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Hyperplane arrangements

For a hyperplane arrangement A in Cn, we are interested in

h•(A) := H•(Cn −A).

(with rational coefficients)

Theorem (Brieskorn, Orlik–Solomon)

There is an isomorphism of graded algebras

h•(A) ∼= A•(A) ,

where A•(A) is the Orlik–Solomon algebra of A.

– The strata (intersections of hyperplanes in A) form a poset, graded by |S | = codim(S).

– The Orlik–Solomon algebra A•(A) only depends on the poset of strata.

– It has a combinatorial decomposition

Ap(A) =
⊕
|S|=p

AS
p (A) .

– The mixed Hodge structure on hk(A) is pure of weight 2k.
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Hypersurface arrangements

Definition
A hypersurface arrangement A in a smooth complex variety X is a divisor that locally (in
the analytic topology) looks like a hyperplane arrangement. We are interested in

h•(A) := H•(X −A) .

Simplifying assumption: all the irreducible components are smooth.

Example
— (simple) normal crossing divisors;

— hyperplane arrangements in Cn or Pn(C);
— toric arrangements in (C∗)n, the irreducible components are of the form

{za11 · · · z
an
n = b} with ai ∈ Z, b ∈ C∗

(De Concini–Procesi);

— abelian arrangements (Bibby);

— arrangements of diagonals in C n, for C a Riemann surface

 partial configuration spaces.
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The Orlik–Solomon spectral sequence

The Orlik–Solomon components AS
p make sense for any hypersurface arrangement, and

are computed locally.

dim(AS
p ) = (−1)|S|µ(X , S) .

Global version of the Brieskorn–Orlik–Solomon theorem:

Theorem (Looijenga)

Let A be a hypersurface arrangement, there is a spectral sequence

E−p,q
1 =

⊕
|S|=p

Hq−2p(S)(−p)⊗ AS
p =⇒ h−p+q(A) .

– Application to toric arrangements (De Concini–Procesi, Callegaro–Delucchi).

– Application to abelian arrangements (Bibby).

– Application to the rational homotopy theory of X −A (D.).
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Definition and duality

Definition
A co-arrangement of hypersurfaces is an arrangement of hypersurfaces...

... but with a dual point of view on it!

Co-arrangement A∨ in X  h•(A∨) := H•(X ,A) (relative cohomology)

Poincaré–Verdier duality
If X is projective of dimension n, then

hk(A∨) ∼= (h2n−k(A))∨.

In general, there is no such duality, and h•(A∨) is a new cohomological invariant.

The dual Orlik–Solomon spectral sequence

E p,q
1 =

⊕
|S|=p

Hq(S)⊗ (AS
p )
∨ =⇒ hp+q(A∨) .
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Hyperplane co-arrangements

Proposition (D.)

Let A be an essential affine hyperplane arrangement in Cn.

– We have natural isomorphisms hk(A∨) ∼= (Hk(A•(A), d))∨.
– This is zero for k 6= n.

– Thus, the dimension of hn(A∨) is
(−1)n χ(A•(A)) = (−1)n χ(A, 1) .

χ(A, q) is the characteristic polynomial of A:

χ(A, q) :=
∑
r

∑
|S|=r

µ(Cn, S)

 qn−r .

Theorem (Zaslavsky ’75)

If A is an essential affine real arrangement, then the number of bounded connected
components of the real complement Rn −A is (−1)n χ(A, 1).

(This is not surprising!)
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Toric co-arrangements

Proposition (?)

Let A be an essential toric arrangement in (C∗)n.
– We have hk(A∨) = 0 for k 6= n.

– The Hodge polynomial of hn(A∨) is∑
k

dim
(
grW2kh

n(A∨)
)
xk = (−1)n χ(A, 1− x),

thus its dimension is (−1)n χ(A, 0).

(Toric version of Zaslavsky’s theorem: Ehrenborg–Readdy–Slone.)

Mixed Hodge structures
– The weight-graded quotients are combinatorial invariants.

– However, the mixed Hodge structure on hn(A∨) is an arithmetic invariant, not
combinatorial.

– Example : for a 6= b ∈ C∗, the mixed Hodge structure on H1(C∗, {a, b}) knows about
the number ∫ b

a

dz

z
= log(b/a).
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Definitions

Definition
A bi-arrangement of hypersurfaces B in a smooth complex variety X is an arrangement of
hypersurfaces together with a coloring function

χ : {strata} → {λ, µ}

Definition
To a bi-arrangement B one associates

h•(B) := H•(X̃ − L̃ , M̃ − L̃ ∩ M̃) , where

– X̃ → X is a resolution of singularities of the arrangement = iterated blow-up of strata
(“wonderful compactification”);

– L̃ is the union of the irreducible components of the total transform of the arrangement
corresponding to the blow-up of strata whose color is λ;

– M̃ is the union of the irreducible components of the total transform of the
arrangement corresponding to the blow-up of strata whose color is µ.

(does not depend on the choice of a resolution of singularities)
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Properties

– Arrangements A are bi-arrangements for which only the color λ is used.

– Co-arrangements A∨ are bi-arrangements for which only the color µ is used.

– Duality among bi-arrangements: swapping the colors λ and µ.

– Poincaré–Verdier duality: for X projective of dimension n,

hk(B∨) ∼= (h2n−k(B))∨ .

Mixed Hodge structures
Even in the case X = Pn(C) and B a bi-arrangement of hyperplanes...

there is a highly non-trivial mixed Hodge structure on h•(B),

which is not combinatorially determined.

Arithmetic content: “Aomoto polylogarithms”, e.g. special values of the dilogarithm

Li2(t) =
∑
k>1

tk

k2 =

∫∫
0<x<y<t

dx dy

(1− x)y

(Aomoto, Beilinson–Goncharov–Varchenko–Schechtman).

Clément Dupont (MPIM Bonn) March 20, 2016 13 / 14



Properties

– Arrangements A are bi-arrangements for which only the color λ is used.

– Co-arrangements A∨ are bi-arrangements for which only the color µ is used.

– Duality among bi-arrangements: swapping the colors λ and µ.

– Poincaré–Verdier duality: for X projective of dimension n,

hk(B∨) ∼= (h2n−k(B))∨ .

Mixed Hodge structures
Even in the case X = Pn(C) and B a bi-arrangement of hyperplanes...

there is a highly non-trivial mixed Hodge structure on h•(B),

which is not combinatorially determined.

Arithmetic content: “Aomoto polylogarithms”, e.g. special values of the dilogarithm

Li2(t) =
∑
k>1

tk

k2 =

∫∫
0<x<y<t

dx dy

(1− x)y

(Aomoto, Beilinson–Goncharov–Varchenko–Schechtman).

Clément Dupont (MPIM Bonn) March 20, 2016 13 / 14



Properties

– Arrangements A are bi-arrangements for which only the color λ is used.

– Co-arrangements A∨ are bi-arrangements for which only the color µ is used.

– Duality among bi-arrangements: swapping the colors λ and µ.

– Poincaré–Verdier duality: for X projective of dimension n,

hk(B∨) ∼= (h2n−k(B))∨ .

Mixed Hodge structures
Even in the case X = Pn(C) and B a bi-arrangement of hyperplanes...

there is a highly non-trivial mixed Hodge structure on h•(B),

which is not combinatorially determined.

Arithmetic content: “Aomoto polylogarithms”, e.g. special values of the dilogarithm

Li2(t) =
∑
k>1

tk

k2 =

∫∫
0<x<y<t

dx dy

(1− x)y

(Aomoto, Beilinson–Goncharov–Varchenko–Schechtman).

Clément Dupont (MPIM Bonn) March 20, 2016 13 / 14



The Orlik–Solomon bi-complex and the spectral sequence

The Orlik–Solomon bi-complex (D.)

To a bi-arrangement B one associates a collection of groups AS
i,j , for S a stratum of

codimension i + j .

– Case of arrangements: AS
p,0 = AS

p .

– Case of co-arrangements: AS
0,p = (AS

p )
∨.

One also has arrows

d ′ : AS
i,j → AT

i−1,j and d ′′ : AS
i,j → AT

i,j+1.

It is a combinatorial invariant. Combinatorial notion of exact bi-arrangement: acyclicity
conditions on the Orlik–Solomon bi-complex.

All arrangements and co-arrangements are exact.

Theorem (D.)

If B is exact, there is a spectral sequence

E−p,q
1 =

⊕
i−j=p
|S|=i

Hq−2i (S)(−i)⊗ AS
i,j =⇒ h−p+q(B) .

Clément Dupont (MPIM Bonn) March 20, 2016 14 / 14



The Orlik–Solomon bi-complex and the spectral sequence

The Orlik–Solomon bi-complex (D.)

To a bi-arrangement B one associates a collection of groups AS
i,j , for S a stratum of

codimension i + j .

– Case of arrangements: AS
p,0 = AS

p .

– Case of co-arrangements: AS
0,p = (AS

p )
∨.

One also has arrows

d ′ : AS
i,j → AT

i−1,j and d ′′ : AS
i,j → AT

i,j+1.

It is a combinatorial invariant. Combinatorial notion of exact bi-arrangement: acyclicity
conditions on the Orlik–Solomon bi-complex.

All arrangements and co-arrangements are exact.

Theorem (D.)

If B is exact, there is a spectral sequence

E−p,q
1 =

⊕
i−j=p
|S|=i

Hq−2i (S)(−i)⊗ AS
i,j =⇒ h−p+q(B) .

Clément Dupont (MPIM Bonn) March 20, 2016 14 / 14



The Orlik–Solomon bi-complex and the spectral sequence

The Orlik–Solomon bi-complex (D.)

To a bi-arrangement B one associates a collection of groups AS
i,j , for S a stratum of

codimension i + j .

– Case of arrangements: AS
p,0 = AS

p .

– Case of co-arrangements: AS
0,p = (AS

p )
∨.

One also has arrows

d ′ : AS
i,j → AT

i−1,j and d ′′ : AS
i,j → AT

i,j+1.

It is a combinatorial invariant. Combinatorial notion of exact bi-arrangement: acyclicity
conditions on the Orlik–Solomon bi-complex.

All arrangements and co-arrangements are exact.

Theorem (D.)

If B is exact, there is a spectral sequence

E−p,q
1 =

⊕
i−j=p
|S|=i

Hq−2i (S)(−i)⊗ AS
i,j =⇒ h−p+q(B) .

Clément Dupont (MPIM Bonn) March 20, 2016 14 / 14


	Arrangements
	Co-arrangements
	Bi-arrangements

