# Co-arrangements and bi-arrangements 

Clément Dupont<br>Max-Planck-Institut für Mathematik, Bonn<br>cdupont@mpim-bonn.mpg.de

AMS Special Session on Topology and Combinatorics of Arrangements (in honor of Mike Falk)
AMS Spring Eastern sectional meeting

Stony Brook<br>March 20, 2016

(1) Arrangements
(2) Co-arrangements
(3) Bi -arrangements
(1) Arrangements
(3) Bi-arrangements

Hyperplane arrangements

For a hyperplane arrangement $\mathcal{A}$ in $\mathbb{C}^{n}$, we are interested in

$$
h^{\bullet}(\mathcal{A}):=H^{\bullet}\left(\mathbb{C}^{n}-\mathcal{A}\right)
$$

(with rational coefficients)

Hyperplane arrangements
For a hyperplane arrangement $\mathcal{A}$ in $\mathbb{C}^{n}$, we are interested in

$$
h^{\bullet}(\mathcal{A}):=H^{\bullet}\left(\mathbb{C}^{n}-\mathcal{A}\right)
$$

(with rational coefficients)

## Theorem (Brieskorn, Orlik-Solomon)

There is an isomorphism of graded algebras

$$
h^{\bullet}(\mathcal{A}) \cong A_{\bullet}(\mathcal{A}),
$$

where $A_{\bullet}(\mathcal{A})$ is the Orlik-Solomon algebra of $\mathcal{A}$.

## Hyperplane arrangements

For a hyperplane arrangement $\mathcal{A}$ in $\mathbb{C}^{n}$, we are interested in

$$
h^{\bullet}(\mathcal{A}):=H^{\bullet}\left(\mathbb{C}^{n}-\mathcal{A}\right)
$$

(with rational coefficients)

## Theorem (Brieskorn, Orlik-Solomon)

There is an isomorphism of graded algebras

$$
h^{\bullet}(\mathcal{A}) \cong A_{\bullet}(\mathcal{A}),
$$

where $A_{0}(\mathcal{A})$ is the Orlik-Solomon algebra of $\mathcal{A}$.

- The strata (intersections of hyperplanes in $\mathcal{A}$ ) form a poset, graded by $|S|=\operatorname{codim}(S)$.
- The Orlik-Solomon algebra $A_{\bullet}(\mathcal{A})$ only depends on the poset of strata.
- It has a combinatorial decomposition

$$
A_{p}(\mathcal{A})=\bigoplus_{|S|=p} A_{p}^{S}(\mathcal{A}) .
$$

- The mixed Hodge structure on $h^{k}(\mathcal{A})$ is pure of weight $2 k$.


## Hypersurface arrangements

## Definition

A hypersurface arrangement $\mathcal{A}$ in a smooth complex variety $X$ is a divisor that locally (in the analytic topology) looks like a hyperplane arrangement. We are interested in

$$
h^{\bullet}(\mathcal{A}):=H^{\bullet}(X-\mathcal{A}) .
$$

Simplifying assumption: all the irreducible components are smooth.

## Hypersurface arrangements

## Definition

A hypersurface arrangement $\mathcal{A}$ in a smooth complex variety $X$ is a divisor that locally (in the analytic topology) looks like a hyperplane arrangement. We are interested in

$$
h^{\bullet}(\mathcal{A}):=H^{\bullet}(X-\mathcal{A})
$$

Simplifying assumption: all the irreducible components are smooth.

## Example

- (simple) normal crossing divisors;
- hyperplane arrangements in $\mathbb{C}^{n}$ or $\mathbb{P}^{n}(\mathbb{C})$;
- toric arrangements in $\left(\mathbb{C}^{*}\right)^{n}$, the irreducible components are of the form

$$
\left\{z_{1}^{a_{1}} \cdots z_{n}^{a_{n}}=b\right\} \quad \text { with } a_{i} \in \mathbb{Z}, b \in \mathbb{C}^{*}
$$

(De Concini-Procesi);

- abelian arrangements (Bibby);
— arrangements of diagonals in $C^{n}$, for $C$ a Riemann surface
$\rightsquigarrow$ partial configuration spaces.


## The Orlik-Solomon spectral sequence

The Orlik-Solomon components $A_{\rho}^{S}$ make sense for any hypersurface arrangement, and are computed locally.

$$
\operatorname{dim}\left(A_{p}^{S}\right)=(-1)^{|S|} \mu(X, S)
$$

## The Orlik-Solomon spectral sequence

The Orlik-Solomon components $A_{\rho}^{S}$ make sense for any hypersurface arrangement, and are computed locally.

$$
\operatorname{dim}\left(A_{\rho}^{S}\right)=(-1)^{|S|} \mu(X, S)
$$

Global version of the Brieskorn-Orlik-Solomon theorem:
Theorem (Looijenga)
Let $\mathcal{A}$ be a hypersurface arrangement, there is a spectral sequence

$$
E_{1}^{-p, q}=\bigoplus_{|S|=p} H^{q-2 p}(S)(-p) \otimes A_{p}^{S} \Longrightarrow h^{-p+q}(\mathcal{A}) .
$$

## The Orlik-Solomon spectral sequence

The Orlik-Solomon components $A_{\rho}^{S}$ make sense for any hypersurface arrangement, and are computed locally.

$$
\operatorname{dim}\left(A_{\rho}^{S}\right)=(-1)^{|S|} \mu(X, S)
$$

Global version of the Brieskorn-Orlik-Solomon theorem:

## Theorem (Looijenga)

Let $\mathcal{A}$ be a hypersurface arrangement, there is a spectral sequence

$$
E_{1}^{-p, q}=\bigoplus_{|S|=p} H^{q-2 p}(S)(-p) \otimes A_{p}^{S} \Longrightarrow h^{-p+q}(\mathcal{A})
$$

- Application to toric arrangements (De Concini-Procesi, Callegaro-Delucchi).
- Application to abelian arrangements (Bibby).
- Application to the rational homotopy theory of $X-\mathcal{A}$ (D.).
(1) Arrangements
(2) Co-arrangements
(3) Bi -arrangements


## Definition and duality

## Definition

A co-arrangement of hypersurfaces is an arrangement of hypersurfaces...

## Definition and duality

## Definition

A co-arrangement of hypersurfaces is an arrangement of hypersurfaces...
... but with a dual point of view on it!

## Definition and duality

## Definition

A co-arrangement of hypersurfaces is an arrangement of hypersurfaces...
... but with a dual point of view on it!

Co-arrangement $\mathcal{A}^{\vee}$ in $X \rightsquigarrow h^{\bullet}\left(\mathcal{A}^{\vee}\right):=H^{\bullet}(X, \mathcal{A}) \quad$ (relative cohomology)

## Definition and duality

## Definition

A co-arrangement of hypersurfaces is an arrangement of hypersurfaces...
... but with a dual point of view on it!

Co-arrangement $\mathcal{A}^{\vee}$ in $X \rightsquigarrow h^{\bullet}\left(\mathcal{A}^{\vee}\right):=H^{\bullet}(X, \mathcal{A}) \quad$ (relative cohomology)

## Poincaré-Verdier duality

If $X$ is projective of dimension $n$, then

$$
h^{k}\left(\mathcal{A}^{\vee}\right) \cong\left(h^{2 n-k}(\mathcal{A})\right)^{\vee} .
$$

In general, there is no such duality, and $h^{\bullet}\left(\mathcal{A}^{\vee}\right)$ is a new cohomological invariant.

## Definition and duality

## Definition

A co-arrangement of hypersurfaces is an arrangement of hypersurfaces...
... but with a dual point of view on it!

Co-arrangement $\mathcal{A}^{\vee}$ in $X \rightsquigarrow h^{\bullet}\left(\mathcal{A}^{\vee}\right):=H^{\bullet}(X, \mathcal{A}) \quad$ (relative cohomology)

## Poincaré-Verdier duality

If $X$ is projective of dimension $n$, then

$$
h^{k}\left(\mathcal{A}^{\vee}\right) \cong\left(h^{2 n-k}(\mathcal{A})\right)^{\vee} .
$$

In general, there is no such duality, and $h^{\bullet}\left(\mathcal{A}^{\vee}\right)$ is a new cohomological invariant.

The dual Orlik-Solomon spectral sequence

$$
E_{1}^{p, q}=\bigoplus_{|S|=p} H^{q}(S) \otimes\left(A_{p}^{S}\right)^{\vee} \Longrightarrow h^{p+q}\left(\mathcal{A}^{\vee}\right)
$$

Hyperplane co-arrangements

## Proposition (D.)

Let $\mathcal{A}$ be an essential affine hyperplane arrangement in $\mathbb{C}^{n}$.

- We have natural isomorphisms $h^{k}\left(\mathcal{A}^{\vee}\right) \cong\left(H_{k}\left(A_{\bullet}(\mathcal{A}), d\right)\right)^{\vee}$.
- This is zero for $k \neq n$.
- Thus, the dimension of $h^{n}\left(\mathcal{A}^{\vee}\right)$ is

$$
(-1)^{n} \chi\left(A_{\bullet}(\mathcal{A})\right)=(-1)^{n} \chi(\mathcal{A}, 1) .
$$

Hyperplane co-arrangements

## Proposition (D.)

Let $\mathcal{A}$ be an essential affine hyperplane arrangement in $\mathbb{C}^{n}$.

- We have natural isomorphisms $h^{k}\left(\mathcal{A}^{\vee}\right) \cong\left(H_{k}\left(A_{\bullet}(\mathcal{A}), d\right)\right)^{\vee}$.
- This is zero for $k \neq n$.
- Thus, the dimension of $h^{n}\left(\mathcal{A}^{\vee}\right)$ is

$$
(-1)^{n} \chi(A \cdot(\mathcal{A}))=(-1)^{n} \chi(\mathcal{A}, 1) .
$$

$\chi(\mathcal{A}, q)$ is the characteristic polynomial of $\mathcal{A}$ :

$$
\chi(\mathcal{A}, q):=\sum_{r}\left(\sum_{|S|=r} \mu\left(\mathbb{C}^{n}, S\right)\right) q^{n-r} .
$$

Hyperplane co-arrangements

## Proposition (D.)

Let $\mathcal{A}$ be an essential affine hyperplane arrangement in $\mathbb{C}^{n}$.

- We have natural isomorphisms $h^{k}\left(\mathcal{A}^{\vee}\right) \cong\left(H_{k}\left(A_{\bullet}(\mathcal{A}), d\right)\right)^{\vee}$.
- This is zero for $k \neq n$.
- Thus, the dimension of $h^{n}\left(\mathcal{A}^{\vee}\right)$ is

$$
(-1)^{n} \chi\left(A_{\bullet}(\mathcal{A})\right)=(-1)^{n} \chi(\mathcal{A}, 1) .
$$

$\chi(\mathcal{A}, q)$ is the characteristic polynomial of $\mathcal{A}$ :

$$
\chi(\mathcal{A}, q):=\sum_{r}\left(\sum_{|S|=r} \mu\left(\mathbb{C}^{n}, S\right)\right) q^{n-r} .
$$

## Theorem (Zaslavsky '75)

If $\mathcal{A}$ is an essential affine real arrangement, then the number of bounded connected components of the real complement $\mathbb{R}^{n}-\mathcal{A}$ is $(-1)^{n} \chi(\mathcal{A}, 1)$.
(This is not surprising!)

## Toric co-arrangements

## Proposition (?)

Let $\mathcal{A}$ be an essential toric arrangement in $\left(\mathbb{C}^{*}\right)^{n}$.

- We have $h^{k}\left(\mathcal{A}^{\vee}\right)=0$ for $k \neq n$.
- The Hodge polynomial of $h^{n}\left(\mathcal{A}^{\vee}\right)$ is

$$
\sum_{k} \operatorname{dim}\left(\operatorname{gr}_{2 k}^{W} h^{n}\left(\mathcal{A}^{\vee}\right)\right) x^{k}=(-1)^{n} \chi(\mathcal{A}, 1-x)
$$

thus its dimension is $(-1)^{n} \chi(\mathcal{A}, 0)$.
(Toric version of Zaslavsky's theorem: Ehrenborg-Readdy-Slone.)

## Toric co-arrangements

## Proposition (?)

Let $\mathcal{A}$ be an essential toric arrangement in $\left(\mathbb{C}^{*}\right)^{n}$.

- We have $h^{k}\left(\mathcal{A}^{\vee}\right)=0$ for $k \neq n$.
- The Hodge polynomial of $h^{n}\left(\mathcal{A}^{\vee}\right)$ is

$$
\sum_{k} \operatorname{dim}\left(\operatorname{gr}_{2 k}^{W} h^{n}\left(\mathcal{A}^{\vee}\right)\right) x^{k}=(-1)^{n} \chi(\mathcal{A}, 1-x)
$$

thus its dimension is $(-1)^{n} \chi(\mathcal{A}, 0)$.
(Toric version of Zaslavsky's theorem: Ehrenborg-Readdy-Slone.)

## Mixed Hodge structures

- The weight-graded quotients are combinatorial invariants.
- However, the mixed Hodge structure on $h^{n}\left(\mathcal{A}^{\vee}\right)$ is an arithmetic invariant, not combinatorial.
- Example : for $a \neq b \in \mathbb{C}^{*}$, the mixed Hodge structure on $H^{1}\left(\mathbb{C}^{*},\{a, b\}\right)$ knows about the number

$$
\int_{a}^{b} \frac{d z}{z}=\log (b / a)
$$

(1) Arrangements
(2) Co-arrangements
(3) Bi -arrangements

## Definitions

## Definition

A bi-arrangement of hypersurfaces $\mathcal{B}$ in a smooth complex variety $X$ is an arrangement of hypersurfaces together with a coloring function

$$
\chi:\{\text { strata }\} \rightarrow\{\lambda, \mu\}
$$

## Definitions

## Definition

A bi-arrangement of hypersurfaces $\mathcal{B}$ in a smooth complex variety $X$ is an arrangement of hypersurfaces together with a coloring function

$$
\chi:\{\text { strata }\} \rightarrow\{\lambda, \mu\}
$$

## Definition

To a bi-arrangement $\mathcal{B}$ one associates

$$
h^{\bullet}(\mathcal{B}):=H^{\bullet}(\widetilde{X}-\widetilde{\mathcal{L}}, \widetilde{\mathcal{M}}-\widetilde{\mathcal{L}} \cap \widetilde{\mathcal{M}}), \text { where }
$$

- $\tilde{X} \rightarrow X$ is a resolution of singularities of the arrangement $=$ iterated blow-up of strata ("wonderful compactification");
- $\widetilde{\mathcal{L}}$ is the union of the irreducible components of the total transform of the arrangement corresponding to the blow-up of strata whose color is $\lambda$;
- $\widetilde{\mathcal{M}}$ is the union of the irreducible components of the total transform of the arrangement corresponding to the blow-up of strata whose color is $\mu$.
(does not depend on the choice of a resolution of singularities)


## Properties

- Arrangements $\mathcal{A}$ are bi-arrangements for which only the color $\lambda$ is used.
- Co-arrangements $\mathcal{A}^{\vee}$ are bi-arrangements for which only the color $\mu$ is used.
- Duality among bi-arrangements: swapping the colors $\lambda$ and $\mu$.
- Poincaré-Verdier duality: for $X$ projective of dimension $n$,

$$
h^{k}\left(\mathcal{B}^{\vee}\right) \cong\left(h^{2 n-k}(\mathcal{B})\right)^{\vee}
$$

## Properties

- Arrangements $\mathcal{A}$ are bi-arrangements for which only the color $\lambda$ is used.
- Co-arrangements $\mathcal{A}^{\vee}$ are bi-arrangements for which only the color $\mu$ is used.
- Duality among bi-arrangements: swapping the colors $\lambda$ and $\mu$.
- Poincaré-Verdier duality: for $X$ projective of dimension $n$,

$$
h^{k}\left(\mathcal{B}^{\vee}\right) \cong\left(h^{2 n-k}(\mathcal{B})\right)^{\vee} .
$$

## Mixed Hodge structures

Even in the case $X=\mathbb{P}^{n}(\mathbb{C})$ and $\mathcal{B}$ a bi-arrangement of hyperplanes...
there is a highly non-trivial mixed Hodge structure on $h^{\bullet}(\mathcal{B})$, which is not combinatorially determined.

## Properties

- Arrangements $\mathcal{A}$ are bi-arrangements for which only the color $\lambda$ is used.
- Co-arrangements $\mathcal{A}^{\vee}$ are bi-arrangements for which only the color $\mu$ is used.
- Duality among bi-arrangements: swapping the colors $\lambda$ and $\mu$.
- Poincaré-Verdier duality: for $X$ projective of dimension $n$,

$$
h^{k}\left(\mathcal{B}^{\vee}\right) \cong\left(h^{2 n-k}(\mathcal{B})\right)^{\vee}
$$

## Mixed Hodge structures

Even in the case $X=\mathbb{P}^{n}(\mathbb{C})$ and $\mathcal{B}$ a bi-arrangement of hyperplanes...
there is a highly non-trivial mixed Hodge structure on $h^{\bullet}(\mathcal{B})$,
which is not combinatorially determined.
Arithmetic content: "Aomoto polylogarithms", e.g. special values of the dilogarithm

$$
\operatorname{Li}_{2}(t)=\sum_{k \geqslant 1} \frac{t^{k}}{k^{2}}=\iint_{0<x<y<t} \frac{d x d y}{(1-x) y}
$$

(Aomoto, Beilinson-Goncharov-Varchenko-Schechtman).

The Orlik-Solomon bi-complex and the spectral sequence

## The Orlik-Solomon bi-complex (D.)

To a bi-arrangement $\mathcal{B}$ one associates a collection of groups $A_{i, j}^{S}$, for $S$ a stratum of codimension $i+j$.

- Case of arrangements: $A_{p, 0}^{S}=A_{p}^{S}$.
- Case of co-arrangements: $A_{0, p}^{S}=\left(A_{p}^{S}\right)^{\vee}$.

One also has arrows

$$
d^{\prime}: A_{i, j}^{S} \rightarrow A_{i-1, j}^{T} \quad \text { and } \quad d^{\prime \prime}: A_{i, j}^{S} \rightarrow A_{i, j+1}^{T} .
$$

## The Orlik-Solomon bi-complex and the spectral sequence

## The Orlik-Solomon bi-complex (D.)

To a bi-arrangement $\mathcal{B}$ one associates a collection of groups $A_{i, j}^{S}$, for $S$ a stratum of codimension $i+j$.

- Case of arrangements: $A_{p, 0}^{S}=A_{p}^{S}$.
- Case of co-arrangements: $A_{0, p}^{S}=\left(A_{p}^{S}\right)^{\vee}$.

One also has arrows

$$
d^{\prime}: A_{i, j}^{S} \rightarrow A_{i-1, j}^{T} \quad \text { and } \quad d^{\prime \prime}: A_{i, j}^{S} \rightarrow A_{i, j+1}^{T} .
$$

It is a combinatorial invariant. Combinatorial notion of exact bi-arrangement: acyclicity conditions on the Orlik-Solomon bi-complex.

All arrangements and co-arrangements are exact.

The Orlik-Solomon bi-complex and the spectral sequence
The Orlik-Solomon bi-complex (D.)
To a bi-arrangement $\mathcal{B}$ one associates a collection of groups $A_{i, j}^{S}$, for $S$ a stratum of codimension $i+j$.

- Case of arrangements: $A_{p, 0}^{S}=A_{p}^{S}$.
- Case of co-arrangements: $A_{0, p}^{S}=\left(A_{p}^{S}\right)^{\vee}$.

One also has arrows

$$
d^{\prime}: A_{i, j}^{S} \rightarrow A_{i-1, j}^{T} \quad \text { and } \quad d^{\prime \prime}: A_{i, j}^{S} \rightarrow A_{i, j+1}^{T} .
$$

It is a combinatorial invariant. Combinatorial notion of exact bi-arrangement: acyclicity conditions on the Orlik-Solomon bi-complex.

All arrangements and co-arrangements are exact.

## Theorem (D.)

If $\mathcal{B}$ is exact, there is a spectral sequence

$$
E_{1}^{-p, q}=\bigoplus_{\substack{i, j=p \\|S|=i}} H^{q-2 i}(S)(-i) \otimes A_{i, j}^{S} \Longrightarrow h^{-p+q}(\mathcal{B}) .
$$

