Topology of braid arrangement via counting polynomials.

Weiyan Chen
University of Chicago

AMS Special Session on Topology and Combinatorics of Arrangements (in honor of Mike Falk)

March 20, 2016

Theme

Theme

Theme

- Cohomology of the braid arrangement complement with an action of S_{n}

Theme

- Cohomology of the braid arrangement complement with an action of S_{n}
- Counting polynomials over \mathbb{F}_{q} with weights

Set-up

Set-up

- The complement of braid arrangement:

$$
\operatorname{Conf}_{n}(\mathbb{C}):=\left\{\left(x_{1}, \cdots, x_{n}\right) \in \mathbb{C}^{n}: x_{i} \neq x_{j}, \forall i \neq j\right\}
$$

Set-up

- The complement of braid arrangement:

$$
\begin{gathered}
\operatorname{Conf}_{n}(\mathbb{C}):=\left\{\left(x_{1}, \cdots, x_{n}\right) \in \mathbb{C}^{n}: x_{i} \neq x_{j}, \forall i \neq j\right\} \\
S_{n} \curvearrowright \operatorname{Conf}_{n}(\mathbb{C})
\end{gathered}
$$

Set-up

- The complement of braid arrangement:

$$
\begin{gathered}
\operatorname{Conf}_{n}(\mathbb{C}):=\left\{\left(x_{1}, \cdots, x_{n}\right) \in \mathbb{C}^{n}: x_{i} \neq x_{j}, \forall i \neq j\right\} \\
S_{n} \curvearrowright \operatorname{Conf}_{n}(\mathbb{C})
\end{gathered}
$$

- A basic question: understand $H^{i}\left(\operatorname{Conf}_{n}(\mathbb{C})\right)$ as a representation of S_{n}.

Set-up

- The complement of braid arrangement:

$$
\begin{gathered}
\operatorname{Conf}_{n}(\mathbb{C}):=\left\{\left(x_{1}, \cdots, x_{n}\right) \in \mathbb{C}^{n}: x_{i} \neq x_{j}, \forall i \neq j\right\} \\
S_{n} \curvearrowright \operatorname{Conf}_{n}(\mathbb{C})
\end{gathered}
$$

- A basic question: understand $H^{i}\left(\operatorname{Conf}_{n}(\mathbb{C})\right)$ as a representation of S_{n}.
- More precise questions: Given any S_{n}-representation W_{n}, what is $\left\langle H^{i}\left(\operatorname{Conf}_{n}(\mathbb{C})\right), W_{n}\right\rangle_{s_{n}}$?

Set-up

- The complement of braid arrangement:

$$
\begin{gathered}
\operatorname{Conf}_{n}(\mathbb{C}):=\left\{\left(x_{1}, \cdots, x_{n}\right) \in \mathbb{C}^{n}: x_{i} \neq x_{j}, \forall i \neq j\right\} \\
S_{n} \curvearrowright \operatorname{Conf}_{n}(\mathbb{C})
\end{gathered}
$$

- A basic question: understand $H^{i}\left(\operatorname{Conf}_{n}(\mathbb{C})\right)$ as a representation of S_{n}.
- More precise questions: Given any S_{n}-representation W_{n}, what is $\left\langle H^{i}\left(\operatorname{Conf}_{n}(\mathbb{C})\right), W_{n}\right\rangle_{S_{n}}$? Is there a formula for it in terms of i, n and W_{n} ?

Set-up

- The complement of braid arrangement:

$$
\begin{gathered}
\operatorname{Conf}_{n}(\mathbb{C}):=\left\{\left(x_{1}, \cdots, x_{n}\right) \in \mathbb{C}^{n}: x_{i} \neq x_{j}, \forall i \neq j\right\} \\
S_{n} \curvearrowright \operatorname{Conf}_{n}(\mathbb{C})
\end{gathered}
$$

- A basic question: understand $H^{i}\left(\operatorname{Conf}_{n}(\mathbb{C})\right)$ as a representation of S_{n}.
- More precise questions: Given any S_{n}-representation W_{n}, what is $\left\langle H^{i}\left(\operatorname{Conf}_{n}(\mathbb{C})\right), W_{n}\right\rangle_{S_{n}}$? Is there a formula for it in terms of i, n and W_{n} ? Is there any structure in the answer?

Why care?

Because the number $\left\langle H^{i}\left(\operatorname{Conf}_{n}(\mathbb{C})\right), W_{n}\right\rangle_{S_{n}}$ contains information about:

Why care?

Because the number $\left\langle H^{i}\left(\operatorname{Conf}_{n}(\mathbb{C})\right), W_{n}\right\rangle_{S_{n}}$ contains information about:

- The braid group B_{n}.

Why care?

Because the number $\left\langle H^{i}\left(\operatorname{Conf}_{n}(\mathbb{C})\right), W_{n}\right\rangle_{S_{n}}$ contains information about:

- The braid group $B_{\boldsymbol{n}}$. The Eilenberg-MacLane space for B_{n} is precisely the quotient $\operatorname{UConf}_{n}(\mathbb{C}):=\operatorname{Conf}_{n}(\mathbb{C}) / S_{n}$. Thus we have

$$
\operatorname{dim} H^{k}\left(B_{n} ; W_{n}\right)=\left\langle H^{i}\left(\operatorname{Conf}_{n}(\mathbb{C})\right), W_{n}\right\rangle_{S_{n}}
$$

Why care?

Because the number $\left\langle H^{i}\left(\operatorname{Conf}_{n}(\mathbb{C})\right), W_{n}\right\rangle_{S_{n}}$ contains information about:

- The braid group B_{n}. The Eilenberg-MacLane space for B_{n} is precisely the quotient $\operatorname{UConf}_{n}(\mathbb{C}):=\operatorname{Conf}_{n}(\mathbb{C}) / S_{n}$. Thus we have

$$
\operatorname{dim} H^{k}\left(B_{n} ; W_{n}\right)=\left\langle H^{i}\left(\operatorname{Conf}_{n}(\mathbb{C})\right), W_{n}\right\rangle_{S_{n}}
$$

$\operatorname{dim} H^{k}\left(B_{n} ; W_{n}\right)$ has been computed for

- (Arnol'd and F. Cohen) $W_{n}=\mathbb{Q}$ (trivial).
- (F. Cohen and Vassiliev) $W_{n}= \pm \mathbb{Q}$ (sign).
- (F. Cohen and Vassiliev) $W_{n}=\mathbb{Q}^{n}$ (permutation).

Why care?

Because the number $\left\langle H^{i}\left(\operatorname{Conf}_{n}(\mathbb{C})\right), W_{n}\right\rangle_{S_{n}}$ contains information about:

- The braid group B_{n}. The Eilenberg-MacLane space for B_{n} is precisely the quotient $\operatorname{UConf}_{n}(\mathbb{C}):=\operatorname{Conf}_{n}(\mathbb{C}) / S_{n}$. Thus we have

$$
\operatorname{dim} H^{k}\left(B_{n} ; W_{n}\right)=\left\langle H^{i}\left(\operatorname{Conf}_{n}(\mathbb{C})\right), W_{n}\right\rangle_{S_{n}}
$$

$\operatorname{dim} H^{k}\left(B_{n} ; W_{n}\right)$ has been computed for

- (Arnol'd and F. Cohen) $W_{n}=\mathbb{Q}$ (trivial).
- (F. Cohen and Vassiliev) $W_{n}= \pm \mathbb{Q}$ (sign).
- (F. Cohen and Vassiliev) $W_{n}=\mathbb{Q}^{n}$ (permutation).
- A question of Mike Falk

Why care?

Because the number $\left\langle H^{i}\left(\operatorname{Conf}_{n}(\mathbb{C})\right), W_{n}\right\rangle_{S_{n}}$ contains information about:

- The braid group B_{n}. The Eilenberg-MacLane space for B_{n} is precisely the quotient $\operatorname{UConf}_{n}(\mathbb{C}):=\operatorname{Conf}_{n}(\mathbb{C}) / S_{n}$. Thus we have

$$
\operatorname{dim} H^{k}\left(B_{n} ; W_{n}\right)=\left\langle H^{i}\left(\operatorname{Conf}_{n}(\mathbb{C})\right), W_{n}\right\rangle_{S_{n}}
$$

$\operatorname{dim} H^{k}\left(B_{n} ; W_{n}\right)$ has been computed for

- (Arnol'd and F. Cohen) $W_{n}=\mathbb{Q}$ (trivial).
- (F. Cohen and Vassiliev) $W_{n}= \pm \mathbb{Q}$ (sign).
- (F. Cohen and Vassiliev) $W_{n}=\mathbb{Q}^{n}$ (permutation).
- A question of Mike Falk (March 19, 2016):

Why care?

Because the number $\left\langle H^{i}\left(\operatorname{Conf}_{n}(\mathbb{C})\right), W_{n}\right\rangle_{S_{n}}$ contains information about:

- The braid group B_{n}. The Eilenberg-MacLane space for B_{n} is precisely the quotient $\operatorname{UConf}_{n}(\mathbb{C}):=\operatorname{Conf}_{n}(\mathbb{C}) / S_{n}$. Thus we have

$$
\operatorname{dim} H^{k}\left(B_{n} ; W_{n}\right)=\left\langle H^{i}\left(\operatorname{Conf}_{n}(\mathbb{C})\right), W_{n}\right\rangle_{S_{n}}
$$

$\operatorname{dim} H^{k}\left(B_{n} ; W_{n}\right)$ has been computed for

- (Arnol'd and F. Cohen) $W_{n}=\mathbb{Q}$ (trivial).
- (F. Cohen and Vassiliev) $W_{n}= \pm \mathbb{Q}$ (sign).
- (F. Cohen and Vassiliev) $W_{n}=\mathbb{Q}^{n}$ (permutation).
- A question of Mike Falk (March 19, 2016): Do the numbers $\left\langle H^{i}\left(\operatorname{Conf}_{n}(\mathbb{C})\right), W_{n}\right\rangle_{S_{n}}$ carry any combinatorial information?

Why care?

Because the number $\left\langle H^{i}\left(\operatorname{Conf}_{n}(\mathbb{C})\right), W_{n}\right\rangle_{S_{n}}$ contains information about:

- The braid group B_{n}. The Eilenberg-MacLane space for B_{n} is precisely the quotient $\operatorname{UConf}_{n}(\mathbb{C}):=\operatorname{Conf}_{n}(\mathbb{C}) / S_{n}$. Thus we have

$$
\operatorname{dim} H^{k}\left(B_{n} ; W_{n}\right)=\left\langle H^{i}\left(\operatorname{Conf}_{n}(\mathbb{C})\right), W_{n}\right\rangle_{S_{n}}
$$

$\operatorname{dim} H^{k}\left(B_{n} ; W_{n}\right)$ has been computed for

- (Arnol'd and F. Cohen) $W_{n}=\mathbb{Q}$ (trivial).
- (F. Cohen and Vassiliev) $W_{n}= \pm \mathbb{Q}$ (sign).
- (F. Cohen and Vassiliev) $W_{n}=\mathbb{Q}^{n}$ (permutation).
- A question of Mike Falk (March 19, 2016): Do the numbers $\left\langle H^{i}\left(\operatorname{Conf}_{n}(\mathbb{C})\right), W_{n}\right\rangle_{S_{n}}$ carry any combinatorial information? Answer: Yes!

Why care?

Because the number $\left\langle H^{i}\left(\operatorname{Conf}_{n}(\mathbb{C})\right), W_{n}\right\rangle_{S_{n}}$ contains information about:

- The braid group B_{n}. The Eilenberg-MacLane space for B_{n} is precisely the quotient $\operatorname{UConf}_{n}(\mathbb{C}):=\operatorname{Conf}_{n}(\mathbb{C}) / S_{n}$. Thus we have

$$
\operatorname{dim} H^{k}\left(B_{n} ; W_{n}\right)=\left\langle H^{i}\left(\operatorname{Conf}_{n}(\mathbb{C})\right), W_{n}\right\rangle_{S_{n}}
$$

$\operatorname{dim} H^{k}\left(B_{n} ; W_{n}\right)$ has been computed for

- (Arnol'd and F. Cohen) $W_{n}=\mathbb{Q}$ (trivial).
- (F. Cohen and Vassiliev) $W_{n}= \pm \mathbb{Q}$ (sign).
- (F. Cohen and Vassiliev) $W_{n}=\mathbb{Q}^{n}$ (permutation).
- A question of Mike Falk (March 19, 2016): Do the numbers $\left\langle H^{i}\left(\operatorname{Conf}_{n}(\mathbb{C})\right), W_{n}\right\rangle_{S_{n}}$ carry any combinatorial information?
Answer: Yes!
- Polynomials over $\mathbb{F}_{\boldsymbol{q}}$.

Why care?

Because the number $\left\langle H^{i}\left(\operatorname{Conf}_{n}(\mathbb{C})\right), W_{n}\right\rangle_{S_{n}}$ contains information about:

- The braid group B_{n}. The Eilenberg-MacLane space for B_{n} is precisely the quotient $\operatorname{UConf}_{n}(\mathbb{C}):=\operatorname{Conf}_{n}(\mathbb{C}) / S_{n}$. Thus we have

$$
\operatorname{dim} H^{k}\left(B_{n} ; W_{n}\right)=\left\langle H^{i}\left(\operatorname{Conf}_{n}(\mathbb{C})\right), W_{n}\right\rangle_{S_{n}}
$$

$\operatorname{dim} H^{k}\left(B_{n} ; W_{n}\right)$ has been computed for

- (Arnol'd and F. Cohen) $W_{n}=\mathbb{Q}$ (trivial).
- (F. Cohen and Vassiliev) $W_{n}= \pm \mathbb{Q}$ (sign).
- (F. Cohen and Vassiliev) $W_{n}=\mathbb{Q}^{n}$ (permutation).
- A question of Mike Falk (March 19, 2016): Do the numbers $\left\langle H^{i}\left(\operatorname{Conf}_{n}(\mathbb{C})\right), W_{n}\right\rangle_{S_{n}}$ carry any combinatorial information? Answer: Yes!
- Polynomials over $\mathbb{F}_{\boldsymbol{q}} \cdot \operatorname{UConf}_{n}(\mathbb{C})$ and $\operatorname{Conf}_{n}(\mathbb{C})$ are algebraic varieties. Their cohomology groups contain information about counting polynomials over \mathbb{F}_{q} with weighting.

Theme

Topology

- The S_{n}-representation on $H^{*}\left(\operatorname{Conf}_{n}(\mathbb{C})\right)$

Theme

- The S_{n}-representation on $H^{*}\left(\operatorname{Conf}_{n}(\mathbb{C})\right)$
- Counting polynomials over \mathbb{F}_{q} with weights

Theme

- The S_{n}-representation on $H^{*}\left(\operatorname{Conf}_{n}(\mathbb{C})\right)$
- (Church-Ellenberg-Farb) Representation stability of $H^{i}\left(\operatorname{Conf}_{n}(\mathbb{C})\right)$
- Counting polynomials over \mathbb{F}_{q} with weights

Theme

- The S_{n}-representation on $H^{*}\left(\operatorname{Conf}_{n}(\mathbb{C})\right)$
- (Church-Ellenberg-Farb) Representation stability of $H^{i}\left(\operatorname{Conf}_{n}(\mathbb{C})\right)$
- Counting polynomials over \mathbb{F}_{q} with weights
- (Church-Ellenberg-Farb) Convergence of weighted point-counts

Theme

- The S_{n}-representation on $H^{*}\left(\operatorname{Conf}_{n}(\mathbb{C})\right)$
- (Church-Ellenberg-Farb) Representation stability of $H^{i}\left(\operatorname{Conf}_{n}(\mathbb{C})\right)$
- Counting polynomials over \mathbb{F}_{q} with weights
- (Church-Ellenberg-Farb) Convergence of weighted point-counts
- (Fulman) Generating functions for weighted point-counts

Theme

- The S_{n}-representation on $H^{*}\left(\operatorname{Conf}_{n}(\mathbb{C})\right)$
- (Church-Ellenberg-Farb) Representation stability of $H^{i}\left(\operatorname{Conf}_{n}(\mathbb{C})\right)$

- (C-) Generating functions for $\left\langle H^{i}\left(\operatorname{Conf}_{n}(\mathbb{C})\right), W_{n}\right\rangle_{S_{n}}$
- Counting polynomials over \mathbb{F}_{q} with weights
- (Church-Ellenberg-Farb) Convergence of weighted point-counts
- (Fulman) Generating functions for weighted point-counts

Background

- Fix k. For any $\sigma \in S_{n}$, define

$$
X_{k}(\sigma):=\text { number of cycles of length } k \text { in } \sigma .
$$

Background

- Fix k. For any $\sigma \in S_{n}$, define

$$
X_{k}(\sigma):=\text { number of cycles of length } k \text { in } \sigma .
$$

- A polynomial P in $X_{1}, X_{2}, X_{3}, \cdots$ is called a character polynomial. A character polynomial P defines a class function of S_{n} for all n.

Background

- Fix k. For any $\sigma \in S_{n}$, define

$$
X_{k}(\sigma):=\text { number of cycles of length } k \text { in } \sigma .
$$

- A polynomial P in $X_{1}, X_{2}, X_{3}, \cdots$ is called a character polynomial. A character polynomial P defines a class function of S_{n} for all n.
- For example, let S_{n} acts on \mathbb{Q}^{n} by permuting coordinates. Then

$$
X_{1}=\chi_{\mathbb{Q}^{n}} \quad \text { for all } n
$$

Background

- Fix k. For any $\sigma \in S_{n}$, define

$$
X_{k}(\sigma):=\text { number of cycles of length } k \text { in } \sigma .
$$

- A polynomial P in $X_{1}, X_{2}, X_{3}, \cdots$ is called a character polynomial. A character polynomial P defines a class function of S_{n} for all n.
- For example, let S_{n} acts on \mathbb{Q}^{n} by permuting coordinates. Then

$$
X_{1}=\chi_{\mathbb{Q}^{n}} \quad \text { for all } n
$$

Theorem (Church-Ellenberg-Farb)

For any character polynomial P, for each fixed i, the multiplicity

$$
\left\langle H^{i}\left(\operatorname{Conf}_{n}(\mathbb{C})\right), P\right\rangle_{S_{n}}
$$

will be eventually independent of n when $n \gg i$.

Theme

- Computing $\left\langle H^{i}\left(\operatorname{Conf}_{n}(\mathbb{C})\right), W_{n}\right\rangle_{S_{n}}$
- (Church-Ellenberg-Farb) Representation stability of $H^{i}\left(\operatorname{Conf}_{n}(\mathbb{C})\right)$

- (C-) Generating functions for $\left\langle H^{i}\left(\operatorname{Conf}_{n}(\mathbb{C})\right), W_{n}\right\rangle_{S_{n}}$
- Counting polynomials over \mathbb{F}_{q} with weights
- (Church-Ellenberg-Farb) Weighted point-counts converge
- (Fulman) Generating functions for weighted point-counts

Theme

- Computing $\left\langle H^{i}\left(\operatorname{Conf}_{n}(\mathbb{C})\right), W_{n}\right\rangle_{S_{n}}$
- (Church-Ellenberg-Farb) Representation stability of $H^{i}\left(\operatorname{Conf}_{n}(\mathbb{C})\right)$

- (C-) Generating functions for $\left\langle H^{i}\left(\operatorname{Conf}_{n}(\mathbb{C})\right), W_{n}\right\rangle_{S_{n}}$
- Counting polynomials over \mathbb{F}_{q} with weights
- (Church-Ellenberg-Farb) Weighted point-counts converge
- (Fulman) Generating functions for weighted point-counts
- Let $\lambda=\left(\lambda_{1}, \lambda_{2}, \cdots, \lambda_{l}\right)$ be a sequence of nonnegative integers.

$$
\binom{X}{\lambda}:=\prod_{k=1}^{1}\binom{X_{k}}{\lambda_{k}}
$$

(Recall $X_{k}(\sigma):=$ number of k-cycles in σ, for σ any permutation.)

- Let $\lambda=\left(\lambda_{1}, \lambda_{2}, \cdots, \lambda_{I}\right)$ be a sequence of nonnegative integers.

$$
\binom{X}{\lambda}:=\prod_{k=1}^{\prime}\binom{X_{k}}{\lambda_{k}}
$$

(Recall $X_{k}(\sigma):=$ number of k-cycles in σ, for σ any permutation.)

- For every n, the vector space of class functions on S_{n} is spanned by character polynomials of the form $\binom{X}{\lambda}$.
- Let $\lambda=\left(\lambda_{1}, \lambda_{2}, \cdots, \lambda_{l}\right)$ be a sequence of nonnegative integers.

$$
\binom{X}{\lambda}:=\prod_{k=1}^{\prime}\binom{X_{k}}{\lambda_{k}}
$$

(Recall $X_{k}(\sigma):=$ number of k-cycles in σ, for σ any permutation.)

- For every n, the vector space of class functions on S_{n} is spanned by character polynomials of the form $\binom{X}{\lambda}$. Hence, to compute $\left\langle H^{i}\left(\operatorname{Conf}_{n}(\mathbb{C})\right), W_{n}\right\rangle_{S_{n}}$ for all representations W_{n}, it suffices to consider when W_{n} is given by $\binom{X}{\lambda}$ for some λ.
- Let $\lambda=\left(\lambda_{1}, \lambda_{2}, \cdots, \lambda_{l}\right)$ be a sequence of nonnegative integers.

$$
\binom{X}{\lambda}:=\prod_{k=1}^{\prime}\binom{x_{k}}{\lambda_{k}}
$$

(Recall $X_{k}(\sigma):=$ number of k-cycles in σ, for σ any permutation.)

- For every n, the vector space of class functions on S_{n} is spanned by character polynomials of the form $\binom{X}{\lambda}$. Hence, to compute $\left\langle H^{i}\left(\operatorname{Conf}_{n}(\mathbb{C})\right), W_{n}\right\rangle_{S_{n}}$ for all representations W_{n}, it suffices to consider when W_{n} is given by $\binom{X}{\lambda}$ for some λ.

Theorem (C-)

Let $\lambda=\left(\lambda_{1}, \lambda_{2}, \cdots, \lambda_{l}\right)$ be any sequence of nonnegative integers. Let μ be the classical Möbius function, and let $M_{k}\left(z^{-1}\right):=\frac{1}{k} \sum_{j \mid k} \mu\left(\frac{k}{j}\right) z^{-j}$. Abbreviate $b_{i, n}(\lambda):=\left\langle H^{i}\left(\operatorname{Conf}_{n}(\mathbb{C})\right),\binom{X}{\lambda}\right\rangle_{S_{n}}$.

$$
\sum_{n=0}^{\infty} \sum_{i=0}^{\infty} b_{i, n}(\lambda)(-z)^{i} t^{n}=\frac{1-z t^{2}}{1-t} \prod_{k=1}^{l}\binom{M_{k}\left(z^{-1}\right)}{\lambda_{k}}\left(\frac{(t z)^{k}}{1+(t z)^{k}}\right)^{\lambda_{k}}
$$

Corollaries: stability and recurrence

We can get a new proof of Church-Ellenberg-Farb's result:

Corollaries: stability and recurrence

We can get a new proof of Church-Ellenberg-Farb's result:
Theorem (Church-Ellenberg-Farb)
For any character polynomial P, for each fixed i, the multiplicity

$$
b_{i, n}:=\left\langle H^{i}\left(\operatorname{Conf}_{n}(\mathbb{C})\right), P\right\rangle_{S_{n}}
$$

will be eventually independent of n when $n \gg i$.

Corollaries: stability and recurrence

We can get a new proof of Church-Ellenberg-Farb's result:
Theorem (Church-Ellenberg-Farb)
For any character polynomial P, for each fixed i, the multiplicity

$$
b_{i, n}:=\left\langle H^{i}\left(\operatorname{Conf}_{n}(\mathbb{C})\right), P\right\rangle_{S_{n}}
$$

will be eventually independent of n when $n \gg i$.
Moreover, we discover a new phenomenon:

Corollaries: stability and recurrence

We can get a new proof of Church-Ellenberg-Farb's result:
Theorem (Church-Ellenberg-Farb)
For any character polynomial P, for each fixed i, the multiplicity

$$
b_{i, n}:=\left\langle H^{i}\left(\operatorname{Conf}_{n}(\mathbb{C})\right), P\right\rangle_{S_{n}}
$$

will be eventually independent of n when $n \gg i$.
Moreover, we discover a new phenomenon:

Theorem (C-)

For any character polynomial P, the i-th stable multiplicity

$$
b_{i, \infty}:=\lim _{n \rightarrow \infty}\left\langle H^{i}\left(\operatorname{Conf}_{n}(\mathbb{C})\right), P\right\rangle_{S_{n}}
$$

will eventually satisfy a linear recurrence relation in i.

Corollaries: stability and recurrence

We can get a new proof of Church-Ellenberg-Farb's result:

Theorem (Church-Ellenberg-Farb)

For any character polynomial P, for each fixed i, the multiplicity

$$
b_{i, n}:=\left\langle H^{i}\left(\operatorname{Conf}_{n}(\mathbb{C})\right), P\right\rangle_{S_{n}}
$$

will be eventually independent of n when $n \gg i$.
Moreover, we discover a new phenomenon:

Theorem (C-)

For any character polynomial P, the i-th stable multiplicity

$$
b_{i, \infty}:=\lim _{n \rightarrow \infty}\left\langle H^{i}\left(\operatorname{Conf}_{n}(\mathbb{C})\right), P\right\rangle_{S_{n}}
$$

will eventually satisfy a linear recurrence relation in i. There exist c_{1}, \cdots, c_{N} such that $b_{i+N, \infty}=c_{1} b_{i, \infty}+\cdots+c_{N} b_{i+N-1, \infty}$ for all $i \geq 2$.

Example: $b_{i, n}=\left\langle H^{i}\left(\operatorname{Conf}_{n}(\mathbb{C})\right) ; \Lambda^{2} \mathbb{Q}^{n-1}\right\rangle_{S_{n}}$

$b_{i, n}$	$n=3$	4	5	6	7	8	9	10	11	12	13	14
$i=0$	$\mathbf{0}$	0	0	0	0	0	0	0	0	0	0	0
1	0	$\mathbf{0}$	0	0	0	0	0	0	0	0	0	0
2	0	1	$\mathbf{2}$	2	2	2	2	2	2	2	2	2
3		1	3	$\mathbf{5}$	5	5	5	5	5	5	5	5
4			1	4	$\mathbf{6}$	6	6	6	6	6	6	6
5				1	5	$\mathbf{7}$	7	7	7	7	7	7
6					2	7	$\mathbf{1 0}$	10	10	10	10	10
7						3	9	$\mathbf{1 3}$	13	13	13	13
8							3	10	$\mathbf{1 4}$	14	14	14
9								3	11	$\mathbf{1 5}$	15	15
10									4	13	$\mathbf{1 8}$	18
11										5	15	$\mathbf{2 1}$
12											5	16
13												5

Further works and questions

- Similar results hold for other arrangment complements (such as type B), and flag varieties.

Further works and questions

- Similar results hold for other arrangment complements (such as type B), and flag varieties.
- Further question:
- Are there other examples where the stable multiplicities satisfy a linear recurrence relation?

Further works and questions

- Similar results hold for other arrangment complements (such as type B), and flag varieties.
- Further question:
- Are there other examples where the stable multiplicities satisfy a linear recurrence relation? For example, do similar results hold for

$$
\operatorname{PConf}_{n} M:=\left\{\left(x_{1}, \cdots, x_{n}\right) \in M: x_{i} \neq x_{j}, \forall i \neq j\right\}
$$

when M is a manifold?

Further works and questions

- Similar results hold for other arrangment complements (such as type B), and flag varieties.
- Further question:
- Are there other examples where the stable multiplicities satisfy a linear recurrence relation? For example, do similar results hold for

$$
\operatorname{PConf}_{n} M:=\left\{\left(x_{1}, \cdots, x_{n}\right) \in M: x_{i} \neq x_{j}, \forall i \neq j\right\}
$$

when M is a manifold?

- Is there a topological proof/explanation for the recurrence of stable multiplicities for $\operatorname{Conf}_{n}(\mathbb{C})$?

Thank you!
 Happy birthday, Mike!

Reference

國 W. Chen.
Twisted cohomology of configuration spaces and spaces of maximal tori via point-counting.
Preprint, arXiv:1603.03931

