Topology of braid arrangement via counting polynomials.

Weiyan Chen

University of Chicago

AMS Special Session on Topology and Combinatorics of Arrangements (in honor of Mike Falk) March 20, 2016

Weiyan Chen

∃ →

・ロト ・日下 ・ 日下

æ

∃ →

・ロト ・日下 ・ 日下

æ

• Cohomology of the braid arrangement complement with an action of *S_n*

- Cohomology of the braid arrangement complement with an action of *S_n*
- Counting polynomials over 𝔽_q with weights

Set-up

3

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

$$\operatorname{Conf}_n(\mathbb{C}) := \{ (x_1, \cdots, x_n) \in \mathbb{C}^n : x_i \neq x_j, \forall i \neq j \}$$

3

$$\operatorname{Conf}_{n}(\mathbb{C}) := \{ (x_{1}, \cdots, x_{n}) \in \mathbb{C}^{n} : x_{i} \neq x_{j}, \forall i \neq j \}$$
$$S_{n} \curvearrowright \operatorname{Conf}_{n}(\mathbb{C})$$

3

$$\operatorname{Conf}_{n}(\mathbb{C}) := \{ (x_{1}, \cdots, x_{n}) \in \mathbb{C}^{n} : x_{i} \neq x_{j}, \forall i \neq j \}$$
$$S_{n} \curvearrowright \operatorname{Conf}_{n}(\mathbb{C})$$

• A basic question: understand $H^i(\operatorname{Conf}_n(\mathbb{C}))$ as a representation of S_n .

$$\operatorname{Conf}_n(\mathbb{C}) := \{ (x_1, \cdots, x_n) \in \mathbb{C}^n : x_i \neq x_j, \forall i \neq j \}$$

 $S_n \curvearrowright \operatorname{Conf}_n(\mathbb{C})$

- A basic question: understand $H^i(\operatorname{Conf}_n(\mathbb{C}))$ as a representation of S_n .
- More precise questions: Given any S_n -representation W_n , what is $\langle H^i(\operatorname{Conf}_n(\mathbb{C})), W_n \rangle_{S_n}$?

$$\operatorname{Conf}_n(\mathbb{C}) := \{ (x_1, \cdots, x_n) \in \mathbb{C}^n : x_i \neq x_j, \forall i \neq j \}$$

 $S_n \curvearrowright \operatorname{Conf}_n(\mathbb{C})$

- A basic question: understand $H^i(\operatorname{Conf}_n(\mathbb{C}))$ as a representation of S_n .
- More precise questions: Given any S_n -representation W_n , what is $\langle H^i(\operatorname{Conf}_n(\mathbb{C})), W_n \rangle_{S_n}$? Is there a formula for it in terms of *i*, *n* and W_n ?

$$\operatorname{Conf}_n(\mathbb{C}) := \{ (x_1, \cdots, x_n) \in \mathbb{C}^n : x_i \neq x_j, \forall i \neq j \}$$

 $S_n \curvearrowright \operatorname{Conf}_n(\mathbb{C})$

- A basic question: understand $H^i(\operatorname{Conf}_n(\mathbb{C}))$ as a representation of S_n .
- More precise questions: Given any S_n -representation W_n , what is $\langle H^i(\operatorname{Conf}_n(\mathbb{C})), W_n \rangle_{S_n}$? Is there a formula for it in terms of *i*, *n* and W_n ? Is there any structure in the answer?

Because the number $\langle H^i(\operatorname{Conf}_n(\mathbb{C})), W_n \rangle_{S_n}$ contains information about:

э

Because the number $\langle H^i(\operatorname{Conf}_n(\mathbb{C})), W_n \rangle_{S_n}$ contains information about:

• The braid group B_n .

Because the number $\langle H^i(\operatorname{Conf}_n(\mathbb{C})), W_n \rangle_{S_n}$ contains information about:

• The braid group B_n . The Eilenberg-MacLane space for B_n is precisely the quotient $\operatorname{UConf}_n(\mathbb{C}) := \operatorname{Conf}_n(\mathbb{C})/S_n$. Thus we have

 $\dim H^k(B_n; W_n) = \langle H^i(\operatorname{Conf}_n(\mathbb{C})), W_n \rangle_{S_n}.$

Because the number $\langle H^i(\operatorname{Conf}_n(\mathbb{C})), W_n \rangle_{S_n}$ contains information about:

• The braid group B_n . The Eilenberg-MacLane space for B_n is precisely the quotient $\operatorname{UConf}_n(\mathbb{C}) := \operatorname{Conf}_n(\mathbb{C})/S_n$. Thus we have

$$\dim H^k(B_n; W_n) = \langle H^i(\operatorname{Conf}_n(\mathbb{C})), W_n \rangle_{S_n}.$$

- (Arnol'd and F. Cohen) $W_n = \mathbb{Q}$ (trivial).
- (F. Cohen and Vassiliev) $W_n = \pm \mathbb{Q}$ (sign).
- (F. Cohen and Vassiliev) $W_n = \mathbb{Q}^n$ (permutation).

Because the number $\langle H^i(\operatorname{Conf}_n(\mathbb{C})), W_n \rangle_{S_n}$ contains information about:

• The braid group B_n . The Eilenberg-MacLane space for B_n is precisely the quotient $\operatorname{UConf}_n(\mathbb{C}) := \operatorname{Conf}_n(\mathbb{C})/S_n$. Thus we have

$$\dim H^k(B_n; W_n) = \langle H^i(\operatorname{Conf}_n(\mathbb{C})), W_n \rangle_{S_n}.$$

- (Arnol'd and F. Cohen) $W_n = \mathbb{Q}$ (trivial).
- (F. Cohen and Vassiliev) $W_n = \pm \mathbb{Q}$ (sign).
- (F. Cohen and Vassiliev) $W_n = \mathbb{Q}^n$ (permutation).
- A question of Mike Falk

Because the number $\langle H^i(\operatorname{Conf}_n(\mathbb{C})), W_n \rangle_{S_n}$ contains information about:

• The braid group B_n . The Eilenberg-MacLane space for B_n is precisely the quotient $\operatorname{UConf}_n(\mathbb{C}) := \operatorname{Conf}_n(\mathbb{C})/S_n$. Thus we have

dim
$$H^k(B_n; W_n) = \langle H^i(\operatorname{Conf}_n(\mathbb{C})), W_n \rangle_{S_n}$$
.

- (Arnol'd and F. Cohen) $W_n = \mathbb{Q}$ (trivial).
- (F. Cohen and Vassiliev) $W_n = \pm \mathbb{Q}$ (sign).
- (F. Cohen and Vassiliev) $W_n = \mathbb{Q}^n$ (permutation).
- A question of Mike Falk (March 19, 2016):

Because the number $\langle H^i(\operatorname{Conf}_n(\mathbb{C})), W_n \rangle_{S_n}$ contains information about:

• The braid group B_n . The Eilenberg-MacLane space for B_n is precisely the quotient $\operatorname{UConf}_n(\mathbb{C}) := \operatorname{Conf}_n(\mathbb{C})/S_n$. Thus we have

$$\dim H^k(B_n; W_n) = \langle H^i(\operatorname{Conf}_n(\mathbb{C})), W_n \rangle_{S_n}.$$

dim $H^k(B_n; W_n)$ has been computed for

- (Arnol'd and F. Cohen) $W_n = \mathbb{Q}$ (trivial).
- (F. Cohen and Vassiliev) $W_n = \pm \mathbb{Q}$ (sign).
- (F. Cohen and Vassiliev) $W_n = \mathbb{Q}^n$ (permutation).

- A question of Mike Falk (March 19, 2016): Do the numbers $\langle H^i(\text{Conf}_n(\mathbb{C})), W_n \rangle_{S_n}$ carry any combinatorial information?

Because the number $\langle H^i(\operatorname{Conf}_n(\mathbb{C})), W_n \rangle_{S_n}$ contains information about:

• The braid group B_n . The Eilenberg-MacLane space for B_n is precisely the quotient $\operatorname{UConf}_n(\mathbb{C}) := \operatorname{Conf}_n(\mathbb{C})/S_n$. Thus we have

$$\dim H^k(B_n; W_n) = \langle H^i(\operatorname{Conf}_n(\mathbb{C})), W_n \rangle_{S_n}.$$

dim $H^k(B_n; W_n)$ has been computed for

- (Arnol'd and F. Cohen) $W_n = \mathbb{Q}$ (trivial).
- (F. Cohen and Vassiliev) $W_n = \pm \mathbb{Q}$ (sign).
- (F. Cohen and Vassiliev) $W_n = \mathbb{Q}^n$ (permutation).

- A question of Mike Falk (March 19, 2016): Do the numbers $\langle H^i(\text{Conf}_n(\mathbb{C})), W_n \rangle_{S_n}$ carry any combinatorial information? Answer: Yes!

Because the number $\langle H^i(\operatorname{Conf}_n(\mathbb{C})), W_n \rangle_{S_n}$ contains information about:

• The braid group B_n . The Eilenberg-MacLane space for B_n is precisely the quotient $\operatorname{UConf}_n(\mathbb{C}) := \operatorname{Conf}_n(\mathbb{C})/S_n$. Thus we have

dim
$$H^k(B_n; W_n) = \langle H^i(\operatorname{Conf}_n(\mathbb{C})), W_n \rangle_{S_n}$$
.

- (Arnol'd and F. Cohen) $W_n = \mathbb{Q}$ (trivial).
- (F. Cohen and Vassiliev) $W_n = \pm \mathbb{Q}$ (sign).
- (F. Cohen and Vassiliev) $W_n = \mathbb{Q}^n$ (permutation).
- A question of Mike Falk (March 19, 2016): Do the numbers $\langle H^i(\text{Conf}_n(\mathbb{C})), W_n \rangle_{S_n}$ carry any combinatorial information? Answer: Yes!
- Polynomials over **F**_q.

Because the number $\langle H^i(\operatorname{Conf}_n(\mathbb{C})), W_n \rangle_{S_n}$ contains information about:

• The braid group B_n . The Eilenberg-MacLane space for B_n is precisely the quotient $\operatorname{UConf}_n(\mathbb{C}) := \operatorname{Conf}_n(\mathbb{C})/S_n$. Thus we have

$$\dim H^k(B_n; W_n) = \langle H^i(\operatorname{Conf}_n(\mathbb{C})), W_n \rangle_{S_n}.$$

- (Arnol'd and F. Cohen) $W_n = \mathbb{Q}$ (trivial).
- (F. Cohen and Vassiliev) $W_n = \pm \mathbb{Q}$ (sign).
- (F. Cohen and Vassiliev) $W_n = \mathbb{Q}^n$ (permutation).
- A question of Mike Falk (March 19, 2016): Do the numbers $\langle H^i(\text{Conf}_n(\mathbb{C})), W_n \rangle_{S_n}$ carry any combinatorial information? Answer: Yes!
- **Polynomials over** \mathbb{F}_q . UConf_n(\mathbb{C}) and Conf_n(\mathbb{C}) are algebraic varieties. Their cohomology groups contain information about counting polynomials over \mathbb{F}_q with weighting.

• The S_n-representation on H*(Conf_n(C))

• The S_n-representation on H*(Conf_n(C)) Counting polynomials over F_q with weights

- The S_n-representation on H*(Conf_n(C))
- (Church-Ellenberg-Farb) Representation stability of $H^i(\operatorname{Conf}_n(\mathbb{C})) \Longrightarrow$

 Counting polynomials over 𝔽_q with weights

- The S_n-representation on H*(Conf_n(C))
- (Church-Ellenberg-Farb) Representation stability of $H^i(\operatorname{Conf}_n(\mathbb{C})) \Longrightarrow$

- Counting polynomials over F_q with weights
- (Church-Ellenberg-Farb) Convergence of weighted point-counts

- The S_n-representation on H*(Conf_n(C))
- (Church-Ellenberg-Farb) Representation stability of $H^i(\operatorname{Conf}_n(\mathbb{C})) \Longrightarrow$

- Counting polynomials over 𝔽_q with weights
- (Church-Ellenberg-Farb) Convergence of weighted point-counts
- (Fulman) Generating functions for weighted point-counts

- The S_n-representation on H^{*}(Conf_n(ℂ))
- (Church-Ellenberg-Farb) Representation stability of $H^{i}(\text{Conf}_{n}(\mathbb{C})) \Longrightarrow$
- (C-) Generating functions for $\langle H^i(\operatorname{Conf}_n(\mathbb{C})), W_n \rangle_{S_n} \iff$

- Counting polynomials over 𝔽_q with weights
- (Church-Ellenberg-Farb) Convergence of weighted point-counts
- (Fulman) Generating functions for weighted point-counts

• Fix k. For any $\sigma \in S_n$, define

 $X_k(\sigma) :=$ number of cycles of length k in σ .

- ∢ ⊢⊒ →

э

• Fix k. For any $\sigma \in S_n$, define $X_k(\sigma) :=$ number of cycles of length k in σ .

• A polynomial P in X_1, X_2, X_3, \cdots is called a *character polynomial*. A character polynomial P defines a class function of S_n for all n.

• Fix k. For any $\sigma \in S_n$, define $X_k(\sigma) :=$ number of cycles of length k in σ .

- A polynomial P in X_1, X_2, X_3, \cdots is called a *character polynomial*. A character polynomial P defines a class function of S_n for all n.
 - For example, let S_n acts on \mathbb{Q}^n by permuting coordinates. Then

 $X_1 = \chi_{\mathbb{Q}^n}$ for all n

• Fix k. For any $\sigma \in S_n$, define $X_k(\sigma) :=$ number of cycles of length k in σ .

- A polynomial P in X_1, X_2, X_3, \cdots is called a *character polynomial*. A character polynomial P defines a class function of S_n for all n.
 - For example, let S_n acts on \mathbb{Q}^n by permuting coordinates. Then

$$X_1 = \chi_{\mathbb{Q}^n}$$
 for all n

Theorem (Church-Ellenberg-Farb)

For any character polynomial P, for each fixed i, the multiplicity

 $\langle H^i(\operatorname{Conf}_n(\mathbb{C})), P \rangle_{S_n}$

will be eventually independent of n when n >> i.

Weiyan Chen

- Computing $\langle H^i(\operatorname{Conf}_n(\mathbb{C})), W_n \rangle_{S_n}$
- (Church-Ellenberg-Farb) Representation stability of Hⁱ(Conf_n(C)) =
- (C-) Generating functions for $\langle H^i(\operatorname{Conf}_n(\mathbb{C})), W_n \rangle_{S_n} \iff$

- Counting polynomials over F_q with weights
- (Church-Ellenberg-Farb) Weighted point-counts converge
- (Fulman) Generating functions for weighted point-counts

- Computing $\langle H^i(\operatorname{Conf}_n(\mathbb{C})), W_n \rangle_{S_n}$
- (Church-Ellenberg-Farb) Representation stability of $H^i(\text{Conf}_n(\mathbb{C})) =$
- (C-) Generating functions for $\langle H^i(\operatorname{Conf}_n(\mathbb{C})), W_n \rangle_{S_n} \iff$

- Counting polynomials over F_q with weights
- (Church-Ellenberg-Farb) Weighted point-counts converge
- (Fulman) Generating functions for weighted point-counts

• Let $\lambda = (\lambda_1, \lambda_2, \cdots, \lambda_l)$ be a sequence of nonnegative integers.

$$egin{pmatrix} X \ \lambda \end{pmatrix} \coloneqq \prod_{k=1}^l egin{pmatrix} X_k \ \lambda_k \end{pmatrix}$$

(Recall $X_k(\sigma) :=$ number of k-cycles in σ , for σ any permutation.)

• Let $\lambda = (\lambda_1, \lambda_2, \cdots, \lambda_l)$ be a sequence of nonnegative integers.

$$egin{pmatrix} X \ \lambda \end{pmatrix} \coloneqq \prod_{k=1}^{\prime} egin{pmatrix} X_k \ \lambda_k \end{pmatrix}$$

(Recall X_k(σ) := number of k-cycles in σ, for σ any permutation.)
For every n, the vector space of class functions on S_n is spanned by character polynomials of the form (^X_λ).

• Let $\lambda = (\lambda_1, \lambda_2, \cdots, \lambda_l)$ be a sequence of nonnegative integers.

$$egin{pmatrix} X \ \lambda \end{pmatrix} \coloneqq \prod_{k=1}^l egin{pmatrix} X_k \ \lambda_k \end{pmatrix}$$

(Recall $X_k(\sigma) :=$ number of *k*-cycles in σ , for σ any permutation.)

For every n, the vector space of class functions on S_n is spanned by character polynomials of the form (^X_λ). Hence, to compute (Hⁱ(Conf_n(ℂ)), W_n)_{S_n} for all representations W_n, it suffices to consider when W_n is given by (^X_λ) for some λ.

• Let $\lambda = (\lambda_1, \lambda_2, \cdots, \lambda_l)$ be a sequence of nonnegative integers.

$$egin{pmatrix} X \ \lambda \end{pmatrix} \coloneqq \prod_{k=1}^l egin{pmatrix} X_k \ \lambda_k \end{pmatrix}$$

(Recall $X_k(\sigma) :=$ number of k-cycles in σ , for σ any permutation.)

For every n, the vector space of class functions on S_n is spanned by character polynomials of the form ^{(X}_λ). Hence, to compute (Hⁱ(Conf_n(ℂ)), W_n)_{S_n} for all representations W_n, it suffices to consider when W_n is given by ^(X)_λ for some λ.

Theorem (C-)

Let $\lambda = (\lambda_1, \lambda_2, \dots, \lambda_l)$ be any sequence of nonnegative integers. Let μ be the classical Möbius function, and let $M_k(z^{-1}) := \frac{1}{k} \sum_{j|k} \mu(\frac{k}{j}) z^{-j}$. Abbreviate $b_{i,n}(\lambda) := \langle H^i(\operatorname{Conf}_n(\mathbb{C})), {X \choose \lambda} \rangle_{S_n}$.

$$\sum_{n=0}^{\infty} \sum_{i=0}^{\infty} b_{i,n}(\lambda)(-z)^{i} t^{n} = \frac{1-zt^{2}}{1-t} \prod_{k=1}^{l} \binom{M_{k}(z^{-1})}{\lambda_{k}} \left(\frac{(tz)^{k}}{1+(tz)^{k}}\right)^{\lambda_{k}}$$

We can get a new proof of Church-Ellenberg-Farb's result:

We can get a new proof of Church-Ellenberg-Farb's result:

Theorem (Church-Ellenberg-Farb)

For any character polynomial P, for each fixed i, the multiplicity

 $b_{i,n} := \langle H^i(\operatorname{Conf}_n(\mathbb{C})), P \rangle_{S_n}$

will be eventually independent of n when n >> i.

We can get a new proof of Church-Ellenberg-Farb's result:

Theorem (Church-Ellenberg-Farb)

For any character polynomial P, for each fixed i, the multiplicity

 $b_{i,n} := \langle H^i(\operatorname{Conf}_n(\mathbb{C})), P \rangle_{S_n}$

will be eventually independent of n when n >> i.

Moreover, we discover a new phenomenon:

We can get a new proof of Church-Ellenberg-Farb's result:

Theorem (Church-Ellenberg-Farb)

For any character polynomial P, for each fixed i, the multiplicity

 $b_{i,n} := \langle H^i(\operatorname{Conf}_n(\mathbb{C})), P \rangle_{S_n}$

will be eventually independent of n when n >> i.

Moreover, we discover a new phenomenon:

Theorem (C-)

For any character polynomial P, the i-th stable multiplicity

$$b_{i,\infty} := \lim_{n \to \infty} \langle H^i(\operatorname{Conf}_n(\mathbb{C})), P \rangle_{S_n}$$

will eventually satisfy a linear recurrence relation in *i*.

We can get a new proof of Church-Ellenberg-Farb's result:

Theorem (Church-Ellenberg-Farb)

For any character polynomial P, for each fixed i, the multiplicity

 $b_{i,n} := \langle H^i(\operatorname{Conf}_n(\mathbb{C})), P \rangle_{S_n}$

will be eventually independent of n when n >> i.

Moreover, we discover a new phenomenon:

Theorem (C-)

For any character polynomial P, the i-th stable multiplicity

 $b_{i,\infty} := \lim_{n \to \infty} \langle H^i(\operatorname{Conf}_n(\mathbb{C})), P \rangle_{S_n}$

will eventually satisfy a linear recurrence relation in *i*. There exist c_1, \dots, c_N such that $b_{i+N,\infty} = c_1 b_{i,\infty} + \dots + c_N b_{i+N-1,\infty}$ for all $i \ge 2$.

Example: $b_{i,n} = \langle H^i(\operatorname{Conf}_n(\mathbb{C})); \bigwedge^2 \mathbb{Q}^{n-1} \rangle_{S_n}$

b _{i,n}	<i>n</i> = 3	4	5	6	7	8	9	10	11	12	13	14
<i>i</i> = 0	0	0	0	0	0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	0	0	0	0	0	0
2	0	1	2	2	2	2	2	2	2	2	2	2
3		1	3	5	5	5	5	5	5	5	5	5
4			1	4	6	6	6	6	6	6	6	6
5				1	5	7	7	7	7	7	7	7
6					2	7	10	10	10	10	10	10
7						3	9	13	13	13	13	13
8							3	10	14	14	14	14
9								3	11	15	15	15
10									4	13	18	18
11										5	15	21
12											5	16
13												5

æ

・ロン ・四 ・ ・ ヨン ・ ヨン

• Similar results hold for other arrangment complements (such as type B), and flag varieties.

- Similar results hold for other arrangment complements (such as type B), and flag varieties.
- Further question:
 - Are there other examples where the stable multiplicities satisfy a linear recurrence relation?

- Similar results hold for other arrangment complements (such as type B), and flag varieties.
- Further question:
 - Are there other examples where the stable multiplicities satisfy a linear recurrence relation? For example, do similar results hold for

$$\operatorname{PConf}_{n} M := \{ (x_1, \cdots, x_n) \in M : x_i \neq x_j, \forall i \neq j \}$$

when M is a manifold?

- Similar results hold for other arrangment complements (such as type B), and flag varieties.
- Further question:
 - Are there other examples where the stable multiplicities satisfy a linear recurrence relation? For example, do similar results hold for

$$\operatorname{PConf}_{n}M := \{(x_{1}, \cdots, x_{n}) \in M : x_{i} \neq x_{j}, \forall i \neq j\}$$

when M is a manifold?

 Is there a topological proof/explanation for the recurrence of stable multiplicities for Conf_n(C)? Thank you! Happy birthday, Mike!

< 🗇 🕨

э

W. Chen.

Twisted cohomology of configuration spaces and spaces of maximal tori via point-counting. Preprint, arXiv:1603.03931