Spring Eastern AMS-Sectional Meeting

Topology and Combinatorics of Arrangements

Representation stability and point counting

Rita Jiménez Rolland

Centro de Ciencias Matemáticas, UNAM-Morelia

Stony Brook, NY
September 20, 2016
Arithmetic
statistics/counts of
polynomials over \mathbb{F}_{q}
asymtotic counts
over \mathbb{F}_{q}

Topology

cohomology of hyperplane complements
representation stability

Goal: Illustrate this "bridge"
This is joint work with Jennifer Wilson.

Hyperplane complements of type \mathcal{W}_{n}

Type	Symmetric group	Permutation A_{n-1}
$S_{n} \curvearrowright\{1, \ldots, n\}$	matrices $n \times n$	
Type	Hyperocthahedral group	
B_{n} / C_{n}	$B_{n} \curvearrowright\{ \pm 1, \ldots, \pm n\}$	Signed permutation matrices $n \times n$

$\mathcal{W}_{n} \curvearrowright \mathbb{R}^{n}$ by (signed) permutation matrices
$\mathcal{M}_{\mathcal{W}_{n}}(\mathbb{C}):=\mathbb{C}^{n} \backslash$ complexified reflection hyperplanes

Hyperplane complements and polynomials

\mathcal{W}_{n}	S_{n}	B_{n}
$\mathcal{M}_{\mathcal{W}_{\mathrm{n}}}(\mathbb{C})$	$\begin{gathered} \mathbb{C}^{n} \backslash\left\{z_{i}-z_{j}=0\right\} \\ \mathcal{M}_{S_{n}}(\mathbb{C})=\operatorname{PConf}_{n}(\mathbb{C}) \end{gathered}$	$\begin{gathered} \mathbb{C}^{n} \backslash\left\{z_{i} \pm z_{j}=0, z_{i}=0\right\} \\ \mathcal{M}_{B_{n}}(\mathbb{C}) \end{gathered}$
$\begin{gathered} \mathcal{M}_{\mathcal{W}_{\mathbf{n}}} / \mathcal{W}_{\mathbf{n}}(\mathbb{C}) \\ \mathcal{Y}_{\mathcal{W}_{n}(\mathbb{C})} \end{gathered}$	$\begin{gathered} \left\{\left\{z_{1}, \ldots, z_{n}\right\}: z_{i} \in \mathbb{C}\right\} \\ \mathcal{Y}_{S_{n}}(\mathbb{C})=\operatorname{Conf}_{n}(\mathbb{C}) \end{gathered}$	$\left\{\left\{ \pm z_{1}, \ldots, \pm z_{n}\right\}: z_{i} \in \mathbb{C}^{\times}\right\}$
Space of polynomials	$\left\{\left(T-z_{1}\right) \cdots\left(T-z_{n}\right): z_{i} \neq z_{j}\right\}$	$\begin{gathered} \left\{\left(T-z_{1}^{2}\right) \cdots\left(T-z_{n}^{2}\right): z_{i}^{2} \neq z_{j}^{2},\right. \\ \left.z_{i} \neq 0\right\} \end{gathered}$

The \mathbb{K}-points

Classical fact:

$\mathcal{Y}_{S_{n}}$ and $\mathcal{Y}_{B_{n}}$ are algebraic varieties defined over \mathbb{Z}.
\mathcal{P} oly $y_{n}:=\{$ monic polynomials of degree $n\} \cong \mathbb{A}^{n}$
$\mathcal{Y}_{\mathcal{W}_{n}}=$ subvariety of \mathcal{P} oly y_{n} defined by the non-vanishing of the discriminant (+ nonzero constant term)

The \mathbb{K}-points

Classical fact:

$\mathcal{Y}_{S_{n}}$ and $\mathcal{Y}_{B_{n}}$ are algebraic varieties defined over \mathbb{Z}.
\mathcal{P} oly $y_{n}:=\{$ monic polynomials of degree $n\} \cong \mathbb{A}^{n}$
$\mathcal{Y}_{\mathcal{W}_{n}}=$ subvariety of \mathcal{P} oly y_{n} defined by the non-vanishing of the discriminant (+ nonzero constant term)

For a field \mathbb{K} : the \mathbb{K}-points

$$
\begin{aligned}
\mathcal{Y}_{\mathcal{W}_{n}}(\mathbb{K})= & \text { Monic, degree } n, \text { polynomials in } \mathbb{K}[T] \text { with } \\
& \text { no repeated roots (and nonzero constant term) }
\end{aligned}
$$

$$
\mathbb{K}=\mathbb{F}_{q} \quad \text { v.s. } \quad \mathbb{K}=\mathbb{C}
$$

The "bridge" topology-arithmetic

Theorem (Grothendieck-Lefschetz, Artin, Lehrer, Kim,...)
Let q be the power of an odd prime and χ a class function of \mathcal{W}_{n}, then

$$
\sum_{f \in \mathcal{Y}_{\mathcal{W}_{n}}\left(\mathbb{F}_{q}\right)} \chi(f)=\sum_{k=0}^{n}(-1)^{k} q^{n-k}\left\langle\chi, H^{k}\left(\mathcal{M}_{\mathcal{W}_{n}}(\mathbb{C}) ; \mathbb{C}\right)\right\rangle_{\mathcal{W}_{n}}
$$

The "bridge" topology-arithmetic

Theorem (Grothendieck-Lefschetz, Artin, Lehrer, Kim,...)

Let q be the power of an odd prime and χ a class function of \mathcal{W}_{n}, then

$$
\sum_{f \in \mathcal{Y}_{\mathcal{W}_{n}}\left(\mathbb{F}_{q}\right)} \chi(f)=\sum_{k=0}^{n}(-1)^{k} q^{n-k}\left\langle\chi, H^{k}\left(\mathcal{M}_{\mathcal{W}_{n}}(\mathbb{C}) ; \mathbb{C}\right)\right\rangle_{\mathcal{W}_{n}}
$$

Arithmetic:

$\mathrm{Frob}_{q} \curvearrowright \mathcal{Y}_{\mathcal{W}_{n}}\left(\overline{\mathbb{F}}_{q}\right)$
$\operatorname{Fix}\left(\operatorname{Frob}_{q}\right)=\mathcal{Y}_{\mathcal{W}_{n}}\left(\mathbb{F}_{q}\right)$
Frob $_{q}$ fixes $f \in \mathcal{Y}_{\mathcal{W}_{n}}\left(\mathbb{F}_{q}\right)$, but permutes the roots of
$f \rightsquigarrow \sigma_{f} \in \mathcal{W}_{n}$

$$
\chi(f):=\chi\left(\sigma_{f}\right)
$$

Topology:

$$
\begin{gathered}
\mathcal{W}_{n} \curvearrowright H^{k}\left(\mathcal{M} \mathcal{W}_{n}(\mathbb{C}) ; \mathbb{C}\right) \\
\left\langle\chi, H^{k}\left(\mathcal{M} \mathcal{W}_{n}(\mathbb{C}) ; \mathbb{C}\right)\right\rangle_{\mathcal{W}_{n}}=
\end{gathered}
$$

"multiplicity" of \mathcal{W}_{n}-representation V with character χ

Example: The trivial representation

$\chi(\sigma)=1$ for all $\sigma \in \mathcal{W}_{n}$

$$
\begin{gathered}
\sum_{f \in \mathcal{Y}_{n}\left(\mathbb{F}_{q}\right)} 1=\sum_{k=0}^{n}(-1)^{k} q^{n-k} \operatorname{dim}_{\mathbb{C}} H^{k}\left(\mathcal{Y}_{\mathcal{W}_{n}}(\mathbb{C}) ; \mathbb{C}\right) \\
\left|\mathcal{Y}_{\mathcal{W}_{n}}\left(\mathbb{F}_{q}\right)\right|=q^{n} P_{\mathcal{Y}_{\mathcal{w}_{n}}(\mathbb{C})}\left(-q^{-1}\right)
\end{gathered}
$$

Point counting:

$$
\# \operatorname{Conf}_{n}\left(\mathbb{F}_{q}\right)=q^{n}-q^{n-1}
$$

$$
\# \mathcal{Y}_{B_{n}}\left(\mathbb{F}_{q}\right)=q^{n}-2 q^{n-1}+2 q^{n-2}-\ldots \quad H^{k}\left(\mathcal{Y}_{B_{n}}(\mathbb{C})\right)= \begin{cases}\mathbb{Q} & k=0 \\ \mathbb{Q}^{2} & 0<k<n \\ \mathbb{Q} & k=n \\ 0 & k>2\end{cases}
$$

$H^{k}\left(\operatorname{Conf}_{n}(\mathbb{C})\right)= \begin{cases}\mathbb{Q} & k=0 \\ \mathbb{Q} & k=1 \\ 0 & k \geq 2\end{cases}$
(Arnol'd, F.Cohen)

Topology:

Representation stability: $n \rightarrow \infty$

Sequence of \mathcal{W}_{n}-representations satisfies representation stability: the decomposition into irreducibles "stabilizes" for n large

$$
\begin{align*}
H^{1}\left(\mathcal{M}_{s_{n}}(\mathbb{C}) ; \mathbb{C}\right) & =V(\square \square \square \cdots) \oplus V(\square \square \ldots \square) \oplus V(\square \cdots \square) \text { for } n \geq 4 \\
H^{1}\left(\mathcal{M}_{B_{n}}(\mathbb{C}) ; \mathbb{C}\right) & =V(\square \square \square \cdots \square, \emptyset)^{\oplus 2} \oplus V(\square \cdots \nabla, \emptyset)^{\oplus 2} \oplus V(\square \square \square \cdots \square \\
\oplus V(\square \cdots \square, \emptyset)^{\oplus 2} & \text { for } n \geq 4
\end{align*}
$$

Theorem (Chruch-Farb, Wilson)

The sequence $\left\{H^{k}\left(\mathcal{M}_{\mathcal{W}_{n}}(\mathbb{C}) ; \mathbb{C}\right)\right\}_{n}$ satisfies rep. stability for $n \geq 4 k$.

When $n \rightarrow \infty$, multiplicities become constant

Character polynomials

Class function $P: \bigsqcup_{n} \mathcal{W}_{n} \rightarrow \mathbb{Z}$ which is a polynomial in
$X_{r}(\sigma)=\#$ positive r-cycles of $\sigma \quad Y_{r}(\sigma)=\#$ negative r-cycles of σ
Examples:
$\chi_{H^{1}\left(\mathcal{M}_{S_{n}}(\mathbb{C})\right)}(\sigma)=\binom{x_{1}}{2}+X_{2}$
$\chi_{H^{1}\left(\mathcal{M}_{B_{n}}(\mathbb{C})\right)}(\sigma)=2\binom{X_{1}}{2}+2\binom{Y_{1}}{2}+2 X_{2}+X_{1}-Y_{1}$

Key consequence of representation stability:

For every character polynomial P

$$
\left\langle P, H^{k}\left(\mathcal{M}_{\mathcal{W}_{n}}(\mathbb{C}) ; \mathbb{C}\right)\right\rangle_{\mathcal{W}_{n}}
$$

is constant for $n \geq \operatorname{deg}(P)+2 k$

Representation stability and asymptotic counts

Theorem (Grothendieck-Lefschetz, Artin, Lehrer, Kim,...)
Let q be the power of an odd prime and χ a class function of \mathcal{W}_{n}, then

$$
\sum_{f \in \mathcal{Y}_{\mathcal{W}_{n}}(\mathbb{F} q)} \chi(f)=\sum_{k=0}^{n}(-1)^{k} q^{n-k}\left\langle\chi, H^{k}\left(\mathcal{M}_{\mathcal{W}_{n}}(\mathbb{C}) ; \mathbb{C}\right)\right\rangle_{\mathcal{W}_{n}} .
$$

Representation stability and asymptotic counts

Theorem (Grothendieck-Lefschetz, Artin, Lehrer, Kim,...)

Let q be the power of an odd prime and χ a class function of \mathcal{W}_{n}, then

$$
\sum_{f \in \mathcal{Y}_{\mathcal{W}_{n}(\mathbb{F} q)}} \chi(f)=\sum_{k=0}^{n}(-1)^{k} q^{n-k}\left\langle\chi, H^{k}\left(\mathcal{M}_{\mathcal{W}_{n}}(\mathbb{C}) ; \mathbb{C}\right)\right\rangle_{\mathcal{W}_{n}} .
$$

Theorem (Church-Ellenberg-Farb, J. R.-Wilson)

Let q be the power of an odd prime and P a polynomial character of \mathcal{W}_{n}, then

$$
\lim _{n \rightarrow \infty} q^{-n} \sum_{f \in \mathcal{Y}_{\mathcal{W}_{n}}\left(\mathbb{F}_{q}\right)} P(f)=\sum_{k=0}^{\infty}(-1)^{k} q^{-k} \lim _{n \rightarrow \infty}\left\langle P, H^{k}\left(\mathcal{M}_{\mathcal{W}_{n}}(\mathbb{C}) ; \mathbb{C}\right)\right\rangle_{\mathcal{W}_{n}}
$$

and the series converges.

Example: $P(\sigma)=X_{1}(\sigma)=$ number of 1-cycles in σ

$\left\langle X_{1}, H^{k}\left(\mathcal{M}_{S_{n}}(\mathbb{C})\right)\right\rangle_{S_{n}}=\left\{\begin{array}{ll}0 & n \leq k \\ 1 & n=k+1 \\ 2 & n \geq k+2\end{array}\right.$ (using formulas by Lehrer-Solomon)
$\frac{\sum_{t \in \operatorname{Cont}_{(}\left(\mathbb{F}_{q}\right)} X_{1}(f)}{\left|\operatorname{Con}_{n}\left(\mathbb{F}_{q}\right)\right|}=$ Expected value of the $\#$ of linear factors of a polynomial in $\operatorname{Conf}_{n}\left(\mathbb{F}_{q}\right)$

$$
\lim _{n \rightarrow \infty} \frac{\sum_{f \in \operatorname{Conf}_{n}\left(\mathbb{F}_{q}\right)} X_{1}(f)}{\left|\operatorname{Conf}_{n}\left(\mathbb{F}_{q}\right)\right|}=1-\frac{1}{q}+\frac{1}{q^{2}}-\frac{1}{q^{3}}+\ldots
$$

Example: $P(\sigma)=X_{1}(\sigma)=$ number of 1-cycles in σ

$\left\langle X_{1}, H^{k}\left(\mathcal{M}_{S_{n}}(\mathbb{C})\right)\right\rangle_{S_{n}}=\left\{\begin{array}{ll}0 & n \leq k \\ 1 & n=k+1 \\ 2 & n \geq k+2\end{array}\right.$ (using formulas by Lehrer-Solomon)
$\frac{\sum_{t \in \operatorname{Cont}_{n}\left(\mathbb{F}_{q}\right)} X_{1}(f)}{\left|\operatorname{Con}_{n}\left(\mathbb{F}_{q}\right)\right|}=$ Expected value of the $\#$ of linear factors of a polynomial in $\operatorname{Conf}_{n}\left(\mathbb{F}_{q}\right)$

$$
\lim _{n \rightarrow \infty} \frac{\sum_{f \in \operatorname{Conf}_{n}\left(\mathbb{F}_{q}\right)} X_{1}(f)}{\left|\operatorname{Conf}_{n}\left(\mathbb{F}_{q}\right)\right|}=1-\frac{1}{q}+\frac{1}{q^{2}}-\frac{1}{q^{3}}+\ldots
$$

$\left\langle X_{1}-Y_{1}, H^{k}\left(\mathcal{M}_{B_{n}}(\mathbb{C})\right)\right\rangle_{B_{n}}=0$
$\left\langle X_{1}+Y_{1}, H^{k}\left(\mathcal{M}_{B_{n}}(\mathbb{C})\right)\right\rangle_{B_{n}}=\left\{\begin{array}{ll}0 & k=0 \\ 4 k & n \geq 6, n \geq 2 k+1\end{array} \quad\right.$ (using formulas by Douglass)
$\frac{\sum_{t \in \mathcal{Y}_{B_{n}}\left(\mathbb{F}_{q}\right)} X_{1}(f)}{\left|\mathcal{V}_{B_{n}(\mathbb{F}}\left(\mathbb{F}_{q}\right)\right|}=$ Expected value of the $\#$ of linear factors $\left(T-c^{2}\right)$ with $c \in \mathbb{F}_{q}^{\times}$

$$
\lim _{n \rightarrow \infty} \frac{\sum_{\left.f \in \mathcal{Y}_{B_{B}(\mathbb{F} q}\right)} X_{1}(f)}{\left|\mathcal{Y}_{B_{n}}\left(\mathbb{F}_{q}\right)\right|}=\frac{1}{2} \lim _{n \rightarrow \infty}\left(1-\frac{2}{q}+\frac{2}{q^{2}}-\frac{2}{q^{3}}+\ldots\right)=\frac{1}{2}\left(\frac{q-1}{q+1}\right)
$$

Stability of maximal tori statistics

Theorem (J. R.-Wilson)

Let q be an integral power of an odd prime p. For $n \geq 1$, let $\mathcal{T}_{n}^{\text {Frob }}{ }_{q}$ denote the set of Frob ${ }_{q}$-stable maximal tori corresponding to either the linear algebraic group $\mathrm{Sp}_{2 n}\left(\overline{\mathbb{F}_{p}}\right)$ or to $\mathrm{SO}_{2 n+1}\left(\overline{\mathbb{F}_{p}}\right)$. If P is any hyperoctahedral character polynomial, then

$$
\lim _{n \rightarrow \infty} q^{-2 n^{2}} \sum_{T \in \mathcal{T}_{n}^{\text {Frob }} q} P(T)=\sum_{d=0}^{\infty} \frac{\lim _{m \rightarrow \infty}\left\langle P, R_{m}^{d}\right\rangle_{B_{m}}}{q^{d}},
$$

and the series in the right hand side converges. R_{n}^{d} is the $d^{\text {th }}$-graded piece of the complex coinvariant algebra R_{n} in type B / C.

- (Church-Ellenberg-Farb) Stability of maximal tori statistics for GL_{n}
- (Lehrer) The "bridge" formula

Reasons for convergence:

- The cohomology rings of the topological spaces considered have additional structure:

finitely generated $\mathrm{Fl}_{\mathcal{W}}$-algebras

- Finite generation/Representation stability is NOT enough
- Generators in degree at most one \Longrightarrow convergence
- Generators in degree two or more \nRightarrow convergence
- Convergence results for hyperplane arrangements uses relations in the cohomology

