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Arithmetic Topology

statistics/counts of cohomology of
polynomials over Fq hyperplane complements

asymtotic counts representation
over Fq stability

Goal: Illustrate this “bridge”

This is joint work with Jennifer Wilson.



Hyperplane complements of typeWn

Type Symmetric group Permutation
An−1 Sn y {1, . . . ,n} matrices n × n

Type Hyperocthahedral group Signed permutation
Bn/Cn Bn y {±1, . . . ,±n} matrices n × n

Wn y Rn by (signed) permutation matrices

MWn(C) := Cn∖complexified reflection hyperplanes



Hyperplane complements and polynomials

Wn Sn Bn

MWn(C) Cn∖{zi − zj = 0} Cn∖{zi ± zj = 0, zi = 0}
MSn (C) = PConfn(C) MBn (C)

MWn/Wn(C)
{
{z1, . . . , zn} : zi ∈ C

} {
{±z1, . . . ,±zn} : zi ∈ C×

}
YWn (C) YSn (C) = Confn(C) YBn (C)

Space of
{
(T − z1) · · · (T − zn) : zi 6= zj

} {
(T − z2

1 ) · · · (T − z2
n ) : z2

i 6= z2
j ,

polynomials zi 6= 0
}



The K-points

Classical fact:
YSn and YBn are algebraic varieties defined over Z.

Polyn :=
{

monic polynomials of degree n
} ∼= An

YWn = subvariety of Polyn defined by the non-vanishing
of the discriminant

(
+ nonzero constant term

)

For a field K: the K-points

YWn(K) = Monic, degree n, polynomials in K[T ] with

no repeated roots
(

and nonzero constant term
)

K = Fq v.s. K = C
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The “bridge” topology-arithmetic

Theorem (Grothendieck-Lefschetz, Artin, Lehrer, Kim,...)
Let q be the power of an odd prime and χ a class function ofWn, then

∑
f∈YWn (Fq)

χ(f ) =
n∑

k=0

(−1)kqn−k〈χ,Hk (MWn(C);C
)〉
Wn

Arithmetic:
Frobq y YWn (Fq)

Fix(Frobq) = YWn (Fq)

Frobq fixes f ∈ YWn (Fq),
but permutes the roots of

f  σf ∈ Wn

χ(f ) := χ(σf )

Topology:

Wn y Hk (MWn (C);C
)

〈
χ,Hk (MWn (C);C

)〉
Wn

=

“multiplicity” ofWn-representation V
with character χ
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Example: The trivial representation

χ(σ) = 1 for all σ ∈ Wn

∑
f∈Yn(Fq)

1 =
n∑

k=0

(−1)kqn−k dimC Hk (YWn(C);C
)

|YWn(Fq)| = qnPYWn (C)(−q−1)

Point counting: Topology:

#Confn(Fq) = qn − qn−1

#YBn (Fq) = qn − 2qn−1 + 2qn−2 − . . .

Hk (Confn(C)) =


Q k = 0
Q k = 1
0 k ≥ 2

(Arnol’d, F.Cohen)

Hk (YBn (C)) =


Q k = 0
Q2 0 < k < n
Q k = n
0 k > 2

(Brieskorn, Lehrer)



Representation stability: n→∞

Sequence ofWn-representations satisfies representation stability:
the decomposition into irreducibles “stabilizes” for n large

H1(MSn (C);C) =V ( · · · )⊕V ( · · · )⊕V ( · · · ) for n ≥ 4

H1(MBn (C);C) =V ( · · · , ∅)⊕2 ⊕V ( · · · , ∅)⊕2 ⊕V ( · · · , )

⊕V ( · · · , ∅)⊕2 for n ≥ 4

Theorem (Chruch–Farb, Wilson)

The sequence
{

Hk (MWn(C);C)
}

n satisfies rep. stability for n ≥ 4k.

When n→∞, multiplicities become constant



Character polynomials

Class function P :
⊔

nWn → Z which is a polynomial in

Xr (σ) = # positive r -cycles of σ Yr (σ) = # negative r -cycles of σ

Examples:
χH1(MSn (C))

(σ) =
(X1

2

)
+ X2

χH1(MBn (C))
(σ) = 2

(X1
2

)
+ 2
(Y1

2

)
+ 2X2 + X1 − Y1

Key consequence of representation stability:
For every character polynomial P〈

P,Hk (MWn(C);C
)〉
Wn

is constant for n ≥ deg(P) + 2k



Representation stability and asymptotic counts

Theorem (Grothendieck-Lefschetz, Artin, Lehrer, Kim,...)
Let q be the power of an odd prime and χ a class function ofWn, then

∑
f∈YWn (Fq)

χ(f ) =
n∑

k=0

(−1)kqn−k〈χ,Hk (MWn(C);C
)〉
Wn
.

Theorem (Church–Ellenberg–Farb, J. R.–Wilson)
Let q be the power of an odd prime and P a polynomial character of
Wn, then

lim
n→∞

q−n
∑

f∈YWn (Fq)

P(f ) =
∞∑

k=0

(−1)kq−k lim
n→∞

〈
P,Hk (MWn(C);C

)〉
Wn
.

and the series converges.
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Example: P(σ) = X1(σ) = number of 1-cycles in σ

〈X1,Hk (MSn (C))〉Sn =


0 n ≤ k
1 n = k + 1
2 n ≥ k + 2

(using formulas by Lehrer-Solomon)

∑
f∈Confn(Fq ) X1(f )

|Confn(Fq)| = Expected value of the # of linear factors of a polynomial in Confn(Fq)

lim
n→∞

∑
f∈Confn(Fq)

X1(f )

|Confn(Fq)|
= 1− 1

q
+

1
q2 −

1
q3 + . . .

〈X1 − Y1,Hk (MBn (C))〉Bn = 0

〈X1 + Y1,Hk (MBn (C))〉Bn =

{
0 k = 0
4k n ≥ 6, n ≥ 2k + 1 (using formulas by Douglass)

∑
f∈YBn (Fq ) X1(f )

|YBn (Fq)| = Expected value of the # of linear factors (T − c2) with c ∈ F×q

lim
n→∞

∑
f∈YBn (Fq)

X1(f )

|YBn (Fq)|
=

1
2

lim
n→∞

(
1− 2

q
+

2
q2 −

2
q3 + . . .

)
=

1
2
(q − 1

q + 1
)
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Stability of maximal tori statistics

Theorem (J. R.–Wilson)

Let q be an integral power of an odd prime p. For n ≥ 1, let T Frobq
n

denote the set of Frobq-stable maximal tori corresponding to either the
linear algebraic group Sp2n(Fp) or to SO2n+1(Fp). If P is any
hyperoctahedral character polynomial, then

lim
n→∞

q−2n2 ∑
T∈T Frobq

n

P(T ) =
∞∑

d=0

limm→∞〈P,Rd
m〉Bm

qd ,

and the series in the right hand side converges. Rd
n is the d th-graded

piece of the complex coinvariant algebra Rn in type B/C.

(Church-Ellenberg-Farb) Stability of maximal tori statistics for GLn

(Lehrer) The “bridge” formula



Reasons for convergence:

The cohomology rings of the topological spaces considered have
additional structure:

finitely generated FIW -algebras

Finite generation/Representation stability is NOT enough

Generators in degree at most one =⇒ convergence

Generators in degree two or more 6=⇒ convergence

Convergence results for hyperplane arrangements uses relations
in the cohomology


