by a copy
H(u) of H , joining H(u) completely to H(u′) whenever uu′ ∈ E, and
joining each H(u) to v whenever uv ∈ E and v ∈ V \ U . We will prove the
following strengthening of the theorem
(*) For any two graphs H1 and H2, there is a graph G = G(H1,H2) such that
every edge-coloring of G with colors 1 and 2 yields either an induced H1 ⊆ G
with all edges colored 1, or an induced H2 ⊆ G with all edges colored 2.
We proceed by induction on |H1|+ |H2|.



Proof

Given two graphs G = (V,E) and H , and U ⊆ V , we write G[U → H ] to
denote the graph obtained from G by replacing each vertex u in U by a copy
H(u) of H , joining H(u) completely to H(u′) whenever uu′ ∈ E, and
joining each H(u) to v whenever uv ∈ E and v ∈ V \ U . We will prove the
following strengthening of the theorem
(*) For any two graphs H1 and H2, there is a graph G = G(H1,H2) such that
every edge-coloring of G with colors 1 and 2 yields either an induced H1 ⊆ G
with all edges colored 1, or an induced H2 ⊆ G with all edges colored 2.
We proceed by induction on |H1|+ |H2|. If either H1 or H2 has no edges, in
particular, |H1|+ |H2| ≤ 1, then (*) holds with G = Kn for sufficiently large
n.



Proof

Given two graphs G = (V,E) and H , and U ⊆ V , we write G[U → H ] to
denote the graph obtained from G by replacing each vertex u in U by a copy
H(u) of H , joining H(u) completely to H(u′) whenever uu′ ∈ E, and
joining each H(u) to v whenever uv ∈ E and v ∈ V \ U . We will prove the
following strengthening of the theorem
(*) For any two graphs H1 and H2, there is a graph G = G(H1,H2) such that
every edge-coloring of G with colors 1 and 2 yields either an induced H1 ⊆ G
with all edges colored 1, or an induced H2 ⊆ G with all edges colored 2.
We proceed by induction on |H1|+ |H2|. If either H1 or H2 has no edges, in
particular, |H1|+ |H2| ≤ 1, then (*) holds with G = Kn for sufficiently large
n. For the induction step, assume that both H1 and H2 have at least one
edge, and that (*) holds for all pairs (H ′

1,H
′
2) with smaller |H ′

1|+ |H ′
2|.
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2. The restriction yu 7→ u of f to Û i−1 = {yu|u ∈ U i−1} ⊆ V i extends by
(v, ∅) 7→ v to an isomorphism from
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and F i : Ĥ ′ → G0[W ′
k] is an isomorphism.
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We thus assume that k < i, and so k = i− 1. By definition of U i−1 and
Ĝi−1, the inverse image of W ′′

i−1 under isomorphism f i : Ĥ ′ → G0[W ′
i−1] is a

subset of U i−1.



We thus assume that k < i, and so k = i− 1. By definition of U i−1 and
Ĝi−1, the inverse image of W ′′

i−1 under isomorphism f i : Ĥ ′ → G0[W ′
i−1] is a

subset of U i−1. Since x is adjacent to those vertices that lie in Û i−1 and all
those edges are colored 2, the graph Ĥ ′ and x together induce in Gi a copy of
H2 colored 2.



Problem 22

Prove that for every positive integer k there is an integer N such that if G is a
2-connected graph of order at least N , then G has a subdivision of Ck or K2,k.
Find an upper bound on N it terms of k.

Problem 23

Find a Ramsey graph for C4, that is, find a graph G such that if the edges of
G are partitioned into {E1, E2}, then G has a induced subgraph isomorphic to
C4 all of whose edges belong to one of E1 or E2.



Ramsey Theorem for Connected Graphs

Theorem 11.16

For every positive integer k there is an integer N such that if G is a connected
graph of order at least N , then G contains Pk or K1,k as a subgraph.



Ramsey Theorem for Connected Graphs

Theorem 11.16

For every positive integer k there is an integer N such that if G is a connected
graph of order at least N , then G contains Pk or K1,k as a subgraph.

Theorem 11.17

For every positive integer k there is an integer N such that if G is a
2-connected graph of order at least N , then G contains Ck or K2,k as
topological minors.



Ramsey Theorem for Connected Graphs

Theorem 11.16

For every positive integer k there is an integer N such that if G is a connected
graph of order at least N , then G contains Pk or K1,k as a subgraph.

Theorem 11.17

For every positive integer k there is an integer N such that if G is a
2-connected graph of order at least N , then G contains Ck or K2,k as
topological minors.

Theorem 11.18

For every positive integer k there is an integer N such that if G is a
3-connected graph of order at least N , then G contains a topological minor



Ramsey Theorem for Connected Graphs

Theorem 11.16

For every positive integer k there is an integer N such that if G is a connected
graph of order at least N , then G contains Pk or K1,k as a subgraph.

Theorem 11.17

For every positive integer k there is an integer N such that if G is a
2-connected graph of order at least N , then G contains Ck or K2,k as
topological minors.

Theorem 11.18

For every positive integer k there is an integer N such that if G is a
3-connected graph of order at least N , then G contains a topological minor Wk

(wheel) or



Ramsey Theorem for Connected Graphs

Theorem 11.16

For every positive integer k there is an integer N such that if G is a connected
graph of order at least N , then G contains Pk or K1,k as a subgraph.

Theorem 11.17

For every positive integer k there is an integer N such that if G is a
2-connected graph of order at least N , then G contains Ck or K2,k as
topological minors.

Theorem 11.18

For every positive integer k there is an integer N such that if G is a
3-connected graph of order at least N , then G contains a topological minor Wk

(wheel) or Vk (wheel with center replaced by a path) or



Ramsey Theorem for Connected Graphs

Theorem 11.16

For every positive integer k there is an integer N such that if G is a connected
graph of order at least N , then G contains Pk or K1,k as a subgraph.

Theorem 11.17

For every positive integer k there is an integer N such that if G is a
2-connected graph of order at least N , then G contains Ck or K2,k as
topological minors.

Theorem 11.18

For every positive integer k there is an integer N such that if G is a
3-connected graph of order at least N , then G contains a topological minor Wk

(wheel) or Vk (wheel with center replaced by a path) or K3,k.



Ramsey Theorem for Connected Graphs

Theorem 11.16

For every positive integer k there is an integer N such that if G is a connected
graph of order at least N , then G contains Pk or K1,k as a subgraph.

Theorem 11.17

For every positive integer k there is an integer N such that if G is a
2-connected graph of order at least N , then G contains Ck or K2,k as
topological minors.

Theorem 11.18

For every positive integer k there is an integer N such that if G is a
3-connected graph of order at least N , then G contains a topological minor Wk

(wheel) or Vk (wheel with center replaced by a path) or K3,k.

Theorem 11.19

For every positive integer k there is an integer N such that if G is an
4-connected graph of order at least N , then G contains as a topological minor



Ramsey Theorem for Connected Graphs

Theorem 11.16

For every positive integer k there is an integer N such that if G is a connected
graph of order at least N , then G contains Pk or K1,k as a subgraph.

Theorem 11.17

For every positive integer k there is an integer N such that if G is a
2-connected graph of order at least N , then G contains Ck or K2,k as
topological minors.

Theorem 11.18

For every positive integer k there is an integer N such that if G is a
3-connected graph of order at least N , then G contains a topological minor Wk

(wheel) or Vk (wheel with center replaced by a path) or K3,k.

Theorem 11.19

For every positive integer k there is an integer N such that if G is an
4-connected graph of order at least N , then G contains as a topological minor
DWk (double wheel) or



Ramsey Theorem for Connected Graphs

Theorem 11.16

For every positive integer k there is an integer N such that if G is a connected
graph of order at least N , then G contains Pk or K1,k as a subgraph.

Theorem 11.17

For every positive integer k there is an integer N such that if G is a
2-connected graph of order at least N , then G contains Ck or K2,k as
topological minors.

Theorem 11.18

For every positive integer k there is an integer N such that if G is a
3-connected graph of order at least N , then G contains a topological minor Wk

(wheel) or Vk (wheel with center replaced by a path) or K3,k.

Theorem 11.19

For every positive integer k there is an integer N such that if G is an
4-connected graph of order at least N , then G contains as a topological minor
DWk (double wheel) or Zk (zig-zag ladder) or



Ramsey Theorem for Connected Graphs

Theorem 11.16

For every positive integer k there is an integer N such that if G is a connected
graph of order at least N , then G contains Pk or K1,k as a subgraph.

Theorem 11.17

For every positive integer k there is an integer N such that if G is a
2-connected graph of order at least N , then G contains Ck or K2,k as
topological minors.

Theorem 11.18

For every positive integer k there is an integer N such that if G is a
3-connected graph of order at least N , then G contains a topological minor Wk

(wheel) or Vk (wheel with center replaced by a path) or K3,k.

Theorem 11.19

For every positive integer k there is an integer N such that if G is an
4-connected graph of order at least N , then G contains as a topological minor
DWk (double wheel) or Zk (zig-zag ladder) or Mk (Möbius ladder) or
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Parallel Minors

Recall that a graph is a topological minor of another if it can be obtained by

◮ deleting edges or isolated vertices

◮ contracting edges in series that are in series with another edge



Parallel Minors

Recall that a graph is a topological minor of another if it can be obtained by

◮ deleting edges or isolated vertices

◮ contracting edges in series that are in series with another edge

Topological minors are also called series minors



Parallel Minors

Recall that a graph is a topological minor of another if it can be obtained by

◮ deleting edges or isolated vertices

◮ contracting edges in series that are in series with another edge

Topological minors are also called series minors
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Recall that a graph is a topological minor of another if it can be obtained by

◮ deleting edges or isolated vertices

◮ contracting edges in series that are in series with another edge

Topological minors are also called series minors
A graph is a parallel minor of another if it can be obtained by

◮ contracting edges

◮ deleting edges that are in parallel with other edges (simplifying)
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graph of order at least N , then G contains as a parallel minor Pk or K1,k or
Kk or Ck.

Theorem 11.21

For every positive integer k there is an integer N such that if G is a
2-connected graph of order at least N , then G contains as a parallel minor
K′

2,k (K2,k plus an edge) or Fk (fan) or Kk or Ck.

Theorem 11.22

For every positive integer k there is an integer N such that if G is a
3-connected graph of order at least N , then G contains as a parallel minor
K′

3,k (K3,k plus a triangle) or DFk (double fan) or Kk or Wk.

Theorem 11.23

For every positive integer k there is an integer N such that if G is a
4-connected graph of order at least N , then G contains as a parallel minor
K′

4,k or DWk or DW ′
k (double wheel with an axle) or TFk (triple fan) or Zk or

Mk or Kk.
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◮ G is 4-connected
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Theorem 11.25 (Ding, O., Sanders, Vertigan; Kedlaya)

Every planar graph is a union of two series-parallel graphs.



Partitioning Planar Graphs

Conjecture 11.24 (Chartrand, Geller, Hedetniemi)

Every planar graph is a union of two outerplanar graphs.

“Proof”:

◮ WLOG G is a triangulation

◮ G is 4-connected
⇒ Hamilton cycle C
⇒ (C+ edges inside C) ∪ (C+ edges outside C)

◮ min counter-example G not 4-connected
⇒ G is 0-, 1-, 2-, or 3-sum of A and B
⇒ decompose each A and B and make parts “fit together” FAIL!

◮ later, proved by true by Gonçalves

Theorem 11.25 (Ding, O., Sanders, Vertigan; Kedlaya)

Every planar has an edge-partition into two graphs of tree-width ≤ 2.
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Partitioning Graphs on Surfaces

Theorem 11.26 (Ding, O., Sanders, Vertigan)

Every projective graph has a vertex-partition into two graphs of tw ≤ 2.

Theorem 11.27 (DOSV)

Every graph of non-negative Euler characteristic has a vertex-partition and an
edge-partition into two graphs of tw ≤ 3.

Note 11.28

This is best possible for toroidal graphs.

Theorem 11.29 (DOSV)

Every graph G has

◮ vertex-partition into two graphs of tw ≤ 6− 2χ(G)

◮ edge-partition into two graphs of tw ≤ 9− 3χ(G)



Proofs

◮ Set v ∈ V (G) and Vk = set of vertices distance k from v.



Proofs

◮ Set v ∈ V (G) and Vk = set of vertices distance k from v.

◮ Vertex-partitions: graphs induced by
⋃

k even

Vk and
⋃

k odd

Vk



Proofs

◮ Set v ∈ V (G) and Vk = set of vertices distance k from v.

◮ Vertex-partitions: graphs induced by
⋃

k even

Vk and
⋃

k odd

Vk

◮ Edge-partitions: let Hk = induced by edges [Vk, Vk] and [Vk, Vk+1]
⋃

k even

Hk and
⋃

k odd

Hk
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Minor-Closed Classes

Conjecture 11.30 (Thomas)

For every G there is an integer k such that every graph with
no G-minor has a vertex-partition and edge-partition into two
graphs of tw ≤ k.

Theorem 11.31 (DOSV, DeVos, Reed, Seymour)

For every minor-closed class of graphs other than the class of
all graphs there is a number k such that every member of the
class has a vertex-partition and edge-partition into two graphs
of tw ≤ k.

Theorem 11.32 (Robertson and Seymour)

All members of any minor-closed class of graphs other than
the class of all graphs are clique-sums of graphs that can
“almost” be embedded on surfaces of bounded genus.

A graph is a minor of another if it
can be obtained by

◮ deleting edges and/or
vertices

◮ contracting edges

Minor-closed class of graphs: if G

is in the class, then so are all of

its minors.

Theorem 11.33
(R&S)
Every minor-closed class of graphs

can be characterized by excluding

finitely many graphs as minors.
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Partitions and Contractions

Question 11.34 (Oxley)

Can the edges of every graph be partitioned into E1 and E2 such that each of
G/E1 and G/E2 is series parallel?

◮ yes if planar: dualize our theorem

◮ yes if 4-connected: 2 edge-disjoint spanning trees by Nash-Williams

Theorem 11.35 (Morgan, O.)

The edges of every projective graph can be partitioned into E1 and E2 such
that each of G/E1 and G/E2 has tw ≤ 3.

Theorem 11.36 (MO)

The edges of every toroidal graph can be partitioned into E1 and E2 such that
of tw(G/E1) ≤ 3 and tw(G/E2) ≤ 4.

Theorem 11.37 (Demaine, Hajiaghayi, Mohar)

The edges of a graph of genus g can be partitioned into E1 and E2 such that
each of G/E1 and G/E2 has tw ≤ O(g2).
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Definition of T (k, l, r)

◮ Start with Kk, and assign all of its vertices level 0

◮ Inductively, for each Kk subgraph H of level n− 1, add r new vertices,
join each of them to all vertices of H and declare all newly created
vertices and Kk subgraphs to have level n.

◮ Stop after having created all level-l subgraphs.

T (2, 4, 1)

b blevel 0

blevel 1

b blevel 2

b b b blevel 3

b b b b b b b blevel 4
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Partitioning k-Trees

Definition 11.38

k-tree: T (k, l, r) where l is arbitrary, and r can very arbitrarily at every stage.

Theorem 11.39 (DOSV)

Every (k1 + k2 + 1)-tree has a vertex-partition into a k1-tree and a k2-tree.

Theorem 11.40 (DOSV)

Every (k1 + k2)-tree has an edge-partition into a k1-tree and a k2-tree.



Ramsey-Type Results

Theorem 11.41 (DOSV)

For every k1, k2, l, and r there is L such that



Ramsey-Type Results

Theorem 11.41 (DOSV)

For every k1, k2, l, and r there is L such that
for every vertex-partition {G1, G2} of T (k1 + k2, L, r):
T (k1, l, r) ⊆ G1 or T (k2, l, r) ⊆ G2.



Ramsey-Type Results

Theorem 11.41 (DOSV)

For every k1, k2, l, and r there is L such that
for every vertex-partition {G1, G2} of T (k1 + k2, L, r):
T (k1, l, r) ⊆ G1 or T (k2, l, r) ⊆ G2.

Corollary 11.42

For every k, l, and r there is L such that



Ramsey-Type Results

Theorem 11.41 (DOSV)

For every k1, k2, l, and r there is L such that
for every vertex-partition {G1, G2} of T (k1 + k2, L, r):
T (k1, l, r) ⊆ G1 or T (k2, l, r) ⊆ G2.

Corollary 11.42

For every k, l, and r there is L such that
for every vertex-partition {G1, . . . , Gk} of T (k, L, r):



Ramsey-Type Results

Theorem 11.41 (DOSV)

For every k1, k2, l, and r there is L such that
for every vertex-partition {G1, G2} of T (k1 + k2, L, r):
T (k1, l, r) ⊆ G1 or T (k2, l, r) ⊆ G2.

Corollary 11.42

For every k, l, and r there is L such that
for every vertex-partition {G1, . . . , Gk} of T (k, L, r):
at least one Gi contains T (1, l, r).



Ramsey-Type Results

Theorem 11.41 (DOSV)

For every k1, k2, l, and r there is L such that
for every vertex-partition {G1, G2} of T (k1 + k2, L, r):
T (k1, l, r) ⊆ G1 or T (k2, l, r) ⊆ G2.

Corollary 11.42

For every k, l, and r there is L such that
for every vertex-partition {G1, . . . , Gk} of T (k, L, r):
at least one Gi contains T (1, l, r).

Conjecture 11.43 (DOSV)

For every k, l, and r there is L such that



Ramsey-Type Results

Theorem 11.41 (DOSV)

For every k1, k2, l, and r there is L such that
for every vertex-partition {G1, G2} of T (k1 + k2, L, r):
T (k1, l, r) ⊆ G1 or T (k2, l, r) ⊆ G2.

Corollary 11.42

For every k, l, and r there is L such that
for every vertex-partition {G1, . . . , Gk} of T (k, L, r):
at least one Gi contains T (1, l, r).

Conjecture 11.43 (DOSV)

For every k, l, and r there is L such that
for every edge-partition {G1, . . . , Gk} of T (k,L, r):



Ramsey-Type Results

Theorem 11.41 (DOSV)

For every k1, k2, l, and r there is L such that
for every vertex-partition {G1, G2} of T (k1 + k2, L, r):
T (k1, l, r) ⊆ G1 or T (k2, l, r) ⊆ G2.

Corollary 11.42

For every k, l, and r there is L such that
for every vertex-partition {G1, . . . , Gk} of T (k, L, r):
at least one Gi contains T (1, l, r).

Conjecture 11.43 (DOSV)

For every k, l, and r there is L such that
for every edge-partition {G1, . . . , Gk} of T (k,L, r):
at least one Gi contains a subdivision of T (1, l, r).
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Large k-Trees and Edge-Partitions

T (2, 4, 1)

b blevel 0

blevel 1

b blevel 2

b b b blevel 3

b b b b b b b blevel 4

b

b

b

b b b
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b

b

b
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b

Theorem 11.44 (DOSV)

For every l and r there are L and R such that if T (2, L, R) has its edges colored
red and blue, then it contains a red T (1, l, r) or a blue subdivision of T (1, l, r).
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Partitioning Into Graphs With Only Small Components

Theorem 11.45 (Alon, Ding, O, Vertigan)

If k is tree-width and ∆ is maximum degree of G, then

◮ there is a vertex-partition of G into 2 graphs with components on only
≤ 24k∆ vertices;

◮ there is an edge-partition of G into 2 graphs with components on only
≤ 24k∆(∆ + 1) vertices.

Q: Is it enough to bound just the tree-width?
A: No, consider

◮ large star for edge-partitions,

◮ and a large fan for vertex-partitions.

Q: Is it enough to bound just the vertex degree?
A: No, there are 4-regular graphs of arbitrarily large girth (Erdős, Sachs)

◮ one part of an edge-partition will contain a cycle

◮ for vertex-partitions, consider line graphs of those graphs
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∆ ≤ 4 and Vertex-Partiions

Theorem 11.46 (ADOV)

If ∆(G) ≤ 4, then G has a vertex-partition into two graphs on components
with at most 57 vertices.

Theorem 11.47 (Haxell, Szabó, Tardos)

57 can be reduced to 6.

Note: 5 is a lower bound.

Theorem 11.48 (Haxell, Szabó, Tardos)

If ∆(G) ≤ 5, then G has a vertex-partition into two graphs on components
with at most 6,053,628,175 vertices.
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Three-Color Theorem for Planar Graphs?

Question 11.49

Is there a number c such that the every planar graph can have its vertices
colored with 3-colors so that each monochromatic component has at most c
vertices?

Answer: No! For a positive integer n, take n disjoint copies of a fan on
n2 + n+1 vertices. Then add one more vertex v0 joining it to all vertices of all
the fans; name the graph Un.

Theorem 11.50

In every vertex 3-coloring of Un, there is a monochromatic component on more
than n vertices.

Proof.

Without loss of generality, the color of v0 is red. If each fan has a vertex
colored red, then the conclusion follows. So suppose that one of the fans F has
its vertices colored with only two colors, and suppose the tip v of F is blue. If
F has n other vertices colored blue, then the conclusion follows. In the
remaining case, the blue vertices cut the path F − v into at most n
monochromatic segments, and so at least one of those segments must have
more than n vertices.
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Theorem 11.51 (ADOV+S)

Let G be a minor-closed class of graphs other than the class of all graphs, and
pick ∆.
There is a number c(G,∆) such that every member of G whose max degree is
≤ ∆ can be vertex 4-colored so that all monochromatic components have at
most c vertices.
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Four-Color Theorem for Minor-Closed Classes of Graphs

Theorem 11.51 (ADOV+S)

Let G be a minor-closed class of graphs other than the class of all graphs, and
pick ∆.
There is a number c(G,∆) such that every member of G whose max degree is
≤ ∆ can be vertex 4-colored so that all monochromatic components have at
most c vertices.

Proof.

◮ Every graph G in G has a vertex-partition into two graphs of tw ≤ w(G).
◮ If ∆(G) ≤ ∆, then each of those can be 2-colored with components on at

most c vertices.

◮ This gives a 4-coloring of G with components on at most c vertices.
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