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Three flags for the freeness

.
Flags of arrangements..

......

A flag {Xi}ℓi=0 of A is the set of flats Xi ∈ L(A)
with codimXi = i and that

V = X0 ⊃ X1 ⊃ · · · ⊃ Xℓ.
.
Definition..

......

(1) Supersolvable flags (filtrations).
(2) Divisional flags.
(3) Heavy flags.
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1. Supersolvable flags

.
Definition-Theorem (SS flags, Stanley, A-?)..

......

For any flag {Xi} and their localizations

∅ = AX0 ⊂ AX1 ⊂ · · ·AXℓ = A,

it holds that

b2(A) ≥
ℓ−1∑
i=0

(|AXi+1| − |AXi |)|AXi |.

An flag {Xi} is an SS flag if the above inequality
is the equality. In this case A is called SS.
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2. Divisional flags

.
Definition-Theorem (Divisional flags, A-)..

......

For any flag {Xi} and their restrictions

∅ = AXℓ ⊂ AXℓ−1 ⊂ · · ·AX0 = A,

it holds that

b2(A) ≥
ℓ−1∑
i=0

(|AXi | − |AXi+1|)|AXi+1|.

An flag {Xi} is a divisional flag if the above
inequality is the equality, and A is called DF.
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Two flags and freeness

.
Theorem (A-)..

......

(1) If A has an SS-flag, then so does
divisional flag.
(2) If A has divisional flag, then A is free with
exp(A) = (|AX0| − |AX1|, . . . , |AXℓ−1| − |AXℓ |, |AXℓ |).
(3) Whether A has SS flag or divisional flag
depends only on L(A).

DF generalizes SS by replacing localization by
restriction, e.g., Weyl arr. of type Dℓ (ℓ ≥ 4) are
not SS but DF (SS⊊ IF ⊊ DF).
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Topology of SS and DF

.
Topologically, SS is far better!..

......

SS arrangements are K(π,1) (it is fiber type by
Terao!), but DF are not in general, though their
definitions are very similar.
.
Question..

......

DF arrangement have any good topology? ⇒
one possibility is representation of cohomology
ring by flags!
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Possible topology of DF : Flag group

.
Flag and homology groups (Schechtman-Varchenko)..

......

Let

Flp(A) : = ⟨{X0 ⊃ · · · ⊃ Xp | Xi ∈ L(A),

codimXi = i⟩Z/ (equiv. relation).

Then Flp(A) ≃ Hp(M(A) ⊗ C).

Hence ∃{Xi}:divisional flag ⇐⇒ H∗(A)
contains some special diff. form⇒We may
interpret DF in terms of homology.
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3. Heavy flags (joint work with L. K ühne)

.
Definition..

......

(1) The Euler-Ziegler restriction (AH,mH) of a
multiarrangement (A,m) onto H ∈ A is defined
by mH(X) :=

∑
H,K∈AX

m(K), where X ∈ AH,
(2) L ∈ A is heavy for (A,m) if 2m(L) ≥ |m|.
.
Remark..

......

When ℓ = 2 and H ∈ A is heavy for (A,m),
then exp(A,m) = (m(H), |m| −m(H)), i.p.,
exponents are combinatorial in this case. The
above generalizes this case.
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Example

.
Heavy hyperplane..

......

x4y2z16(x−y)2(y−z)3(z−x)5 = 0 : z= 0 is heavy!

Euler-Ziegler restriction onto z= 0 gives

x9y5(x− y)2 = 0 : x = 0 is heavy!

Its exponents are (7,9). Then when (A,m) is
free? And if free, then exp(A,m) = (7,9,16)?
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Results on heavy hyperplanes

.
Theorem (A- and K̈uhne)..

......

Let H ∈ A be heavy for (A,m). Then

b2(A,m) −m(H)(|m| −m(H)) ≥ b2(AH,mH).

Also, (A.m) is free if and only if (AH,mH) is
free and the above inequality is the equality.
.
The casem≡ 1 was due to A-Yoshinaga..

......

The quantity b2(A,m) −m(H)(|m| −m(H))
corresponds to b2(dA) for a simple
arrangement case.
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A3-case and the heavy flag

.
Corollary..

......

The freeness of multi-A3-arrangement with the
heavy plane depends only on L(A) and m.
.
Heavy flag..

......

{Xi} is a heavy flag of (A,m) if Xi ∈ AXi−1 is
heavy for (AXi−1,mXi−1) for i = 1, . . . , ℓ − 1.
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Heavy flag and freeness

.
Theorem (A- and K̈uhne)..

......

Assume that (A,m) has a heavy flag {Xi}.
Then
(1) (A,m) is free if and only if
b2(A,m) =

∑
0≤i<j≤ℓ−1 mXi(Xi+1)mXj(Xj+1). In this

case,
exp(A,m) = (m(X1),mX1(X2), . . . ,mℓ−1(Xℓ)). i.p.,
when m≡ 1, the freeness of A with heavy flag
depends only on L(A).
(2) In the above case, A is SS.
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Example again

.
Heavy hyperplane..

......

x4y2z16(x−y)2(y−z)3(z−x)5 = 0 : z= 0 is heavy!

Euler-Ziegler restriction onto z= 0 gives

x9y5(x− y)2 = 0 : x = 0 is heavy!

Its exponents are (7,9). We may compute that
b2(A,m) − 16 · 16= 63= 7 · 9. Hence the
heavy flag theorem shows this is free with
exp(A,m) = (7,9,16).
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What is interesting is:

.
A similar result (A-Terao-Yoshinaga)..

......

If all multiplicities on A makes (A,m) free,then
A is a product of one and two-dimensional
arrangements.
.
With the weaker multi-freeness, we have wide nice class of
A!..

......

By Theorem (2), if A has one free multiplicity
with a heavy flag, then A is SS!

Purely algebraic multi-freeness is related to
geometry of A!
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We stop here

Thank you for your attention!
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