On local systems cohomology of arrangements and of Artin groups.

Mario Salvetti

Stony Brook, March, 19-20, 2016

Let

$$
\tilde{\mathcal{A}}:=\left\{\tilde{\ell}_{i}\right\}_{i=1, \ldots, n}
$$

be an arrangement of affine lines in \mathbb{C}^{2}

Let

$$
\tilde{\mathcal{A}}:=\left\{\tilde{\ell}_{i}\right\}_{i=1, \ldots, n}
$$

be an arrangement of affine lines in \mathbb{C}^{2}
and let

$$
\mathcal{A}:=\left\{\ell_{i}\right\}_{i=1, \ldots, n} \cup \ell_{0}
$$

be the so called conified arrangement in \mathbb{C}^{3} (so $\operatorname{dim}_{\mathbb{C}} \tilde{\ell}_{i}=1, \operatorname{dim}_{\mathbb{C}} \ell_{i}=2$)

Let also

$$
\mathcal{M}(\tilde{\mathcal{A}}):=\mathbb{C}^{2} \backslash \cup_{i=1, \ldots, n} \tilde{l}_{i}
$$

Let also

$$
\mathcal{M}(\tilde{\mathcal{A}}):=\mathbb{C}^{2} \backslash \cup_{i=1, \ldots, n} \tilde{l}_{i}
$$

and

$$
\mathcal{M}(\mathcal{A})):=\mathbb{C}^{3} \backslash \cup_{i=0, \ldots, n} \ell_{i}
$$

be the complements to the arrangements.

It is easy to pass from one to the other since it holds:

$$
\mathcal{M}(\mathcal{A})=\mathcal{M}(\tilde{\mathcal{A}}) \times \mathbb{C}^{*}
$$

Consider the graph $\boldsymbol{\Gamma}=\boldsymbol{\Gamma}(\mathcal{A})$ having
$-V \Gamma=\mathcal{A}$

Consider the graph $\boldsymbol{\Gamma}=\boldsymbol{\Gamma}(\mathcal{A})$ having
$-V \Gamma=\mathcal{A}$
$-E \Gamma=\left\{\left(\ell_{i}, \ell_{j}\right): \ell_{i} \cap \ell_{j}\right.$ is a double point of $\left.\mathcal{A}\right\}$ (i.e.: $\ell_{i} \cap \ell_{j}$ is not contained in any other ℓ_{k} 's)

Consider the graph $\boldsymbol{\Gamma}=\boldsymbol{\Gamma}(\mathcal{A})$ having
$-V \Gamma=\mathcal{A}$
$-E \Gamma=\left\{\left(\ell_{i}, \ell_{j}\right): \ell_{i} \cap \ell_{j}\right.$ is a double point of $\left.\mathcal{A}\right\}$ (i.e.: $\ell_{i} \cap \ell_{j}$ is not contained in any other ℓ_{k} 's)

On local systems cohomology of arrangements and of Artin groups.

Conjecture

Conjecture

If Γ is connected then \mathcal{A} is a-monodromic.

On local systems cohomology of arrangements and of Artin groups.

Let $Q: \mathbb{C}^{3} \rightarrow \mathbb{C}$ be a polynomial (of degree $n+1$) which defines the arrangement (so Q is a product of linear factors)

Let $Q: \mathbb{C}^{3} \rightarrow \mathbb{C}$ be a polynomial (of degree $n+1$) which defines the arrangement (so Q is a product of linear factors)

Then Q gives a fibration

$$
Q_{\mid \mathcal{M}(\mathcal{A}))}: \mathcal{M}(\mathcal{A}) \rightarrow \mathbb{C}^{*}
$$

Let $Q: \mathbb{C}^{3} \rightarrow \mathbb{C}$ be a polynomial (of degree $n+1$) which defines the arrangement (so Q is a product of linear factors)

Then Q gives a fibration

$$
Q_{\mid \mathcal{M}(\mathcal{A}))}: \mathcal{M}(\mathcal{A}) \rightarrow \mathbb{C}^{*}
$$

with Milnor fibre

$$
\mathbf{F}=Q^{-1}(1)
$$

Let $Q: \mathbb{C}^{3} \rightarrow \mathbb{C}$ be a polynomial (of degree $n+1$) which defines the arrangement (so Q is a product of linear factors)

Then Q gives a fibration

$$
Q_{\mid \mathcal{M}(\mathcal{A}))}: \mathcal{M}(\mathcal{A}) \rightarrow \mathbb{C}^{*}
$$

with Milnor fibre

$$
\mathbf{F}=Q^{-1}(1)
$$

and geometric monodromy

$$
\pi_{1}\left(\mathbb{C}^{*}, 1\right) \rightarrow A u t(F)
$$

induced by $x \rightarrow e^{\frac{2 \pi i}{n+1}} \cdot x$

Let A be any unitary commutative ring and

$$
R:=A\left[q, q^{-1}\right]
$$

Let A be any unitary commutative ring and

$$
R:=A\left[q, q^{-1}\right]
$$

Consider the abelian representation

$$
\pi_{1}(\mathcal{M}(\tilde{\mathcal{A}})) \rightarrow H_{1}(\mathcal{M}(\tilde{\mathcal{A}}) ; \mathbb{Z}) \rightarrow \operatorname{Aut}(R): \beta_{j} \rightarrow q
$$

taking an elementary generator β_{j} into q-multiplication.

Let R_{q} be the ring R endowed with this $\pi_{1}(\mathcal{M}(\mathcal{A}))$-module structure.

Let R_{q} be the ring R endowed with this $\pi_{1}(\mathcal{M}(\mathcal{A}))$-module structure. Then it is well-known:

One has an R-module isomorphism

$$
H_{*}\left(\mathcal{M}(\mathcal{A}), R_{q}\right) \cong H_{*}(F, A)
$$

where q-multiplication on the left corresponds to the monodromy action on the right.

In particular for $R=\mathbb{Q}\left[q, q^{-1}\right]$, which is a PID, one has

$$
H_{*}\left(\mathcal{M}(\mathcal{A}), \mathbb{Q}\left[q^{ \pm 1}\right]\right) \cong H_{*}(F, \mathbb{Q})
$$

In particular for $R=\mathbb{Q}\left[q, q^{-1}\right]$, which is a PID, one has

$$
H_{*}\left(\mathcal{M}(\mathcal{A}), \mathbb{Q}\left[q^{ \pm 1}\right]\right) \cong H_{*}(F, \mathbb{Q})
$$

Since the monodromy operator has order dividing $n+1$ then in this case $H_{*}\left(\mathcal{M}(\mathcal{A}) ; R_{q}\right)$ decomposes into cyclic modules either free, isomorphic to R, or torsion, isomorphic to $\frac{R}{\left(\varphi_{d}\right)}$, where φ_{d} is a cyclotomic polynomial, with $d \mid n+1$.

On local systems cohomology of arrangements and of Artin groups.

Here we consider only the first Betti number $b_{1}(F)$.

Here we consider only the first Betti number $b_{1}(F)$.
One can express $b_{1}(F)$ in terms of a certain abelian group ([Sal.-Serventi, to appear])

$$
b_{1}(F)=n+r k([G, G] /[K, K])
$$

where $G=\pi_{1}(\mathcal{M}(\tilde{\mathcal{A}}))$ and K is the " 0 -length" subgroup.

Here we consider only the first Betti number $b_{1}(F)$.
One can express $b_{1}(F)$ in terms of a certain abelian group ([Sal.-Serventi, to appear])

$$
b_{1}(F)=n+r k([G, G] /[K, K])
$$

where $G=\pi_{1}(\mathcal{M}(\tilde{\mathcal{A}}))$ and K is the " 0 -length" subgroup.

Therefore there is a bound
Corollary

$$
n \leq b_{1}(F) \leq n+r k\left(\frac{[\mathbf{G}, \mathbf{G}]}{[[\mathbf{G}, \mathbf{G}],[\mathbf{G}, \mathbf{G}]]}\right)=n+\operatorname{rk}\left(\frac{\mathbf{G}^{(2)}}{\mathbf{G}^{(3)}}\right)
$$

From the associated spectral sequence one has

$$
n+1=\operatorname{dim}\left(H_{1}(\mathcal{M}(\mathcal{A}) ; \mathbb{Q})\right)=1+\operatorname{dim} \frac{H_{1}(F ; \mathbb{Q})}{(\mu-1)}
$$

on the right one has the coinvariants w.r.t. the monodromy action.

Therefore

$$
b_{1}(F)=n \quad \Leftrightarrow \quad \mu=1
$$

Therefore

$$
b_{1}(F)=n \quad \Leftrightarrow \quad \mu=1
$$

Definition

An arrangement with trivial monodromy will be called a-monodromic.

Define the (first) characteristic varieties as

$$
\left.V(\tilde{\mathcal{A}})=\left\{\tilde{t} \in\left(\mathbb{C}^{*}\right)^{n+1}: \operatorname{dim}_{\mathbb{C}} H_{1}(\mathcal{M}(\mathcal{A})) ; \mathbb{C}_{\tilde{t}}\right) \geq 1\right\}
$$

Define the (first) characteristic varieties as

$$
\left.V(\tilde{\mathcal{A}})=\left\{\tilde{t} \in\left(\mathbb{C}^{*}\right)^{n+1}: \operatorname{dim}_{\mathbb{C}} H_{1}(\mathcal{M}(\mathcal{A})) ; \mathbb{C}_{\tilde{t}}\right) \geq 1\right\}
$$

Remark: If some $t \in \mathbb{C}^{*}$ gives non-trivial monodromy then the point (t, \ldots, t) ($n+1$ times $)$ is in the characteristic variety of \mathcal{A}

By the
Tangent Cone Theorem \Rightarrow the components of $V(\mathcal{A})$ passing from $(1, \ldots, 1)(n+1$ terms $)$ correspond (by exponentiation) to the components of the Resonance Variety

By the

Tangent Cone Theorem \Rightarrow the components of $V(\mathcal{A})$ passing from $(1, \ldots, 1)(n+1$ terms) correspond (by exponentiation) to the components of the Resonance Variety defined by M. Falk

$$
\mathcal{R}^{1}(\mathcal{A}):=\left\{a \in A^{1}: H^{1}\left(A^{\bullet}, a \wedge \cdot\right) \neq 0\right\}
$$

By the

Tangent Cone Theorem \Rightarrow the components of $V(\mathcal{A})$ passing from $(1, \ldots, 1)(n+1$ terms) correspond (by exponentiation) to the components of the Resonance Variety defined by M. Falk

$$
\mathcal{R}^{1}(\mathcal{A}):=\left\{a \in A^{1}: H^{1}\left(A^{\bullet}, a \wedge \cdot\right) \neq 0\right\}
$$

Moreover $\mathcal{R}^{1}(\mathcal{A})$ is combinatorially determined:
with
local components: contained into a coordinate hyperplane
and
global components: not contained into a coordinate hyperplane.

Moreover $\mathcal{R}^{1}(\mathcal{A})$ is combinatorially determined:
with
local components: contained into a coordinate hyperplane and
global components: not contained into a coordinate hyperplane.
global components of $\operatorname{dim} k-1 \longleftrightarrow(k, d)$-multinets.

Definition. A multi-arrangement is a pair $(\overline{\mathcal{A}}, m)$ where $\overline{\mathcal{A}}$ is a projective line arrangement and m is a function $m: \overline{\mathcal{A}} \longrightarrow \mathbb{Z}_{>0}$ assigning a positive integer to each line in $\overline{\mathcal{A}}$.

Definition. A multi-arrangement is a pair $(\overline{\mathcal{A}}, m)$ where $\overline{\mathcal{A}}$ is a projective line arrangement and m is a function $m: \overline{\mathcal{A}} \longrightarrow \mathbb{Z}_{>0}$ assigning a positive integer to each line in $\overline{\mathcal{A}}$.

Definition. A (k, d)-multinet on a multi-arrangement $(\overline{\mathcal{A}}, m)$ is a pair $(\mathcal{N}, \mathcal{X})$ where \mathcal{N} is a partition of $\overline{\mathcal{A}}$ into $k \geq 3$ classes $\overline{\mathcal{A}_{1}}, \ldots, \overline{\mathcal{A}_{k}}$ and \mathcal{X} is a set of multiple points with multiplicity greater than or equal to 3 such that

- $\sum_{l \in \overline{\mathcal{A}_{i}}} m(l)=d$ and is independent of i;
- for every $l \in \overline{\mathcal{A}_{i}}$ and $l^{\prime} \in \overline{\mathcal{A}_{j}}$ with $i \neq j$, the point $l \cap l^{\prime} \in \mathcal{X}$;
- for each $p \in \mathcal{X}, \sum_{l \in \overline{\mathcal{A}_{i}}, p \in l} m(l)$ is constant and independent of i;
- for $1 \leq i \leq k$, for any $l, l^{\prime} \in \overline{\mathcal{A}_{i}}$, there is a sequence $l=l_{0}, l_{1}, \ldots, l_{r}=l^{\prime}$ such that $l_{j-1} \cap l_{j} \notin \mathcal{X}$ for $1 \leq j \leq r$.

Remark. Let $(\mathcal{N}, \mathcal{X})$ be a multinet on a line arrangement \bar{A}, then \mathcal{X} determines \mathcal{N} : construct a graph $\Gamma^{\prime}=\Gamma^{\prime}(\mathcal{X})$ with \bar{A} as vertex set and an edge from l to l^{\prime} if $l \cap l^{\prime} \notin \mathcal{X}$. Then, by definition, the connected components of Γ^{\prime} are the blocks of the partition \mathcal{N}.

Proposition

Let $\overline{\mathcal{A}}$ be a projective line arrangement and suppose that there exists an affine part $\mathcal{A}=d \overline{\mathcal{A}}$ of $\overline{\mathcal{A}}$ such that the $\operatorname{graph} \Gamma(\mathcal{A})$ is connected. Then $\overline{\mathcal{A}}$ does not support any multinet structure.

Proposition

Let $\overline{\mathcal{A}}$ be a projective line arrangement and suppose that there exists an affine part $\mathcal{A}=d \overline{\mathcal{A}}$ of $\overline{\mathcal{A}}$ such that the $\operatorname{graph} \Gamma(\mathcal{A})$ is connected. Then $\overline{\mathcal{A}}$ does not support any multinet structure.

Choose a set \mathcal{X} of points of multiplicity greater than or equal to 3 and build $\Gamma^{\prime}(\mathcal{X})$ as in the above remark. This graph has $\overline{\mathcal{A}}=\mathcal{A} \cup\left\{\ell_{0}\right\}$ as set of vertices and the set of edges of $\Gamma(\mathcal{A})$ is contained in the set of edges of $\Gamma^{\prime}(\mathcal{X})$. Since $\Gamma(\mathcal{A})$ is connected by hypothesis we have that $\Gamma^{\prime}(\mathcal{X})$ has at most two connected components and so \mathcal{X} cannot give a multinet structure an \mathcal{A}.

Therefore: the resonance variety has no global components, so the monodromy can come only from points of the kind (t, \ldots, t) belonging to some (if any) translated component of the characteristic variety.

On local systems cohomology of arrangements and of Artin groups.

Therefore a natural stronger conjecture is:

Therefore a natural stronger conjecture is:

Conjecture

Assume that Γ is connected: then there are no translated components in the (first) characteristic variety of the arrangement.

On local systems cohomology of arrangements and of Artin groups.

Computations (with [M. Serventi, S-]) support both these conjectures:

Computations (with [M. Serventi, S-]) support both these conjectures:
we use an algebraic complex which is the discrete Morse complex for a minimal cell structure of the complement $\mathcal{M}(\mathcal{A})$.
[S. Settepanella, "Combinatorial Morse Theory and minimality of hyperplane arrangements", Geometry \& Topology, 2007];
[Gaiffi, S., "The Morse complex of a line arrangement", Journal of Algebra, 2009]

Now take a reflection arrangement $\mathcal{A} \in \mathbb{R}^{n}$, where the hyperplanes in \mathcal{A} are the mirror reflections of a reflection group \mathbf{W}.

Now take a reflection arrangement $\mathcal{A} \in \mathbb{R}^{n}$, where the hyperplanes in \mathcal{A} are the mirror reflections of a reflection group \mathbf{W}.

Then one has an orbit space

$$
\mathbf{Y}_{\mathbf{W}}:=\mathcal{M}(\mathcal{A}) / \mathbf{W}
$$

Now take a reflection arrangement $\mathcal{A} \in \mathbb{R}^{n}$, where the hyperplanes in \mathcal{A} are the mirror reflections of a reflection group \mathbf{W}.

Then one has an orbit space

$$
\mathbf{Y}_{\mathbf{W}}:=\mathcal{M}(\mathcal{A}) / \mathbf{W}
$$

and a covering

$$
\mathcal{M}(A) \rightarrow \mathbf{Y}_{\mathbf{W}}
$$

For finite groups one still has a Milnor fibration with Milnor fiber $F_{\mathbf{W}}$ and again

$$
H_{*}\left(\mathbf{Y}_{\mathbf{W}} ; A\left[q^{ \pm 1}\right]\right) \cong H_{*}\left(F_{\mathbf{W}} ; A\right)
$$

as $A\left[q^{ \pm 1}\right]$-modules.

Complete computations were done in this case for $A=\mathbb{Q}$ for \mathbf{W} a Coxeter group of finite type over \mathbb{Q} see for ex.:

- Frenkel, Func. Anal. Appl. (1988) ; De Concini, Procesi, Sal., Topology (2000) (case A_{n},)
- De Concini, Procesi, Sal., and Stumbo, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (1999) (all other cases);
over \mathbb{Z} see for ex:
- Callegaro and Sal., C. R. Acad. Sci. Paris, Ser. I (2004) (for all exceptional cases see);
- Callegaro, Alg. Geom. Top. (2006) (for case A_{n});

Computations are essentially based on a construction given in [S. 94] "The homotopy type of Artin groups," M.R.L. which holds also for all infinite type Artin groups.
so we computed some affine cases

- Callegaro, Moroni, and Sal., Trans. Amer. Math. Soc. (2008); (cohomology in case \tilde{A}_{n}, including the cohomology with coefficients in some geometric higher rank representations),
- Callegaro, Moroni and Sal., Jour. of the European Math. Soc. (2010). $\left(k(\pi, 1)\right.$ problem and cohomology for $\left.\tilde{B}_{n}\right)$.

An alternative combinatorial method based on computations for case A_{n} [Sal, Proceedings CoMeTa 2013]

An alternative combinatorial method based on computations for case A_{n} [Sal, Proceedings CoMeTa 2013]
[Sal.- Villa, "Combinatorial methods for the twisted cohomology of Artin groups," Math. Res. Lett. 18 (2013)]
[Moroni, Sal., Villa, "Some topological problems on the configuration spaces of Artin and Coxeter groups", in Proceedings Configuration Spaces (Geometry, Combinatorics and Topology), Vol. 14 of CRM series, Edizioni della Scuola Normale Superiore (2012)]

We get the following "unespected" relation

Theorem [S]

$H_{*}\left(B r_{n+1} ; R\right)_{\left(\varphi_{d}\right)}=\widetilde{H}_{*+(d-1)}\left(\operatorname{Ind}_{d-2}\left(A_{n-d}\right) ; \frac{R}{\left(\varphi_{d}\right)}\right)$
($R=\mathbb{Q}\left[q^{ \pm 1}\right]$, trivial coefficients in the right side)

Here

$$
\begin{gathered}
\operatorname{Ind}_{k}\left(A_{m}\right)=\left\{\text { full-subgraphs } \Gamma \subset A_{m} \text { s.t. }\left|\Gamma^{\prime}\right| \leq k\right. \\
\text { for each connected component } \left.\Gamma^{\prime} \text { of } \Gamma .\right\}
\end{gathered}
$$

This result is obtained by applying a variation of discrete Morse theory to the algebraic complex (resulting from [S. 94]) which computes the local homology of any Artin group $G_{\mathbf{W}}$ associated to the reflection group \mathbf{W}.

This result is obtained by applying a variation of discrete Morse theory to the algebraic complex (resulting from [S. 94]) which computes the local homology of any Artin group $G_{\mathbf{W}}$ associated to the reflection group \mathbf{W}.

Let

$$
g_{s} \mapsto[\text { multiplication by }-q], \forall s \in S
$$

be the representation of $G_{\mathbf{W}}$ onto $R=\mathbb{Q}\left[q^{ \pm 1}\right]$.

Let

$$
g_{s} \mapsto[\text { multiplication by }-q], \forall s \in S
$$

be the representation of $G_{\mathbf{W}}$ onto $R=\mathbb{Q}\left[q^{ \pm 1}\right]$.
Then $H_{*}\left(\mathbf{X}_{\mathbf{W}} ; R_{q}\right)=H_{*}\left(\mathbf{Y}_{\mathbf{W}} ; R_{q}\right)$ is computed by the algebraic complex

$$
\begin{aligned}
C_{k}:=\oplus & J \subset S \quad R e_{J} \\
& |J|=k \\
& \mathbf{W}_{J} \text { finite }
\end{aligned}
$$

with

$$
\partial\left(e_{J}\right)=\sum_{\substack{I \subset J \\|I|=k-1}}[I: J] \frac{\mathbf{W}_{J}(q)}{\mathbf{W}_{I}(q)} e_{I}
$$

To this situation one associates a triple $\left(K, R, \psi_{d}\right)$ called a weighted sheaf and which is a very special kind of diagram over a poset:

To this situation one associates a triple $\left(K, R, \psi_{d}\right)$ called a weighted sheaf and which is a very special kind of diagram over a poset:
$K=\{T \subset S$ which generate a finite parabolic subgroup of $\mathbf{W}\}$
$\psi_{d}:$ weight function with values $\left\{\varphi_{d}^{n}: n \in \mathbb{Z}\right\}$ where φ_{d} is the $d t h$-cyclotomic polynomial: it measure the φ_{d} factor of the associated Poincaré polynomial.

The homology of this sheaf is computed by a weighted complex $L_{*}:=L_{*}(K)$

$$
L_{k}:=\bigoplus_{|\sigma|=k} \frac{R}{\left(\psi_{d}(\sigma)\right)} \bar{e}_{\sigma}
$$

and boundary $\partial: L_{k} \rightarrow L_{k-1}$ induced by $\partial^{0}:$

$$
\partial\left(a_{\sigma} \bar{e}_{\sigma}\right)=\sum_{\tau \prec \sigma}[\tau: \sigma] i_{\tau, \sigma}\left(a_{\sigma}\right) \bar{e}_{\tau}
$$

with map $i_{\tau, \sigma}$ induced by inclusion.

On local systems cohomology of arrangements and of Artin groups.

Then one makes a variation of discrete Morse theory and apply it to this complex:

Then one makes a variation of discrete Morse theory and apply it to this complex: one can produce a Morse complex computing the homology by acyclic matchings, where one can only match elements of the same weight.

In case of classical braid group (case A_{n}) the weight of a subgraph with components of cardinalities n_{1}, \ldots, n_{k} is given by

In case of classical braid group (case A_{n}) the weight of a subgraph with components of cardinalities n_{1}, \ldots, n_{k} is given by

$$
\psi_{d}(\sigma)=\varphi_{d}^{\sum_{i=1}^{k}\left\lfloor\frac{n_{i}+1}{d}\right\rfloor}
$$

so one can find special matchings such that the critical cells reduce to

$$
\text { Crit }:=\left\{\Gamma_{1} \sqcup \cdots \sqcup \Gamma_{r} \sqcup A_{d-1}, \quad\left|\Gamma_{i}\right| \leq d-2\right\}
$$

where $A_{d-1}=\{n-d+2, \ldots, n\}$. So

$$
\text { Crit } \cong \operatorname{Ind}_{d-2}\left(A_{n-d}\right) \sqcup A_{d-1} .
$$

In all cases this method is very effective when considered over a PID, giving some nice combinatorics-arithmetic:

In all cases this method is very effective when considered over a PID, giving some nice combinatorics-arithmetic:
almost finished the (1-parameter) affine cases, including some not known cases like \widetilde{C}_{n} [G. Paolini, S.]

Cases $\widetilde{A}_{n}, \widetilde{B}_{n}$ were computed in general (2-parameters for the case \widetilde{B}_{n}) in
[Callegaro, Moroni, Sal., Trans. Amer. Math. Soc., '08] and [Callegaro, Moroni, Sal., JEMS, '10] respectively.

Cases $\widetilde{A}_{n}, \widetilde{B}_{n}$ were computed in general (2-parameters for the case \widetilde{B}_{n}) in
[Callegaro, Moroni, Sal., Trans. Amer. Math. Soc., '08] and [Callegaro, Moroni, Sal., JEMS, '10] respectively.

For ex.:

$$
\left.\widetilde{H}_{i}\left(\widetilde{A}_{n} ; R\right)\right) \cong\left\{\begin{array}{cl}
R & \text { for } i=n \\
\bigoplus_{d \mid n+1, d \leq \frac{n+1}{j+1}}\left(\frac{R}{\left(\varphi_{d}\right)}\right)^{d-1} & \text { for } i=n-2 j-1 \\
\bigoplus_{d V n+1, d \leq \frac{n+1}{j+1}}\left(\frac{R}{\left(\varphi_{d}\right)}\right) & \text { for } i=n-2 j-2
\end{array}\right.
$$

This was obtained indirectly by first computing

$$
H_{*}\left(G_{B_{n}} ; \mathbb{Q}\left[q^{ \pm 1}, t^{ \pm 1}\right]\right)
$$

This was obtained indirectly by first computing

$$
H_{*}\left(G_{B_{n}} ; \mathbb{Q}\left[q^{ \pm 1}, t^{ \pm 1}\right]\right)
$$

and then using the inclusion

$$
G_{\widetilde{A}_{n}} \rightarrow G_{B_{n+1}}
$$

of the Artin group of type \widetilde{A}_{n} into the "annular braid group" in $n+1$ strands.

By discrete Morse theory one can directly perform computations and find a relation with independent graphs of the kind

$$
\operatorname{Ind}_{\{1, l\}, h}\left(A_{k}\right)
$$

where the cardinality of the component containing 1 is bounded by l.

Theorem

Let $K:=\operatorname{Ind}_{\{1, l\}, d-2}\left(A_{n}\right), l \leq d-2$. Let $n=q d+r, r \leq d-1$, be the euclidean division of n by d. Then

1 if $l \geq r$ then $K \cong \operatorname{Ind}_{d-2}\left(A_{n}\right)$;
2 if $l<r-1$ then K is contractible;
3 if $l=r-1$ then $K \cong\left(S^{d-3}\right)^{* q} * S^{r-2}=S^{(d-2) q+r-2}$.

Thank you

Thank you

 and
Happy Birthday,

Mike!

