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Toric arrangements
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Let T = (C*)¢ be a complex torus. We consider an
arrangement A = {K,,--- ,K,} of hypertoriin T.

For each i,

Ki = {z|xi(z) = bi}

with x;(z) = 2%, a; € Z¢, a primitive character (i.e. K;'s are
connected). We assume b; € C*(or b; € S').

We also assume rk[ay, . .. ,a,] = d, i.e. A essential (minimal
non-zero intersections have dimension 0).



Topology

The complement of the arrangement is
M(A) =T\ UA

Problem: determine the ring H*(M(.A),Z). Is it combinatorial?



Topology

The complement of the arrangement is
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Problem: determine the ring H*(M(.A),Z). Is it combinatorial?

We give an answer depending on two ingredients:
» Brieskorn decomposition for hyperplane arrangements
(combinatorial);
» Maps induced by inclusion of subtori in T (depend on
equations).



Combinatorics

Define the poset of layers (with rev. inclusion):

C(A):={L CT|Lisac.c.of anintersection of elements of A}
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Combinatorics

Define the poset of layers (with rev. inclusion):

C(A):={L CT|Lisac.c.of anintersection of elements of A}

M \
g’ \T /

Theorem (Looijenga ’95, De Concini-Procesi '05)
Point(M(A), Q) = Yyeea e (0, L) (=™ (1 ==k
——
Mébius
function
of C(A)
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Real complexified arrangements

We call A real complexified if A = {x; ' (b;)} with b; € S'. It
induces a polyhedral cellularization of (S').

We call F(A) the face category of the cellularization of (S')¢
induced by A.

W
Theorem (d’Antonio-Delucchi ’12)

The data of F(A) determines an CW-complex Sal(A) such that

Sal(A) =~ M(A)



Known results

[De Concini-Procesi '05] Computation of the cup product in
H*(M(A),C) and formality when the matrix [a,. .., a,] is
unimodular.

[Bibby *14] Rational cohomology algebra for unimodular abelian
arrangements.

[Delucchi-d’Antonio ’13] For real complexified toric arr’s:
minimality of M(.A) and hence H*(M(A),Z) is torsion free.

[Dupont '15] Complements of hypersurface arrangements (in
particular toric arrangement) are formal.



Coverings

Via the universal cover C¢ 5 T the toric arrangements A lift to
an infinite periodic hyperplane arrangement Al.
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Coverings

Via the universal cover C¢ 5 T the toric arrangements A lift to
an infinite periodic hyperplane arrangement A'.

“

For a Iayer L € C(A) we can choose a lifting L! in the C(A
define A[L] as the central hyperplane arrangement AL

AlF]
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equivalent to L x Sal(A[L]).



Toric Salvetti complex, |

Theorem (C.-Delucchi '15)

For every real complexified toric arrangement A, given a layer
L € C(A) there is a CW-complex S, C Sal(A) that is homotopy
equivalent to L x Sal(A[L]).

Remark: the inclusion S, C Sal(A) depends on some choices,
but the description of the ring structure doesn'’t.



Toric Salvetti complex, |

Theorem (C.-Delucchi ’15)

For every real complexified toric arrangement A, given a layer
L € C(A) there is a CW-complex S C Sal(A) that is homotopy
equivalent to L x Sal(A[L]).

Remark: the inclusion S, C Sal(.A) depends on some choices,
but the description of the ring structure doesn'’t.

Example: A= {1} c T =C*

PR
1

Sr- C Iy
1
1
1



Toric Salvetti complex, |

Theorem (C.-Delucchi ’15)

For every real complexified toric arrangement A, given a layer
L € C(A) there is a CW-complex S C Sal(A) that is homotopy
equivalent to L x Sal(A[L]).

Remark: the inclusion S, C Sal(.A) depends on some choices,
but the description of the ring structure doesn'’t.

Example: A= {1} c T =C*

s
1

Sr : SN
1
1
1



Toric Salvetti complex, |

Theorem (C.-Delucchi ’15)
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Toric Salvetti complex, |

Theorem (C.-Delucchi ’15)

For every real complexified toric arrangement A, given a layer
L € C(A) there is a CW-complex S, C Sal(.A) that is homotopy
equivalent to L x Sal(A[L]).
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commutative diagram N
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Toric Salvetti complex, |

Theorem (C.-Delucchi ’15)

For every real complexified toric arrangement A, given a layer
L € C(A) there is a CW-complex S, C Sal(.A) that is homotopy
equivalent to L x Sal(A[L]).

The projection/inclusion map to/into the torus gives a
commutative diagram N
Sal(A) —=M(A)

(W =T.—=—=T
The vertical maps induce a Leray cohomology spectral
sequence (see [Bibby *14])
By = P H(L) @ H(M(A[L)))

LeC(A)
rk L=¢q



Toric Salvetti complex, Il

For every layer L € C(.A) we have a commuting diagram:

L x Sal(A[L]) ~ S, — Sal(A) ~ M(A)
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Toric Salvetti complex, Il

For every layer L € C(.A) we have a commuting diagram:

L x Sal(A[L]) ~ S, — Sal(A) ~ M(A)

-

S
N<—
: 3

that induces a map of spectral sequences
E{:q — LE{:vq

where
LESY = HP(L) ® HI(M(A[L)))

(all cohomologies with Z-coefficients)
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Leray spectral sequences, |

The spectral sequences EY trivially collapses at page 2.
Moreover a rank counting argument gives:

Theorem (C.-Delucchi ’15)
The spectral sequence EL? collapses at the second page.
Hence we have:
H*(M(A)) — H*(L) ® H*(M(A[L]))
2igmup isom. ~ lgroup isom.

D,q P>q
E, LE,

We will examine the morphism of spectral sequences
associated to the map

I—'LeC(A)SL — Sal(.A).



Leray spectral sequences, Il

H* (T(A)) Drec(a H (S1)
Eﬁ’q ; Dreca LB
/\
@ H(L)®HIM(A[L))) @ H(L) @!H‘I(M(A[L]))
L'eC(A) LeC(A)

kL'=q



Leray spectral sequences, Il

H* (AI(A)) Drec H(S1)
Eb ; Dreca LB
/_\
@ H (L) ® HI(M(AL)) @ H(L) @ HI(M(A[L]))
Lr/keg(:;) Lec(A)

On the L’-summand:

[ fw)®b(\) ffLCL
dw AL = { 0 otherwise.



Leray spectral sequences, Il

H*(M(A)) Drecia) H*(SL)

| |

EP q @LEC (A) LEP7‘]

D H(L) ® HI(M(A[LT)) @ HP(L) ® HI(M(A[L))
L'eC(A
rkGL,(: q) LeC(A)
i:L—1L
On the L’-summand: “Brieskorn” inclusion

[ Fw)®b(\) ffLCL
dw AL = { 0 otherwise.



Leray spectral sequences, Il

ring hom.

H*(M(A))

Drecia H*(SL)

jgrp. isom. lring isom.
D59 D59
Ey @Lec A) LE,

H |
D H(L) ® HI(M(A[LT)) P Hr(L) ® HI(M(A[L))
L'eC(A
0L q) LEC(A)
i:L—1L
On the L’-summand: “Brieskorn” inclusion

[ Fweb(\) ifLcl
dw AL = { 0 otherwise.



Leray spectral sequences, Il

ring hom.

H*(M(A))

Drecia H*(SL)

jgrp. isom. lring isom.
D59
@Lec A) LE;

H |
D H(L) ® HI(M(A[LT)) P Hr(L) ® HI(M(A[L))
L'eC(A
0L q) LEC(A)
i:L—1L
On the L’-summand: “Brieskorn” inclusion

inj.

qu

[ Fweb(\) ifLcl
dw AL = { 0 otherwise.
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Cohomology

Theorem (C.-Delucchi)

Let A be real complexified. The ring H*(M(.A)) is isomorphic to
the image of ¢.

Since realizable arithmetric matroids containing a unimodular
base have an essentially unique realization:
Corollary

Iflay,...,a,] contains an unimodular base, then C(A)
determines the cohomology ring.
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General case

...up to now we considered only real complexified toric
arrangements.
» If Ais not real complexified we can consider all possible
subarrangements Ap for points P € C(A).

» All these sub-arrangements are central and up to
translation (by P~! € T), and we can assume 1 € NAp.

» Hence (up to translation) they are all real complexified.
From the surjection (induced by M(A) — [, M(Ap))

@) H'(M(Ap)) — H* (M(A))

PeC(A)
P point

we get a complete description of the ring H*(M(A)).
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Main Result

Theorem (C.-Delucchi)

Let A be any toric arrangement. The ring H*(M(.A)) is
isomorphic to the image of ¢:

¢: P H()2HMAL)) - P H (L) @ H (M(A[L)
L'eC(A) LeC(A)
tkL'=¢q

given on the L'-summand by:

[ #w)®b(\) ifLcL
Hw AL = { 0 otherwise.
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Happy birthday Mike!



