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Toric arrangements

Let T = (C∗)d be a complex torus. We consider an
arrangement A = {K1, · · · ,Kn} of hypertori in T.

For each i,
Ki = {z|χi(z) = bi}

with χi(z) = zai , ai ∈ Zd, a primitive character (i.e. Ki’s are
connected). We assume bi ∈ C∗.

We also assume rk[a1, . . . , an] = d, i.e. A essential (minimal
non-zero intersections have dimension 0).



Toric arrangements

Let T = (C∗)d be a complex torus. We consider an
arrangement A = {K1, · · · ,Kn} of hypertori in T.

For each i,
Ki = {z|χi(z) = bi}

with χi(z) = zai , ai ∈ Zd, a primitive character (i.e. Ki’s are
connected). We assume bi ∈ C∗.

We also assume rk[a1, . . . , an] = d, i.e. A essential (minimal
non-zero intersections have dimension 0).



Toric arrangements

Let T = (C∗)d be a complex torus. We consider an
arrangement A = {K1, · · · ,Kn} of hypertori in T.

For each i,
Ki = {z|χi(z) = bi}

with χi(z) = zai , ai ∈ Zd, a primitive character (i.e. Ki’s are
connected). We assume bi ∈ C∗(or bi ∈ S1).

We also assume rk[a1, . . . , an] = d, i.e. A essential (minimal
non-zero intersections have dimension 0).



Toric arrangements

Let T = (C∗)d be a complex torus. We consider an
arrangement A = {K1, · · · ,Kn} of hypertori in T.

For each i,
Ki = {z|χi(z) = bi}

with χi(z) = zai , ai ∈ Zd, a primitive character (i.e. Ki’s are
connected). We assume bi ∈ C∗(or bi ∈ S1).

We also assume rk[a1, . . . , an] = d, i.e. A essential (minimal
non-zero intersections have dimension 0).



Topology

The complement of the arrangement is

M(A) := T \ ∪A

Problem: determine the ring H∗(M(A),Z). Is it combinatorial?

We give an answer depending on two ingredients:
I Brieskorn decomposition for hyperplane arrangements

(combinatorial);
I Maps induced by inclusion of subtori in T (depend on

equations).
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Combinatorics

Define the poset of layers (with rev. inclusion):

C(A) := {L ⊂ T | L is a c.c. of an intersection of elements of A}

Theorem (Looijenga ’95, De Concini-Procesi ’05)
Point(M(A),Q) =

∑
L∈C(A) µC(A)(0̂,L)︸ ︷︷ ︸

Möbius
function
of C(A)

(−t)rk Y(1− t)d−rk Y
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Real complexified arrangements

We call A real complexified if A = {χ−1
i (bi)} with bi ∈ S1. It

induces a polyhedral cellularization of (S1)d.

We call F(A) the face category of the cellularization of (S1)d

induced by A.

Theorem (d’Antonio-Delucchi ’12)
The data of F(A) determines an CW-complex Sal(A) such that

Sal(A) ' M(A)
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Known results

[De Concini-Procesi ’05] Computation of the cup product in
H∗(M(A),C) and formality when the matrix [a1, . . . , an] is
unimodular.

[Bibby ’14] Rational cohomology algebra for unimodular abelian
arrangements.

[Delucchi-d’Antonio ’13] For real complexified toric arr’s:
minimality of M(A) and hence H∗(M(A),Z) is torsion free.

[Dupont ’15] Complements of hypersurface arrangements (in
particular toric arrangement) are formal.



Coverings

Via the universal cover Cd π→ T the toric arrangements A lift to
an infinite periodic hyperplane arrangement A�.

−→

For a layer L ∈ C(A) we can choose a lifting L� in the C(A�). We
define A[L] as the central hyperplane arrangement A�L.
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Toric Salvetti complex, I

Theorem (C.-Delucchi ’15)
For every real complexified toric arrangement A, given a layer
L ∈ C(A) there is a CW-complex SL ⊂ Sal(A) that is homotopy
equivalent to L× Sal(A[L]).



Toric Salvetti complex, I

Theorem (C.-Delucchi ’15)
For every real complexified toric arrangement A, given a layer
L ∈ C(A) there is a CW-complex SL ⊂ Sal(A) that is homotopy
equivalent to L× Sal(A[L]).
Remark: the inclusion SL ⊂ Sal(A) depends on some choices,
but the description of the ring structure doesn’t.



Toric Salvetti complex, I

Theorem (C.-Delucchi ’15)
For every real complexified toric arrangement A, given a layer
L ∈ C(A) there is a CW-complex SL ⊂ Sal(A) that is homotopy
equivalent to L× Sal(A[L]).
Remark: the inclusion SL ⊂ Sal(A) depends on some choices,
but the description of the ring structure doesn’t.
Example: A = {1} ⊂ T = C∗

ST :
0 1



Toric Salvetti complex, I

Theorem (C.-Delucchi ’15)
For every real complexified toric arrangement A, given a layer
L ∈ C(A) there is a CW-complex SL ⊂ Sal(A) that is homotopy
equivalent to L× Sal(A[L]).
Remark: the inclusion SL ⊂ Sal(A) depends on some choices,
but the description of the ring structure doesn’t.
Example: A = {1} ⊂ T = C∗

ST :
0 1



Toric Salvetti complex, I

Theorem (C.-Delucchi ’15)
For every real complexified toric arrangement A, given a layer
L ∈ C(A) there is a CW-complex SL ⊂ Sal(A) that is homotopy
equivalent to L× Sal(A[L]).
Remark: the inclusion SL ⊂ Sal(A) depends on some choices,
but the description of the ring structure doesn’t.
Example: A = {1} ⊂ T = C∗

ST :
0 1

S{1}



Toric Salvetti complex, I

Theorem (C.-Delucchi ’15)
For every real complexified toric arrangement A, given a layer
L ∈ C(A) there is a CW-complex SL ⊂ Sal(A) that is homotopy
equivalent to L× Sal(A[L]).

The projection/inclusion map to/into the torus gives a
commutative diagram

Sal(A)

π
��

' // M(A)

i
��

(S1)d = Tc
' // T

The vertical maps induce a Leray cohomology spectral
sequence (see [Bibby ’14])

Ep,q
2 =

⊕
L∈C(A)
rk L=q

Hp(L)⊗ Hq(M(A[L]))
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Toric Salvetti complex, II

For every layer L ∈ C(A) we have a commuting diagram:

L× Sal(A[L]) ' SL

πL

��

⊂ // Sal(A) ' M(A)

π

��
L ∩ Tc = Lc

⊂ // Tc

that induces a map of spectral sequences

Ep,q
∗ → LEp,q

∗

where
LEp,q

2 = Hp(L)⊗ Hq(M(A[L]))

(all cohomologies with Z-coefficients)
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Leray spectral sequences, I

The spectral sequences LEp,q
∗ trivially collapses at page 2.

Moreover a rank counting argument gives:

Theorem (C.-Delucchi ’15)
The spectral sequence Ep,q

∗ collapses at the second page.
Hence we have:

H∗(M(A))

'
��

// H∗(L)⊗ H∗(M(A[L]))

'
��

Ep,q
2

// LEp,q
2

We will examine the morphism of spectral sequences
associated to the map

tL∈C(A)SL → Sal(A).
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φ(ω ⊗ λ)L =

{
i∗(ω)⊗ b(λ) if L ⊂ L′

0 otherwise.
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Cohomology

Theorem (C.-Delucchi)
Let A be real complexified. The ring H∗(M(A)) is isomorphic to
the image of φ.

Since realizable arithmetric matroids containing a unimodular
base have an essentially unique realization:

Corollary
If [a1, . . . , an] contains an unimodular base, then C(A)
determines the cohomology ring.



Cohomology

Theorem (C.-Delucchi)
Let A be real complexified. The ring H∗(M(A)) is isomorphic to
the image of φ.

Since realizable arithmetric matroids containing a unimodular
base have an essentially unique realization:

Corollary
If [a1, . . . , an] contains an unimodular base, then C(A)
determines the cohomology ring.



General case
...up to now we considered only real complexified toric
arrangements.

I If A is not real complexified we can consider all possible
subarrangements AP for points P ∈ C(A).

I All these sub-arrangements are central and up to
translation (by P−1 ∈ T), and we can assume 1 ∈ ∩AP.

I Hence (up to translation) they are all real complexified.

From the surjection (induced by M(A) ↪→
∏

P M(AP))⊗
P∈C(A)
P point

H∗(M(AP))→ H∗(M(A))

we get a complete description of the ring H∗(M(A)).
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Main Result

Theorem (C.-Delucchi)
Let A be any toric arrangement. The ring H∗(M(A)) is
isomorphic to the image of φ:

φ :
⊕

L′∈C(A)
rk L′=q

Hp(L′)⊗ Hq(M(A[L′]))→
⊕

L∈C(A)

H∗(L)⊗ H∗(M(A[L]))

given on the L′-summand by:

φ(ω ⊗ λ)L =

{
i∗(ω)⊗ b(λ) if L ⊂ L′

0 otherwise.
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Questions and remarks

I Does C(A) determine the ring structure of H∗(M(A))?

I In general H∗(M(A)) is not generated in dimension 1.
Does C(A) determine when H∗(M(A)) is generated in
dimension 1?

I The ring structure of H∗(M(A)) is not natural with respect
to inclusion of arrangements.

z5
1z2 = 1, z2 = 1 z5

1z2
2 = 1, z2 = 1

same C(A),
H∗(M(A))
isomorphic but
not as
H∗(T)-modules

What is the “right” combinatorial invariant to look at?

Happy birthday Mike!
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