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Set-up

The complement of braid arrangement:

Confn(C) := {(x1, · · · , xn) ∈ Cn : xi 6= xj ,∀i 6= j}

Sn y Confn(C)

A basic question: understand H i (Confn(C)) as a representation of
Sn.

More precise questions: Given any Sn-representation Wn, what is
〈H i (Confn(C)),Wn〉Sn? Is there a formula for it in terms of i , n and
Wn? Is there any structure in the answer?
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Why care?

Because the number 〈H i (Confn(C)),Wn〉Sn contains information about:

The braid group BnBnBn. The Eilenberg-MacLane space for Bn is
precisely the quotient UConfn(C) := Confn(C)/Sn. Thus we have

dimHk(Bn;Wn) = 〈H i (Confn(C)),Wn〉Sn .

dimHk(Bn;Wn) has been computed for

(Arnol’d and F. Cohen) Wn = Q (trivial).
(F. Cohen and Vassiliev) Wn = ±Q (sign).
(F. Cohen and Vassiliev) Wn = Qn (permutation).

- A question of Mike Falk (March 19, 2016): Do the numbers
〈H i (Confn(C)),Wn〉Sn carry any combinatorial information?
Answer: Yes!

Polynomials over FqFqFq. UConfn(C) and Confn(C) are algebraic
varieties. Their cohomology groups contain information about
counting polynomials over Fq with weighting.
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Background

Fix k . For any σ ∈ Sn, define

Xk(σ) := number of cycles of length k in σ.

A polynomial P in X1,X2,X3, · · · is called a character polynomial. A
character polynomial P defines a class function of Sn for all n.

For example, let Sn acts on Qn by permuting coordinates. Then

X1 = χQn for all n

Theorem (Church-Ellenberg-Farb)

For any character polynomial P, for each fixed i , the multiplicity

〈H i (Confn(C)),P〉Sn

will be eventually independent of n when n >> i .

Theorem (C-)

For any character polynomial P, the i-th stable multiplicity

lim
n→∞
〈H i (Confn(C)),P〉Sn

will eventually satisfy a linear recurrence relation in i .
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Let λ = (λ1, λ2, · · · , λl) be a sequence of nonnegative integers.(
X

λ

)
:=

l∏
k=1

(
Xk

λk

)
(Recall Xk(σ) := number of k-cycles in σ, for σ any permutation.)

For every n, the vector space of class functions on Sn is spanned by
character polynomials of the form

(X
λ

)
. Hence, to compute

〈H i (Confn(C)),Wn〉Sn for all representations Wn, it suffices to
consider when Wn is given by

(X
λ

)
for some λ.

Theorem (C-)

Let λ = (λ1, λ2, · · · , λl) be any sequence of nonnegative integers. Let µ
be the classical Möbius function, and let Mk(z−1) := 1

k

∑
j |k µ(kj )z−j .

Abbreviate bi ,n(λ) := 〈H i (Confn(C)),
(X
λ

)
〉Sn .

∞∑
n=0

∞∑
i=0

bi ,n(λ)(−z)i tn =
1− zt2

1− t

l∏
k=1

(
Mk(z−1)

λk

)(
(tz)k

1 + (tz)k

)λk
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Corollaries: stability and recurrence

We can get a new proof of Church-Ellenberg-Farb’s result:

Theorem (Church-Ellenberg-Farb)

For any character polynomial P, for each fixed i , the multiplicity

bi ,n := 〈H i (Confn(C)),P〉Sn

will be eventually independent of n when n >> i .

Moreover, we discover a new phenomenon:

Theorem (C-)

For any character polynomial P, the i-th stable multiplicity

bi ,∞ := lim
n→∞
〈H i (Confn(C)),P〉Sn

will eventually satisfy a linear recurrence relation in i . There exist
c1, · · · , cN such that bi+N,∞ = c1bi ,∞ + · · ·+ cNbi+N−1,∞ for all i ≥ 2.
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Example: bi ,n = 〈H i(Confn(C));
∧2Qn−1〉Sn

bi ,n n = 3 4 5 6 7 8 9 10 11 12 13 14

i = 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0 0 0 0

2 0 1 2 2 2 2 2 2 2 2 2 2

3 1 3 5 5 5 5 5 5 5 5 5

4 1 4 6 6 6 6 6 6 6 6

5 1 5 7 7 7 7 7 7 7

6 2 7 10 10 10 10 10 10

7 3 9 13 13 13 13 13

8 3 10 14 14 14 14

9 3 11 15 15 15

10 4 13 18 18

11 5 15 21
12 5 16

13 5
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Further works and questions

Similar results hold for other arrangment complements (such as type
B), and flag varieties.

Further question:

Are there other examples where the stable multiplicities satisfy a linear
recurrence relation? For example, do similar results hold for

PConfnM := {(x1, · · · , xn) ∈ M : xi 6= xj , ∀i 6= j}

when M is a manifold?
Is there a topological proof/explanation for the recurrence of stable
multiplicities for Confn(C)?
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Thank you!
Happy birthday, Mike!
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