Flag incidence algebras

Max Wakefield

Department of Mathematics US Naval Academy

Supported by the Simons Foundation, the Japan Society for Promotion of Science, and the Office of Naval Research.

AMS Spring Eastern Sectional Meeting
Topology and Combinatorics of Arrangements (in honor of Mike Falk)
March 19, 2016

Outline

- Partial flag incidence algebras
- Multi-indexed Whitney numbers
- Kazhdan-Lusztig polynomials for matroids
- Characteristic polynomials

Outline

Incidence
algebras
Whitney numbers

KL
Polynomials
Characteristic polys

Incidence algebras

$\mathcal{P}=$ locally finite poset

Incidence algebras

Outline

$\mathcal{P}=$ locally finite poset

$$
\mathrm{Fl}^{2}(\mathcal{P})=\left\{(X, Y) \in \mathcal{P}^{2} \mid X \leq Y\right\}
$$

Incidence algebras

Outline

$\mathcal{P}=$ locally finite poset
$\mathrm{Fl}^{2}(\mathcal{P})=\left\{(X, Y) \in \mathcal{P}^{2} \mid X \leq Y\right\}$
R a unital ring

Incidence algebras

Outline

$\mathcal{P}=$ locally finite poset

$$
\mathrm{FI}^{2}(\mathcal{P})=\left\{(X, Y) \in \mathcal{P}^{2} \mid X \leq Y\right\}
$$

R a unital ring
Incidence algebra: $\mathcal{I}^{2}(\mathcal{P}, R)=$ functions from $\mathrm{FI}^{2}(\mathcal{P})$ to R

Incidence algebras

Outline

$\mathcal{P}=$ locally finite poset
$\mathrm{Fl}^{2}(\mathcal{P})=\left\{(X, Y) \in \mathcal{P}^{2} \mid X \leq Y\right\}$
R a unital ring
Incidence algebra: $\mathcal{I}^{2}(\mathcal{P}, R)=$ functions from $\mathrm{Fl}^{2}(\mathcal{P})$ to R
Addition: $(f+g)(X, Y)=f(X, Y)+g(X, Y)$

Incidence algebras

Outline

$\mathcal{P}=$ locally finite poset
$\mathrm{Fl}^{2}(\mathcal{P})=\left\{(X, Y) \in \mathcal{P}^{2} \mid X \leq Y\right\}$
R a unital ring
Incidence algebra: $\mathcal{I}^{2}(\mathcal{P}, R)=$ functions from $\mathrm{Fl}^{2}(\mathcal{P})$ to R
Addition: $(f+g)(X, Y)=f(X, Y)+g(X, Y)$
Multiplication (Convolution):

$$
(f * g)(X, Y)=\sum_{X \leq Z \leq Y} f(X, Z) g(Z, Y)
$$

example

Outline
Incidence
algebras
Whitney
numbers
Kı
Polynomials
Characteristic polys

example

```
Outline
```

Incidence
algebras
Whitney
numbers
KL
Polynomials
Characteristic
polys
$\mathcal{P}=$

example

Outline

Incidence algebras

Whitney numbers

KL
Polynomials
Characteristic polys

$\mathcal{P}=$

$\mathcal{I}^{2}(\mathcal{P}, R)=$ upper triangular $2 \times 2 R$-matrices

Important elements in $\mathcal{I}^{2}(\mathcal{P}, \mathbb{Z})$

$$
\delta(X, Y)= \begin{cases}1 & \text { if } X=Y \\ 0 & \text { else }\end{cases}
$$

Important elements in $\mathcal{I}^{2}(\mathcal{P}, \mathbb{Z})$

$$
\begin{gathered}
\quad \delta(X, Y)= \begin{cases}1 & \text { if } X=Y \\
0 & \text { else }\end{cases} \\
\mu(X, X)=1 \text { and } \\
\mu(X, Y)=-\sum_{X<Z \leq Y} \mu(Z, Y)
\end{gathered}
$$

Important elements in $\mathcal{I}^{2}(\mathcal{P}, \mathbb{Z})$

$$
\begin{aligned}
& \quad \delta(X, Y)= \begin{cases}1 & \text { if } X=Y \\
0 & \text { else }\end{cases} \\
& \mu(X, X)=1 \text { and } \\
& \mu(X, Y)=-\sum_{X<Z \leq Y} \mu(Z, Y)=-\sum_{X \leq Z<Y} \mu(X, Z)
\end{aligned}
$$

Important elements in $\mathcal{I}^{2}(\mathcal{P}, \mathbb{Z})$

$$
\begin{aligned}
& \quad \delta(X, Y)= \begin{cases}1 & \text { if } X=Y \\
0 & \text { else }\end{cases} \\
& \mu(X, X)=1 \text { and } \\
& \mu(X, Y)=-\sum_{X<Z \leq Y} \mu(Z, Y)=-\sum_{X \leq Z<Y} \mu(X, Z) \\
& \zeta(X, Y)=1
\end{aligned}
$$

Important elements in $\mathcal{I}^{2}(\mathcal{P}, \mathbb{Z})$

$$
\delta(X, Y)= \begin{cases}1 & \text { if } X=Y \\ 0 & \text { else }\end{cases}
$$

$\mu(X, X)=1$ and

$$
\mu(X, Y)=-\sum_{X<Z \leq Y} \mu(Z, Y)=-\sum_{X \leq Z<Y} \mu(X, Z)
$$

$\zeta(X, Y)=1$
\mathcal{P} is a finite ranked poset of rank r

Important elements in $\mathcal{I}^{2}(\mathcal{P}, \mathbb{Z})$

$$
\delta(X, Y)= \begin{cases}1 & \text { if } X=Y \\ 0 & \text { else }\end{cases}
$$

$\mu(X, X)=1$ and

$$
\mu(X, Y)=-\sum_{X<Z \leq Y} \mu(Z, Y)=-\sum_{X \leq Z<Y} \mu(X, Z)
$$

$\zeta(X, Y)=1$
\mathcal{P} is a finite ranked poset of rank r

$$
\chi_{1}(X, Y)=\sum_{Z \in[X, Y]} \mu(X, Z) t^{r-\operatorname{rk}(Z)} \in \mathcal{I}^{2}(\mathcal{P}, \mathbb{Z}[t])
$$

Partial flags

$$
\mathrm{FI}^{n}(\mathcal{P})=\left\{\left(X_{1}, \ldots, X_{n}\right) \in \mathcal{P}^{n} \mid X_{1} \leq X_{2} \leq \cdots \leq X_{n}\right\}
$$

Partial flags

$$
\begin{aligned}
& \quad \mathrm{Fl}^{n}(\mathcal{P})=\left\{\left(X_{1}, \ldots, X_{n}\right) \in \mathcal{P}^{n} \mid X_{1} \leq X_{2} \leq \cdots \leq X_{n}\right\} . \\
& \mathcal{I}^{n}(\mathcal{P}, R)=\text { functions from } \mathrm{Fl}^{n}(\mathcal{P}) \text { to } R
\end{aligned}
$$

Partial flags

$$
\begin{aligned}
& \quad \mathrm{Fl}^{n}(\mathcal{P})=\left\{\left(X_{1}, \ldots, X_{n}\right) \in \mathcal{P}^{n} \mid X_{1} \leq X_{2} \leq \cdots \leq X_{n}\right\} . \\
& \mathcal{I}^{n}(\mathcal{P}, R)=\text { functions from } \mathrm{FI}^{n}(\mathcal{P}) \text { to } R \\
& (f+g)\left(X_{1}, \ldots, X_{n}\right)=f\left(X_{1}, \ldots, X_{n}\right)+g\left(X_{1}, \ldots, X_{n}\right)
\end{aligned}
$$

Partial flags

$$
\mathrm{FI}^{n}(\mathcal{P})=\left\{\left(X_{1}, \ldots, X_{n}\right) \in \mathcal{P}^{n} \mid X_{1} \leq X_{2} \leq \cdots \leq X_{n}\right\}
$$

$\mathcal{I}^{n}(\mathcal{P}, R)=$ functions from $\mathrm{Fl}^{n}(\mathcal{P})$ to R

$$
(f+g)\left(X_{1}, \ldots, X_{n}\right)=f\left(X_{1}, \ldots, X_{n}\right)+g\left(X_{1}, \ldots, X_{n}\right)
$$

$$
(f * g)\left(X_{1}, \ldots, X_{n}\right)=
$$

$$
\sum_{x_{i} \leq Y_{i} \leq X_{i+1}} f\left(X_{1}, Y_{1}, Y_{2}, \ldots, Y_{n-1}\right) g\left(Y_{1}, Y_{2}, \ldots, Y_{n-1}, X_{n}\right)
$$

```
Outline
```

Incidence
algebras
Whitney
numbers
KL
Polynomials
Characteristic
polys

This is ridiculous!

Facts for $n>2$:

- $\mathcal{I}^{n}(\mathcal{P}, R)$ is not commutative.

This is ridiculous!

Facts for $n>2$:

- $\mathcal{I}^{n}(\mathcal{P}, R)$ is not commutative.
- $\mathcal{I}^{n}(\mathcal{P}, R)$ is not unital.

This is ridiculous!

Facts for $n>2$:

- $\mathcal{I}^{n}(\mathcal{P}, R)$ is not commutative.
- $\mathcal{I}^{n}(\mathcal{P}, R)$ is not unital.
- $\mathcal{I}^{n}(\mathcal{P}, R)$ is not associative.

This is ridiculous!

Facts for $n>2$:

- $\mathcal{I}^{n}(\mathcal{P}, R)$ is not commutative.
- $\mathcal{I}^{n}(\mathcal{P}, R)$ is not unital.
- $\mathcal{I}^{n}(\mathcal{P}, R)$ is not associative.

Little bit of good news:
Proposition: If P and Q are finite posets then

$$
\mathcal{I}^{n}(P \times Q, R) \cong \mathcal{I}^{n}(P, R) \otimes_{R} \mathcal{I}^{n}(Q, R)
$$

The $k^{\text {th }}$-zeta function ζ_{k} on \mathcal{P} is the constant function 1 on $\mathrm{Fl}^{n}(\mathcal{P})$, so for all $\left(X_{1}, \ldots, X_{k}\right) \in \mathrm{FI}^{n}(\mathcal{P})$

$$
\zeta_{k}\left(X_{1}, \ldots, X_{k}\right)=1
$$

ζ_{k} and μ_{k}

Outline

The $k^{\text {th }}$-zeta function ζ_{k} on \mathcal{P} is the constant function 1 on $\mathrm{Fl}^{n}(\mathcal{P})$, so for all $\left(X_{1}, \ldots, X_{k}\right) \in \mathrm{FI}^{n}(\mathcal{P})$

$$
\zeta_{k}\left(X_{1}, \ldots, X_{k}\right)=1
$$

The left $k^{\text {th }}$-Möbius function on \mathcal{P} is $\mu_{k}: \mathrm{Fl}^{k}(\mathcal{P}) \rightarrow \mathbb{Z}$ recursively defined by $\mu_{k}\left(X_{1}, \ldots, X_{k}\right)=1$ if $X_{1}=\cdots=X_{k}$ and

$$
\sum \mu_{k}\left(X_{1}, Y_{1}, \ldots, Y_{k-1}\right)=0
$$

where the sum is over all k-tuples where $X_{1} \leq Y_{1} \leq X_{2} \leq Y_{2} \leq X_{3} \leq \cdots \leq Y_{k-1} \leq X_{k}$.

Multi-indexed Whitney numbers

$$
\text { Let } I=\left\{i_{1}, \ldots, i_{k}\right\} \leq \text { with } i_{j} \in\{0,1,2, \ldots, \mathrm{rk} \mathcal{P}\} .
$$

Multi-indexed Whitney numbers

Outline

$$
\text { Let } I=\left\{i_{1}, \ldots, i_{k}\right\}_{\leq} \text {with } i_{j} \in\{0,1,2, \ldots, \operatorname{rk} \mathcal{P}\} .
$$

(1) The multi-indexed Whitney numbers of the first kind are

$$
w_{l}(\mathcal{P})=\sum_{\operatorname{rk} X_{j}=i_{j}} \mu_{k}\left(X_{1}, X_{2}, \ldots, X_{k}\right)
$$

Multi-indexed Whitney numbers

$$
\text { Let } I=\left\{i_{1}, \ldots, i_{k}\right\}_{\leq} \text {with } i_{j} \in\{0,1,2, \ldots, \text { rk } \mathcal{P}\} .
$$

(1) The multi-indexed Whitney numbers of the first kind are

$$
w_{l}(\mathcal{P})=\sum_{\operatorname{rk} X_{j}=i_{j}} \mu_{k}\left(X_{1}, X_{2}, \ldots, X_{k}\right)
$$

2 The multi-indexed Whitney numbers of the second kind are

$$
W_{l}(\mathcal{P})=\sum_{\mathrm{rk} X_{j}=i_{j}} \zeta_{k}\left(X_{1}, X_{2}, \ldots, X_{k}\right)
$$

example

Outline

Incidence algebras

Whitney numbers

KL
Polynomials
Characteristic polys

example

Outline

Incidence algebras

Whitney numbers

KL
Polynomials

Characteristic polys

example

Outline

Incidence algebras

Whitney numbers

KL
Polynomials

$\mathcal{P}=\begin{aligned} & b \bullet \text { rank } 1 \\ & a \bullet \text { rank } 0\end{aligned}$

Characteristic polys

example

Outline

$\mathcal{P}=\begin{array}{r}b \bullet \text { rank } 1 \\ a \bullet \text { rank } 0\end{array}$

$$
\mu_{3}(a, a, a)=1=w_{0,0,0}
$$

example

Outline

$\mathcal{P}=\begin{array}{r}b \bullet \text { rank } 1 \\ a \bullet \text { rank } 0\end{array}$

$$
\begin{aligned}
& \mu_{3}(a, a, a)=1=w_{0,0,0} \\
& \mu_{3}(b, b, b)=1=w_{1,1,1}
\end{aligned}
$$

example

Outline

$$
\begin{aligned}
& \mu_{3}(a, a, a)=1=w_{0,0,0} \\
& \mu_{3}(b, b, b)=1=w_{1,1,1} \\
& \mu_{3}(a, a, b)=-\mu_{3}(a, a, a)=-1=w_{0,0,1}
\end{aligned}
$$

example

Outline

$$
\begin{aligned}
& \mu_{3}(a, a, a)=1=w_{0,0,0} \\
& \mu_{3}(b, b, b)=1=w_{1,1,1} \\
& \mu_{3}(a, a, b)=-\mu_{3}(a, a, a)=-1=w_{0,0,1} \\
& \mu_{3}(a, b, b)=-\mu_{3}(a, a, b)=1=w_{0,1,1}
\end{aligned}
$$

example

Outline

$$
\begin{aligned}
& \mu_{3}(a, a, a)=1=w_{0,0,0} \\
& \mu_{3}(b, b, b)=1=w_{1,1,1} \\
& \mu_{3}(a, a, b)=-\mu_{3}(a, a, a)=-1=w_{0,0,1} \\
& \mu_{3}(a, b, b)=-\mu_{3}(a, a, b)=1=w_{0,1,1} \\
& W_{0,0}=1, W_{0,1}=1, \text { and } W_{1,1}=1
\end{aligned}
$$

Wakefield

Formulas

$$
\mathcal{P}_{k}:=\{X \in \mathcal{P} \mid \mathrm{rk} X=k\}
$$

Formulas

$$
\begin{aligned}
& \mathcal{P}_{k}:=\{X \in \mathcal{P} \mid \text { rk } X=k\} \\
& \text { For } I=\left\{i_{1}, \ldots, i_{s}\right\} \text { set }
\end{aligned}
$$

$$
\mathcal{P}(I)=\left\{\vec{X}=\left(X_{1}, \ldots, X_{s}\right) \mid \forall 1 \leq i \leq s, X_{i} \in \mathcal{P}(i)\right\}
$$

Formulas

$\mathcal{P}_{k}:=\{X \in \mathcal{P} \mid \mathrm{rk} X=k\}$
For $I=\left\{i_{1}, \ldots, i_{s}\right\}$ set

$$
\mathcal{P}(I)=\left\{\vec{X}=\left(X_{1}, \ldots, X_{s}\right) \mid \forall 1 \leq i \leq s, X_{i} \in \mathcal{P}(i)\right\}
$$

localization: $\mathcal{P}_{X}=\{Y \in \mathcal{P} \mid Y \leq X\}$

Outline

Incidence algebras
$\mathcal{P}_{k}:=\{X \in \mathcal{P} \mid \mathrm{rk} X=k\}$
For $I=\left\{i_{1}, \ldots, i_{s}\right\}$ set

$$
\mathcal{P}(I)=\left\{\vec{X}=\left(X_{1}, \ldots, X_{s}\right) \mid \forall 1 \leq i \leq s, X_{i} \in \mathcal{P}(i)\right\}
$$

localization: $\mathcal{P}_{X}=\{Y \in \mathcal{P} \mid Y \leq X\}$ restriction: $\mathcal{P}^{X}=\{Y \in \mathcal{P} \mid Y \geq X\}$

Outline

Incidence algebras
$\mathcal{P}_{k}:=\{X \in \mathcal{P} \mid \mathrm{rk} X=k\}$
For $I=\left\{i_{1}, \ldots, i_{s}\right\}$ set

$$
\mathcal{P}(I)=\left\{\vec{X}=\left(X_{1}, \ldots, X_{s}\right) \mid \forall 1 \leq i \leq s, X_{i} \in \mathcal{P}(i)\right\}
$$

localization: $\mathcal{P}_{X}=\{Y \in \mathcal{P} \mid Y \leq X\}$ restriction: $\mathcal{P}^{X}=\{Y \in \mathcal{P} \mid Y \geq X\}$
Set $J[k]=\{j+k \mid j \in J\}$.

Formulas

Outline

Incidence algebras
$\mathcal{P}_{k}:=\{X \in \mathcal{P} \mid \mathrm{rk} X=k\}$
For $I=\left\{i_{1}, \ldots, i_{s}\right\}$ set

$$
\mathcal{P}(I)=\left\{\vec{X}=\left(X_{1}, \ldots, X_{s}\right) \mid \forall 1 \leq i \leq s, X_{i} \in \mathcal{P}(i)\right\}
$$

localization: $\mathcal{P}_{X}=\{Y \in \mathcal{P} \mid Y \leq X\}$
restriction: $\mathcal{P}^{X}=\{Y \in \mathcal{P} \mid Y \geq X\}$
Set $J[k]=\{j+k \mid j \in J\}$.

$$
\sum_{X \in \mathcal{P}_{n}} W_{l}\left(\mathcal{P}_{X}\right)=W_{l \cup\{n\}}(\mathcal{P})
$$

Formulas

Outline

Incidence algebras
$\mathcal{P}_{k}:=\{X \in \mathcal{P} \mid \mathrm{rk} X=k\}$
For $I=\left\{i_{1}, \ldots, i_{s}\right\}$ set

$$
\mathcal{P}(I)=\left\{\vec{X}=\left(X_{1}, \ldots, X_{s}\right) \mid \forall 1 \leq i \leq s, X_{i} \in \mathcal{P}(i)\right\}
$$

localization: $\mathcal{P}_{X}=\{Y \in \mathcal{P} \mid Y \leq X\}$
restriction: $\mathcal{P}^{X}=\{Y \in \mathcal{P} \mid Y \geq X\}$
Set $J[k]=\{j+k \mid j \in J\}$.

$$
\begin{aligned}
& \sum_{X \in \mathcal{P}_{n}} W_{l}\left(\mathcal{P}_{X}\right)=W_{l \cup\{n\}}(\mathcal{P}) \\
& \sum_{X \in \mathcal{P}_{t}} W_{l}\left(\mathcal{P}^{X}\right)=W_{\{t\} \cup /[t]}(\mathcal{P})
\end{aligned}
$$

Formulas

Outline

Incidence algebras
$\mathcal{P}_{k}:=\{X \in \mathcal{P} \mid \mathrm{rk} X=k\}$
For $I=\left\{i_{1}, \ldots, i_{s}\right\}$ set

$$
\mathcal{P}(I)=\left\{\vec{X}=\left(X_{1}, \ldots, X_{s}\right) \mid \forall 1 \leq i \leq s, X_{i} \in \mathcal{P}(i)\right\}
$$

localization: $\mathcal{P}_{X}=\{Y \in \mathcal{P} \mid Y \leq X\}$
restriction: $\mathcal{P}^{X}=\{Y \in \mathcal{P} \mid Y \geq X\}$
Set $J[k]=\{j+k \mid j \in J\}$.

$$
\begin{gathered}
\sum_{x \in \mathcal{P}_{n}} W_{l}\left(\mathcal{P}_{X}\right)=W_{l \cup\{n\}}(\mathcal{P}) . \\
\sum_{X \in \mathcal{P}_{t}} W_{l}\left(\mathcal{P}^{X}\right)=W_{\{t\} \cup l[t]}(\mathcal{P}) . \\
\sum_{F \in L_{k}} W_{l}\left(\mathcal{P}_{F}\right) W_{J}\left(\mathcal{P}^{F}\right)=W_{l \cup\{k\} \cup J[k]}(\mathcal{P}) .
\end{gathered}
$$

must have existed before?

Outline

must have existed before?

Outline

Theorem
If \mathcal{P} is a locally finite, ranked poset and $1 \leq n \leq \operatorname{rk} \mathcal{P}$ then

$$
w_{0, n}=\sum_{I \subseteq\{1, \ldots, n-1\}}(-1)^{|/|+1} W_{l \cup\{n\}} .
$$

examples:

$$
w_{0,1}=-W_{1}
$$

must have existed before?

Outline

Theorem
If \mathcal{P} is a locally finite, ranked poset and $1 \leq n \leq \operatorname{rk} \mathcal{P}$ then

$$
w_{0, n}=\sum_{I \subseteq\{1, \ldots, n-1\}}(-1)^{|I|+1} W_{l \cup\{n\}} .
$$

examples:
$w_{0,1}=-W_{1}$
$w_{0,2}=-W_{2}+W_{1,2}$

must have existed before?

Outline

examples:

$$
\begin{aligned}
& w_{0,1}=-W_{1} \\
& w_{0,2}=-W_{2}+W_{1,2} \\
& w_{0,3}=-W_{3}+W_{1,3}+W_{2,3}-W_{1,2,3}
\end{aligned}
$$

KL Poly definition

Outline

Theorem (Elias, Proudfoot, W)
Let \mathcal{P} be a finite ranked lattice. The Kazhdan-Lusztig polynomial of $\mathcal{P}, P(\mathcal{P}, t)$ is the polynomial recursively defined which satisfies

KL Poly definition

Outline

Theorem (Elias, Proudfoot, W) Let \mathcal{P} be a finite ranked lattice. The Kazhdan-Lusztig polynomial of $\mathcal{P}, P(\mathcal{P}, t)$ is the polynomial recursively defined which satisfies
(1) If $\operatorname{rk}(\mathcal{P})=0$ then $P(\mathcal{P}, t)=0$.

KL Poly definition

Theorem (Elias, Proudfoot, W) Let \mathcal{P} be a finite ranked lattice. The Kazhdan-Lusztig polynomial of $\mathcal{P}, P(\mathcal{P}, t)$ is the polynomial recursively defined which satisfies
(1) If $\operatorname{rk}(\mathcal{P})=0$ then $P(\mathcal{P}, t)=0$.
2. If $\operatorname{rk}(\mathcal{P})>0$ then $\operatorname{deg}(P(\mathcal{P}, t))<.5 \operatorname{rk}(\mathcal{P})$.

KL Poly definition

Theorem (Elias, Proudfoot, W) Let \mathcal{P} be a finite ranked lattice. The Kazhdan-Lusztig polynomial of $\mathcal{P}, P(\mathcal{P}, t)$ is the polynomial recursively defined which satisfies
(1) If $\operatorname{rk}(\mathcal{P})=0$ then $P(\mathcal{P}, t)=0$.
(2) If $\operatorname{rk}(\mathcal{P})>0$ then $\operatorname{deg}(P(\mathcal{P}, t))<.5 \operatorname{rk}(\mathcal{P})$.
(3) For all \mathcal{P},

$$
t^{\mathrm{rk}(\mathcal{P})} P\left(\mathcal{P}, t^{-1}\right)=\sum_{F \in \mathcal{P}} \chi_{1}\left(\mathcal{P}_{F}, t\right) P\left(\mathcal{P}^{F}, t\right)
$$

where $\chi_{1}(\mathcal{P}, t)$ is the usual characteristic polynomial.

KL Poly definition

Theorem (Elias, Proudfoot, W) Let \mathcal{P} be a finite ranked lattice. The Kazhdan-Lusztig polynomial of $\mathcal{P}, P(\mathcal{P}, t)$ is the polynomial recursively defined which satisfies
(1) If $\operatorname{rk}(\mathcal{P})=0$ then $P(\mathcal{P}, t)=0$.
(2) If $\operatorname{rk}(\mathcal{P})>0$ then $\operatorname{deg}(P(\mathcal{P}, t))<.5 \operatorname{rk}(\mathcal{P})$.
(3) For all \mathcal{P},

$$
t^{\mathrm{rk}(\mathcal{P})} P\left(\mathcal{P}, t^{-1}\right)=\sum_{F \in \mathcal{P}} \chi_{1}\left(\mathcal{P}_{F}, t\right) P\left(\mathcal{P}^{F}, t\right)
$$

where $\chi_{1}(\mathcal{P}, t)$ is the usual characteristic polynomial.

Why matroid KL polynomials?

Because they mimic the classical KL polynomials in representation theory.

Why matroid KL polynomials?

Because they mimic the classical KL polynomials in representation theory.

Theorem (Elias, Proudfoot, W)
If the matroid is realizable with arrangement \mathcal{A} then

Why matroid KL polynomials?

Because they mimic the classical KL polynomials in representation theory.

Theorem (Elias, Proudfoot, W) If the matroid is realizable with arrangement \mathcal{A} then

$$
P(L(\mathcal{A}), t)=\sum_{i \geq 0} \operatorname{dim} \operatorname{IH}^{2 i}\left(\operatorname{Spec}(O T(\mathcal{A})) ; \overline{\mathbb{Q}_{\ell}}\right) t^{i}
$$

Why matroid KL polynomials?

Because they mimic the classical KL polynomials in representation theory.

Theorem (Elias, Proudfoot, W) If the matroid is realizable with arrangement \mathcal{A} then

$$
P(L(\mathcal{A}), t)=\sum_{i \geq 0} \operatorname{dim} \mathrm{IH}^{2 i}\left(\operatorname{Spec}(O T(\mathcal{A})) ; \overline{\mathbb{Q}_{\ell}}\right) t^{i}
$$

They are some special basis for the Möbius algebra of $L(\mathcal{A})$.

KL poly Formulas

Outline

Incidence algebras

Whitney numbers

Set

$$
P(M, t)=\sum_{0 \leq i<.5 \mathrm{rk} M} c_{i} t^{i}
$$

KL poly Formulas

Set

$$
P(M, t)=\sum_{0 \leq i<.5 \mathrm{rk} M} c_{i} t^{i}
$$

Proposition [Elias, Proudfoot, W]:

- $c_{0}=1$

KL poly Formulas

Set

$$
P(M, t)=\sum_{0 \leq i<.5 \mathrm{rk} M} c_{i} t^{i}
$$

Proposition [Elias, Proudfoot, W]:

- $c_{0}=1$
- $c_{1}=W_{r-1}-W_{1}$

KL poly Formulas

Set

$$
P(M, t)=\sum_{0 \leq i<.5 \mathrm{rk} M} c_{i} t^{i}
$$

Proposition [Elias, Proudfoot, W]:

- $c_{0}=1$
- $c_{1}=W_{r-1}-W_{1}$
- $C_{2}=$

$$
-\left(W_{1, r-1}-W_{1,2}\right)+\left(W_{r-3, r-1}-W_{r-3, r-2}\right)+\left(W_{r-2}-W_{2}\right)
$$

Main formula

Theorem (W)
For any finite, ranked lattice \mathcal{P} with rank r the degree k coefficient of the Kazhdan-Lusztig polynomial of \mathcal{P} for $1 \leq k<r / 2$ is

Main formula

Theorem (W)
For any finite, ranked lattice \mathcal{P} with rank r the degree k coefficient of the Kazhdan-Lusztig polynomial of \mathcal{P} for $1 \leq k<r / 2$ is

$$
c_{k}=\sum_{I \in S_{k}}(-1)^{s_{k}(I)}\left(W_{t(l)}(\mathcal{P})-W_{l}(\mathcal{P})\right)
$$

Main formula

Theorem (W)
For any finite, ranked lattice \mathcal{P} with rank r the degree k coefficient of the Kazhdan-Lusztig polynomial of \mathcal{P} for $1 \leq k<r / 2$ is

$$
c_{k}=\sum_{I \in S_{k}}(-1)^{s_{k}(I)}\left(W_{t(I)}(\mathcal{P})-W_{l}(\mathcal{P})\right)
$$

where S_{k} and s_{k} are recursively defined and I and $t(I)$ make a "top heavy pair".

$$
\chi_{k}(\mathcal{P}, \mathbf{t})=\sum_{|I|=k} w_{\{0\} \cup 1} \mathbf{t}^{\prime}
$$

where $\mathbf{t}^{\prime}=t_{1}^{i_{1}} t_{2}^{i_{2}} \ldots t_{k}^{i_{k}}$

$$
\chi_{k}(\mathcal{P}, \mathbf{t})=\sum_{|I|=k} w_{\{0\} \cup 1} \mathbf{t}^{\prime}
$$

where $\mathbf{t}^{\prime}=t_{1}^{i_{1}} t_{2}^{i_{2}} \ldots t_{k}^{i_{k}}$ example:

$$
\chi_{k}(\mathcal{P}, \mathbf{t})=\sum_{|I|=k} w_{\{0\} \cup 1} \mathbf{t}^{\prime}
$$

where $\mathbf{t}^{\prime}=t_{1}^{i_{1}} t_{2}^{i_{2}} \ldots t_{k}^{i_{k}}$ example:

Multivariable characteristic polynomials

$$
\chi_{k}(\mathcal{P}, \mathbf{t})=\sum_{|\||=k} w_{\{0\} \cup /} \mathbf{t}^{\prime}
$$

where $\mathbf{t}^{\prime}=t_{1}^{i_{1}} t_{2}^{i_{2}} \ldots t_{k}^{i_{k}}$ example:

$$
\mathcal{P}=\quad \bullet \quad \begin{aligned}
& w_{0,0,0}=1 \\
& w_{0,0,1}=-1 \\
& w_{0,1,1}=1
\end{aligned}
$$

$$
\chi_{2}\left(\mathcal{P} ; t_{1}, t_{2}\right)=t_{1} t_{2}-t_{1}+1=t_{1}\left(t_{2}-1\right)-1
$$

Boolean lattice

$B_{n}=$ Boolean lattice.

$$
\mu_{k}\left(X_{1}, \ldots, X_{k}\right)=(-1)^{\mathrm{rk}\left(X_{1}\right)+\cdots+\operatorname{rk}\left(X_{k}\right)}
$$

Boolean lattice

$B_{n}=$ Boolean lattice.

Incidence algebras

Whitney numbers

KL
Polynomials
Characteristic polys

$$
\mu_{k}\left(X_{1}, \ldots, X_{k}\right)=(-1)^{\mathrm{rk}\left(X_{1}\right)+\cdots+\mathrm{rk}\left(X_{k}\right)}
$$

$$
w_{l}\left(\mathcal{B}_{n}\right)=(-1)^{i_{1}+\cdots+i_{k}} W_{l}\left(\mathcal{B}_{n}\right)
$$

Boolean lattice

$B_{n}=$ Boolean lattice.

Boolean lattice

$B_{n}=$ Boolean lattice.

$$
\mu_{k}\left(X_{1}, \ldots, X_{k}\right)=(-1)^{\mathrm{rk}\left(X_{1}\right)+\cdots+\mathrm{rk}\left(X_{k}\right)}
$$

$$
w_{l}\left(\mathcal{B}_{n}\right)=(-1)^{i_{1}+\cdots+i_{k}} W_{l}\left(\mathcal{B}_{n}\right)
$$

$$
=(-1)^{i_{1}+\cdots+i_{k}}\binom{n}{i_{1}, i_{2}-i_{1}, i_{3}-i_{2}, \ldots, i_{k}-i_{k-1}, n-i_{k}}
$$

$$
\chi_{k}\left(\mathcal{B}_{n} ; t_{1}, \ldots, t_{k}\right)=\left(\sum_{i=0}^{k}(-1)^{i} \prod_{j=1}^{k-i} t_{j}\right)^{n}
$$

$$
=\left(t_{1}\left(t_{2}\left(\cdots\left(t_{k-1}\left(t_{k}-1\right)+1\right) \cdots+(-1)^{k-1}\right)+(-1)^{k}\right)^{n}\right.
$$

Outline

Incidence algebras

Whitney numbers

KL
Polynomials
Characteristic polys

Happy Birthday Mike Falk!!!!

