The integer cohomology algebra of toric arrangements

Filippo Callegaro
University of Pisa

joint work with Emanuele Delucchi（Univ．of Fribourg，CH）
arXiv：1504．06169
AMS Spring Eastern Sectional Meeting
Special Session on Topology and Combinatorics of
Arrangements（in honor of Mike Falk） Stony Brook，3／20／2016

Toric arrangements

Let $T=\left(\mathbb{C}^{*}\right)^{d}$ be a complex torus. We consider an arrangement $\mathcal{A}=\left\{K_{1}, \cdots, K_{n}\right\}$ of hypertori in T.

Toric arrangements

Let $T=\left(\mathbb{C}^{*}\right)^{d}$ be a complex torus. We consider an arrangement $\mathcal{A}=\left\{K_{1}, \cdots, K_{n}\right\}$ of hypertori in T.

For each i,

$$
K_{i}=\left\{z \mid \chi_{i}(z)=b_{i}\right\}
$$

with $\chi_{i}(z)=z^{a_{i}}, a_{i} \in \mathbb{Z}^{d}$, a primitive character (i.e. K_{i} 's are connected). We assume $b_{i} \in \mathbb{C}^{*}$.

Toric arrangements

Let $T=\left(\mathbb{C}^{*}\right)^{d}$ be a complex torus. We consider an arrangement $\mathcal{A}=\left\{K_{1}, \cdots, K_{n}\right\}$ of hypertori in T.

For each i,

$$
K_{i}=\left\{z \mid \chi_{i}(z)=b_{i}\right\}
$$

with $\chi_{i}(z)=z^{a_{i}}, a_{i} \in \mathbb{Z}^{d}$, a primitive character (i.e. K_{i} 's are connected). We assume $b_{i} \in \mathbb{C}^{*}$ (or $b_{i} \in S^{1}$).

Toric arrangements

Let $T=\left(\mathbb{C}^{*}\right)^{d}$ be a complex torus. We consider an arrangement $\mathcal{A}=\left\{K_{1}, \cdots, K_{n}\right\}$ of hypertori in T.

For each i,

$$
K_{i}=\left\{z \mid \chi_{i}(z)=b_{i}\right\}
$$

with $\chi_{i}(z)=z^{a_{i}}, a_{i} \in \mathbb{Z}^{d}$, a primitive character (i.e. K_{i} 's are connected). We assume $b_{i} \in \mathbb{C}^{*}$ (or $b_{i} \in S^{1}$).

We also assume $\operatorname{rk}\left[a_{1}, \ldots, a_{n}\right]=d$, i.e. \mathcal{A} essential (minimal non-zero intersections have dimension 0).

Topology

The complement of the arrangement is

$$
M(\mathcal{A}):=T \backslash \cup \mathcal{A}
$$

Problem: determine the ring $H^{*}(M(\mathcal{A}), \mathbb{Z})$. Is it combinatorial?

Topology

The complement of the arrangement is

$$
M(\mathcal{A}):=T \backslash \cup \mathcal{A}
$$

Problem: determine the ring $H^{*}(M(\mathcal{A}), \mathbb{Z})$. Is it combinatorial?
We give an answer depending on two ingredients:

- Brieskorn decomposition for hyperplane arrangements (combinatorial);
- Maps induced by inclusion of subtori in T (depend on equations).

Combinatorics

Define the poset of layers (with rev. inclusion):
$\mathcal{C}(\mathcal{A}):=\{L \subset T \mid L$ is a c.c. of an intersection of elements of $\mathcal{A}\}$

Combinatorics

Define the poset of layers (with rev. inclusion):
$\mathcal{C}(\mathcal{A}):=\{L \subset T \mid L$ is a c.c. of an intersection of elements of $\mathcal{A}\}$

Theorem (Looijenga '95, De Concini-Procesi '05)
$\operatorname{Point}(M(\mathcal{A}), \mathbb{Q})=\sum_{L \in \mathcal{C}(\mathcal{A})} \underbrace{\mu_{\mathcal{C}(\mathcal{A})}(\hat{0}, L)}(-t)^{\mathrm{rk} Y}(1-t)^{d-\mathrm{rk} Y}$
Möbius
function
of $\mathcal{C}(\mathcal{A})$

Real complexified arrangements

We call \mathcal{A} real complexified if $\mathcal{A}=\left\{\chi_{i}^{-1}\left(b_{i}\right)\right\}$ with $b_{i} \in S^{1}$. It induces a polyhedral cellularization of $\left(S^{1}\right)^{d}$.

Real complexified arrangements

We call \mathcal{A} real complexified if $\mathcal{A}=\left\{\chi_{i}^{-1}\left(b_{i}\right)\right\}$ with $b_{i} \in S^{1}$. It induces a polyhedral cellularization of $\left(S^{1}\right)^{d}$.

We call $\mathcal{F}(\mathcal{A})$ the face category of the cellularization of $\left(S^{1}\right)^{d}$ induced by \mathcal{A}.

Real complexified arrangements

We call \mathcal{A} real complexified if $\mathcal{A}=\left\{\chi_{i}^{-1}\left(b_{i}\right)\right\}$ with $b_{i} \in S^{1}$. It induces a polyhedral cellularization of $\left(S^{1}\right)^{d}$.

We call $\mathcal{F}(\mathcal{A})$ the face category of the cellularization of $\left(S^{1}\right)^{d}$ induced by \mathcal{A}.

Real complexified arrangements

We call \mathcal{A} real complexified if $\mathcal{A}=\left\{\chi_{i}^{-1}\left(b_{i}\right)\right\}$ with $b_{i} \in S^{1}$. It induces a polyhedral cellularization of $\left(S^{1}\right)^{d}$.

We call $\mathcal{F}(\mathcal{A})$ the face category of the cellularization of $\left(S^{1}\right)^{d}$ induced by \mathcal{A}.

Theorem (d'Antonio-Delucchi '12)
The data of $\mathcal{F}(\mathcal{A})$ determines an $C W$-complex $\operatorname{Sal}(\mathcal{A})$ such that

$$
\operatorname{Sal}(\mathcal{A}) \simeq M(\mathcal{A})
$$

Known results

[De Concini-Procesi '05] Computation of the cup product in $H^{*}(M(\mathcal{A}), \mathbb{C})$ and formality when the matrix $\left[a_{1}, \ldots, a_{n}\right]$ is unimodular.
[Bibby '14] Rational cohomology algebra for unimodular abelian arrangements.
[Delucchi-d'Antonio '13] For real complexified toric arr's: minimality of $M(\mathcal{A})$ and hence $H^{*}(M(\mathcal{A}), \mathbb{Z})$ is torsion free.
[Dupont '15] Complements of hypersurface arrangements (in particular toric arrangement) are formal.

Coverings

Via the universal cover $\mathbb{C}^{d} \xrightarrow{\pi} T$ the toric arrangements \mathcal{A} lift to an infinite periodic hyperplane arrangement \mathcal{A}^{\uparrow}.

Coverings

Via the universal cover $\mathbb{C}^{d} \xrightarrow{\pi} T$ the toric arrangements \mathcal{A} lift to an infinite periodic hyperplane arrangement \mathcal{A}^{\dagger}.

For a layer $L \in \mathcal{C}(\mathcal{A})$ we can choose a lifting L^{\dagger} in the $\mathcal{C}\left(\mathcal{A}^{\dagger}\right)$. We define $\mathcal{A}[L]$ as the central hyperplane arrangement $\mathcal{A}_{L}^{\upharpoonright}$.

Toric Salvetti complex, I

Theorem (C.-Delucchi '15)
For every real complexified toric arrangement \mathcal{A}, given a layer $L \in \mathcal{C}(\mathcal{A})$ there is a $C W$-complex $S_{L} \subset \operatorname{Sal}(\mathcal{A})$ that is homotopy equivalent to $L \times \operatorname{Sal}(\mathcal{A}[L])$.

Toric Salvetti complex, I

Theorem (C.-Delucchi '15)
For every real complexified toric arrangement \mathcal{A}, given a layer $L \in \mathcal{C}(\mathcal{A})$ there is a $C W$-complex $S_{L} \subset \operatorname{Sal}(\mathcal{A})$ that is homotopy equivalent to $L \times \operatorname{Sal}(\mathcal{A}[L])$.
Remark: the inclusion $S_{L} \subset \operatorname{Sal}(\mathcal{A})$ depends on some choices, but the description of the ring structure doesn't.

Toric Salvetti complex, I

Theorem (C.-Delucchi '15)
For every real complexified toric arrangement \mathcal{A}, given a layer $L \in \mathcal{C}(\mathcal{A})$ there is a $C W$-complex $S_{L} \subset \operatorname{Sal}(\mathcal{A})$ that is homotopy equivalent to $L \times \operatorname{Sal}(\mathcal{A}[L])$.
Remark: the inclusion $S_{L} \subset \operatorname{Sal}(\mathcal{A})$ depends on some choices, but the description of the ring structure doesn't.
Example: $\mathcal{A}=\{1\} \subset T=\mathbb{C}^{*}$

Toric Salvetti complex, I

Theorem (C.-Delucchi '15)
For every real complexified toric arrangement \mathcal{A}, given a layer $L \in \mathcal{C}(\mathcal{A})$ there is a $C W$-complex $S_{L} \subset \operatorname{Sal}(\mathcal{A})$ that is homotopy equivalent to $L \times \operatorname{Sal}(\mathcal{A}[L])$.
Remark: the inclusion $S_{L} \subset \operatorname{Sal}(\mathcal{A})$ depends on some choices, but the description of the ring structure doesn't.
Example: $\mathcal{A}=\{1\} \subset T=\mathbb{C}^{*}$

Toric Salvetti complex, I

Theorem (C.-Delucchi '15)
For every real complexified toric arrangement \mathcal{A}, given a layer $L \in \mathcal{C}(\mathcal{A})$ there is a $C W$-complex $S_{L} \subset \operatorname{Sal}(\mathcal{A})$ that is homotopy equivalent to $L \times \operatorname{Sal}(\mathcal{A}[L])$.
Remark: the inclusion $S_{L} \subset \operatorname{Sal}(\mathcal{A})$ depends on some choices, but the description of the ring structure doesn't.
Example: $\mathcal{A}=\{1\} \subset T=\mathbb{C}^{*}$

Toric Salvetti complex, I

Theorem (C.-Delucchi '15)
For every real complexified toric arrangement \mathcal{A}, given a layer $L \in \mathcal{C}(\mathcal{A})$ there is a $C W$-complex $S_{L} \subset \operatorname{Sal}(\mathcal{A})$ that is homotopy equivalent to $L \times \operatorname{Sal}(\mathcal{A}[L])$.
The projection/inclusion map to/into the torus gives a commutative diagram

Toric Salvetti complex, I

Theorem (C.-Delucchi '15)
For every real complexified toric arrangement \mathcal{A}, given a layer $L \in \mathcal{C}(\mathcal{A})$ there is a $C W$-complex $S_{L} \subset \operatorname{Sal}(\mathcal{A})$ that is homotopy equivalent to $L \times \operatorname{Sal}(\mathcal{A}[L])$.
The projection/inclusion map to/into the torus gives a commutative diagram

The vertical maps induce a Leray cohomology spectral sequence (see [Bibby '14])

$$
E_{2}^{p, q}=\bigoplus_{\substack{L \in \mathcal{C}(A) \\ \mathrm{rk} L=q}} H^{p}(L) \otimes H^{q}(M(\mathcal{A}[L]))
$$

Toric Salvetti complex, II

For every layer $L \in \mathcal{C}(\mathcal{A})$ we have a commuting diagram:

$$
\begin{aligned}
L \times \operatorname{Sal}(\mathcal{A}[L]) \simeq & S_{L} \xrightarrow{\subset} \operatorname{Sal}(\mathcal{A}) \simeq M(\mathcal{A}) \\
& \downarrow^{\pi_{L}} \xrightarrow{\subset} \downarrow^{\pi} \\
L \cap T_{c} & =L_{c} \xrightarrow{\circ}
\end{aligned}
$$

that induces a map of spectral sequences

$$
E_{*}^{p, q} \rightarrow{ }_{L} E_{*}^{p, q}
$$

Toric Salvetti complex, II

For every layer $L \in \mathcal{C}(\mathcal{A})$ we have a commuting diagram:

$$
\begin{aligned}
& L \times \operatorname{Sal}(\mathcal{A}[L]) \simeq S_{L} \xrightarrow{C} \operatorname{Sal}(\mathcal{A}) \simeq M(\mathcal{A}) \\
& L \cap T_{c}=\stackrel{L_{c}}{\|_{L}} \xrightarrow{c} \stackrel{\|_{c}}{T_{c}}
\end{aligned}
$$

that induces a map of spectral sequences

$$
E_{*}^{p, q} \rightarrow{ }_{L} E_{*}^{p, q}
$$

where

$$
{ }_{L} E_{2}^{p, q}=H^{p}(L) \otimes H^{q}(M(\mathcal{A}[L]))
$$

(all cohomologies with \mathbb{Z}-coefficients)

Leray spectral sequences, I

The spectral sequences ${ }_{L} E_{*}^{p, q}$ trivially collapses at page 2.

Leray spectral sequences, I

The spectral sequences ${ }_{L} E_{*}^{p, q}$ trivially collapses at page 2 . Moreover a rank counting argument gives:
Theorem (C.-Delucchi '15)
The spectral sequence $E_{*}^{p, q}$ collapses at the second page. Hence we have:

$$
\begin{gathered}
H^{*}(M(\mathcal{A})) \longrightarrow H^{*}(L) \otimes H^{*}(M(\mathcal{A}[L])) \\
\quad \simeq \downarrow \mid \\
\quad{ }_{2}^{p, q} \longrightarrow{ }_{L} E_{2}^{p, q}
\end{gathered}
$$

Leray spectral sequences, I

The spectral sequences ${ }_{L} E_{*}^{p, q}$ trivially collapses at page 2 . Moreover a rank counting argument gives:
Theorem (C.-Delucchi '15)
The spectral sequence $E_{*}^{p, q}$ collapses at the second page. Hence we have:

$$
\begin{aligned}
& H^{*}(M(\mathcal{A})) \longrightarrow H^{*}(L) \otimes H^{*}(M(\mathcal{A}[L])) \\
& \simeq \mid \text { group isom. } \\
& E_{2}^{p, q} \longrightarrow \mid \text { group isom. } \\
&
\end{aligned}
$$

Leray spectral sequences, I

The spectral sequences ${ }_{L} E_{*}^{p, q}$ trivially collapses at page 2 . Moreover a rank counting argument gives:

Theorem (C.-Delucchi '15)

The spectral sequence $E_{*}^{p, q}$ collapses at the second page. Hence we have:

$$
\begin{aligned}
& H^{*}(M(\mathcal{A})) \longrightarrow H^{*}(L) \otimes H^{*}(M(\mathcal{A}[L])) \\
& \simeq \mid \text { group isom. } \\
& E_{2}^{p, q} \longrightarrow \mid \text { group isom. } \\
&
\end{aligned}
$$

We will examine the morphism of spectral sequences associated to the map

$$
\sqcup_{L \in \mathcal{C}(\mathcal{A})} S_{L} \rightarrow \operatorname{Sal}(\mathcal{A})
$$

Leray spectral sequences, II

Leray spectral sequences, II

On the L^{\prime}-summand:

$$
\phi(\omega \otimes \lambda)_{L}=\left\{\begin{array}{cl}
i^{*}(\omega) \otimes b(\lambda) & \text { if } L \subset L^{\prime} \\
0 & \text { otherwise }
\end{array}\right.
$$

Leray spectral sequences, II

On the L^{\prime}-summand:

$$
\phi(\omega \otimes \lambda)_{L}=\left\{\begin{array}{cl}
i^{*}(\omega) \otimes b(\lambda) & \text { if } L \subset L^{\prime} \\
0 & \text { otherwise }
\end{array}\right.
$$

Leray spectral sequences, II

On the L^{\prime}-summand:

$$
\phi(\omega \otimes \lambda)_{L}=\left\{\begin{array}{cl}
i^{*}(\omega) \otimes b(\lambda) & \text { if } L \subset L^{\prime} \\
0 & \text { otherwise }
\end{array}\right.
$$

Leray spectral sequences, II

On the L^{\prime}-summand:

$$
\phi(\omega \otimes \lambda)_{L}=\left\{\begin{array}{cl}
i^{*}(\omega) \otimes b(\lambda) & \text { if } L \subset L^{\prime} \\
0 & \text { otherwise }
\end{array}\right.
$$

Cohomology

Theorem (C.-Delucchi)
Let \mathcal{A} be real complexified. The ring $H^{*}(M(\mathcal{A}))$ is isomorphic to the image of ϕ.

Cohomology

Theorem (C.-Delucchi)

Let \mathcal{A} be real complexified. The ring $H^{*}(M(\mathcal{A}))$ is isomorphic to the image of ϕ.

Since realizable arithmetric matroids containing a unimodular base have an essentially unique realization:
Corollary
If $\left[a_{1}, \ldots, a_{n}\right]$ contains an unimodular base, then $\mathcal{C}(\mathcal{A})$ determines the cohomology ring.

General case

...up to now we considered only real complexified toric arrangements.

General case

...up to now we considered only real complexified toric arrangements.

- If \mathcal{A} is not real complexified we can consider all possible subarrangements \mathcal{A}_{P} for points $P \in \mathcal{C}(\mathcal{A})$.
- All these sub-arrangements are central and up to translation (by $P^{-1} \in T$), and we can assume $1 \in \cap \mathcal{A}_{P}$.
- Hence (up to translation) they are all real complexified.

General case

...up to now we considered only real complexified toric arrangements.

- If \mathcal{A} is not real complexified we can consider all possible subarrangements \mathcal{A}_{P} for points $P \in \mathcal{C}(\mathcal{A})$.
- All these sub-arrangements are central and up to translation (by $P^{-1} \in T$), and we can assume $1 \in \cap \mathcal{A}_{P}$.
- Hence (up to translation) they are all real complexified.

From the surjection (induced by $M(\mathcal{A}) \hookrightarrow \prod_{P} M\left(\mathcal{A}_{P}\right)$)

$$
\bigotimes_{\substack{P \in \mathcal{C}(\mathcal{A}) \\ P \text { point }}} H^{*}\left(M\left(\mathcal{A}_{P}\right)\right) \rightarrow H^{*}(M(\mathcal{A}))
$$

we get a complete description of the ring $H^{*}(M(\mathcal{A}))$.

Main Result

Theorem (C.-Delucchi)
Let \mathcal{A} be any toric arrangement. The ring $H^{*}(M(\mathcal{A}))$ is isomorphic to the image of ϕ :
$\phi: \bigoplus_{\substack{L^{\prime} \in \mathcal{C}(A) \\ \mathrm{rk} L^{\prime}=q}} H^{p}\left(L^{\prime}\right) \otimes H^{q}\left(M\left(\mathcal{A}\left[L^{\prime}\right]\right)\right) \rightarrow \bigoplus_{L \in \mathcal{C}(\mathcal{A})} H^{*}(L) \otimes H^{*}(M(\mathcal{A}[L]))$

Main Result

Theorem (C.-Delucchi)
Let \mathcal{A} be any toric arrangement. The ring $H^{*}(M(\mathcal{A}))$ is isomorphic to the image of ϕ :
$\phi: \bigoplus_{\substack{L^{\prime} \in \mathcal{C}(A) \\ \mathrm{rk} L^{\prime}=q}} H^{p}\left(L^{\prime}\right) \otimes H^{q}\left(M\left(\mathcal{A}\left[L^{\prime}\right]\right)\right) \rightarrow \bigoplus_{L \in \mathcal{C}(\mathcal{A})} H^{*}(L) \otimes H^{*}(M(\mathcal{A}[L]))$
given on the L^{\prime}-summand by:

$$
\phi(\omega \otimes \lambda)_{L}=\left\{\begin{array}{cl}
i^{*}(\omega) \otimes b(\lambda) & \text { if } L \subset L^{\prime} \\
0 & \text { otherwise } .
\end{array}\right.
$$

Questions and remarks

- Does $\mathcal{C}(\mathcal{A})$ determine the ring structure of $H^{*}(M(\mathcal{A}))$?

Questions and remarks

- Does $\mathcal{C}(\mathcal{A})$ determine the ring structure of $H^{*}(M(\mathcal{A}))$?
- In general $H^{*}(M(\mathcal{A}))$ is not generated in dimension 1 . Does $\mathcal{C}(\mathcal{A})$ determine when $H^{*}(M(\mathcal{A}))$ is generated in dimension 1?

Questions and remarks

- Does $\mathcal{C}(\mathcal{A})$ determine the ring structure of $H^{*}(M(\mathcal{A}))$?
- In general $H^{*}(M(\mathcal{A}))$ is not generated in dimension 1 . Does $\mathcal{C}(\mathcal{A})$ determine when $H^{*}(M(\mathcal{A}))$ is generated in dimension 1?
- The ring structure of $H^{*}(M(\mathcal{A}))$ is not natural with respect to inclusion of arrangements.

Questions and remarks

- Does $\mathcal{C}(\mathcal{A})$ determine the ring structure of $H^{*}(M(\mathcal{A}))$?
- In general $H^{*}(M(\mathcal{A}))$ is not generated in dimension 1. Does $\mathcal{C}(\mathcal{A})$ determine when $H^{*}(M(\mathcal{A}))$ is generated in dimension 1 ?
- The ring structure of $H^{*}(M(\mathcal{A}))$ is not natural with respect to inclusion of arrangements.

What is the "right" combinatorial invariant to look at?

Questions and remarks

- Does $\mathcal{C}(\mathcal{A})$ determine the ring structure of $H^{*}(M(\mathcal{A}))$?
- In general $H^{*}(M(\mathcal{A}))$ is not generated in dimension 1. Does $\mathcal{C}(\mathcal{A})$ determine when $H^{*}(M(\mathcal{A}))$ is generated in dimension 1 ?
- The ring structure of $H^{*}(M(\mathcal{A}))$ is not natural with respect to inclusion of arrangements.

What is the "right" combinatorial invariant to look at?
Happy birthday Mike!

