▲ロト ▲冊ト ▲ヨト ▲ヨト - ヨー の々ぐ

Bernstein–Sato polynomials of determinantal varieties (with A. Lörincz, C. Raicu, J. Weyman)

Uli Walther

Stony Brook, March 2016

2 Bernstein–Sato polynomials

The	schedule	The D-module g	enerated by f ^s	Bernstein–Sato	o polynomials	Zeta functions
						1
	$R = \mathbb{C}[x_1, f \in R$ $D = R\langle \partial_1, f \rangle$ $D[s]$	\ldots, x_n]	polynomial polynomial Weyl algeb adjoining a	ring , not constan ra new variable	t	
	D[s] acts or	$P[s]$ acts on $R[f^{-1},s] \cdot f^s$ by the formal chain rule:				
$\partial_i \bullet (g(x,s)f^s) = (f\partial_i(g(x,s)) + g(x,s)s\partial_i(f))f^{s-1}$						
	for all $g \in R[f^{-1}, s]$.					

◆□▶ ◆□▶ ◆目▶ ◆目▶ ▲□▶

Some remarks

- $R[f^{-1}, s] \supseteq D[s] \bullet f^s \supseteq D[s] \bullet f^{s+1}$ even if f = x: $x^s \notin D[s] \bullet x^{s+1}$.
- Second Example (Cayley?, Kimura, Raicu): f = det(A), $A = ((x_{i,j}))_1^n$. Then

$$\det((\partial_{i,j})) \bullet f^{s+1} = (s+1) \dots (s+n) f^s$$

and

$$D[s] \bullet 1 \subsetneq D[s] \bullet \frac{1}{f} \subsetneq D[s] \bullet \frac{1}{f^2} \subsetneq \dots \subsetneq D[s] \bullet \frac{1}{f^n} = R[1/f]$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 ・ ��や

3

Bernstein-Sato polynomial

Theorem ((Sato,) Bernstein (, Björk), Malgrange, Kashiwara)
$$\exists P \in D[s], \exists 0 \neq b_P \in \mathbb{Q}[s],$$

$$P(x,\partial,s) \bullet f^{s+1} = b_P(s)f^s.$$

(Means: $D[s] \bullet f^s/D[s] \bullet f^{s+1}$ is killed by $b_P(s)$).

Definition

The (monic) generator of the ideal $\{b_P\}$ is the Bernstein–Sato polynomial $b_f(s)$.

Classical example: $f = x_1 * x_4 - x_2 * x_3$, $P = \partial_1 \partial_4 - \partial_2 \partial_3$, $b_f(s) = (s+1)(s+2)$.

◆□ > ◆□ > ◆三 > ◆三 > ・三 ・ のへ()・

▲ロト ▲冊ト ▲ヨト ▲ヨト - ヨー の々ぐ

Classical results

 $\rho_f = \text{root set of } b_f(s)$

Theorem

- $b_f(-1) = 0$
- $b_f(s) \in \mathbb{Q}[s]$ in fact, $\rho_f \subseteq \mathbb{Q}_-$ (Malgrange/Kashiwara)
- $\rho_f \subseteq (-n, 0)$ (Saito)
- isol sing: $\rho_f = e$ -vals of some operator on R/J (Malgrange)
- isolated and w-homogeneous: $-\rho_f = \deg_w((R/J)\frac{dx}{f}) \cup \{1\}$

Also relates to: Milnor fibers, lct, multiplier ideals, periods, p-adic stuff, ...

Zeta functions

We are over $\ensuremath{\mathbb{C}}$, so have embedded resolution of singularities:

$$\pi\colon (Y\supseteq \tilde{X})\to (\mathbb{C}^n\supseteq X=\operatorname{Var}(f)).$$

Let $\tilde{X} = \bigcup_{i \in S} E_i$, and for $I \subseteq S$, $E_I^* := \bigcap_{i \in I} E_i \smallsetminus \bigcup_{i \notin I} E_j$.

Definition

The topological zeta function of f is

$$Z_f(s) = \sum_I \chi(E_I^*) \prod \frac{1}{N_i s + \nu_i}$$

where N_i is the multiplicity of E_i in $Div(f \circ \pi)$ and $\nu_i - 1$ is the multiplicity of E_i in $Div(\pi^*(dx_1 \land \ldots \land dx_n))$.

Denef, Loeser: this is independent of the resolution \mathbb{R} , \mathbb{R}

Sac

6

A zeta function example

Example (A zeta function)

- Let $f = x_1x_4 x_2x_3$ in $\mathbb{C}[x_1, x_2, x_3, x_4]$.
- Then $S = \{1, 2\}$, E_1 is the strict transform and $E_2 = \mathbb{P}^3$.

- $\chi(E_1^*) = 1 1 = 0$, $\chi(E_{1,2}^*) = 4$, $\chi(E_2^*) = 4 4 = 0$
- $N_1 = 1$, $N_2 = 2$, $\nu_1 = 1$, $\nu_2 = 4$.

•
$$Z_f(s) = 0 + 0 + 4 \frac{1}{1 \cdot s + 1} \cdot \frac{1}{2 \cdot s + 4}$$
.

▲ロト ▲冊ト ▲ヨト ▲ヨト - ヨー の々ぐ

The monodromy conjecture

Conjecture

(SMC) If α is a pole of $Z_f(s)$ then $b_f(\alpha) = 0$.

(WMC) If α is a pole of $Z_f(s)$ then $\exp(2\pi i\alpha)$ is a monodromy eigenvalue along f = 0.

Higher codimension

Let
$$\underline{f} = f_1, \ldots, f_r$$
 and $\underline{s} = s_1, \ldots, s_r$,

$$D[\underline{s}]$$
-acts on $R[1/\underline{f}][\underline{s}] \cdot \underline{f}^{\underline{s}}$ as expected.

Let
$$s = s_1 + ... + s_r$$
.

Theorem (Budur–Mustata–Saito)

There exists $P_{\underline{c}}(\underline{s}) \in D[\underline{s}]$, $b(s) \in \mathbb{Q}[s]$, $\underline{c} \in \mathbb{Z}^r$ with $|\underline{c}| = 1$:

$$\sum_{\underline{c}} P_{\underline{c}} \cdot \underline{\hat{c}}_{\underline{s}} \bullet \underline{f}^{\underline{s}+\underline{c}} = b(s) \cdot \underline{f}^{\underline{s}}$$

where $\underline{\hat{c}}_{\underline{s}} = \prod_{c_i < 0} s_i \cdots (s_i + c_i + 1)$. The generator $b_{\underline{f}}(s)$ of the ideal of all b(s) is a function of the ideal $R \cdot \underline{f}$.

・ロト・西ト・山下・山下・山下・山下・山下

▲ロ ▶ ▲ 理 ▶ ▲ 国 ▶ ▲ 国 ■ ● ● ● ● ●

Facts and conjectures

- Roots of $b_{\underline{f}}(s)$ are rational.
- For monomial ideals, algorithms/formulas exist (Budur–Mustata–Saito via reduction mod p).
- Conjecturally, b_f(s) relates to Zeta-function as in original case.
- b_f(s) relates to Sabbah's specialization functor (takes the role of the Milnor fiber).
- Most Bernstein-Sato polynomials are unknown.
- Not combinatorial for arrangements.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Determinantal ideals

Set-up

$$R = \mathbb{C}[\{x_{1,1}, \dots, x_{m,n}\}], \qquad \underline{f} = \text{all } n \times n \text{-minors.}$$

Theorem

$$b_{\underline{f}}(s) = (s+n-m+1)\cdots(s+n)$$

For n = m: Kimura, based on pre-homogeneous vector spaces.

▲ロ ▶ ▲ 理 ▶ ▲ 国 ▶ ▲ 国 ■ ● ● ● ● ●

Outline of method

- Make the right guess: look at zeta function. (Note that singular locus of a determinant is cut out by its minors).
- Upper bound: find explicit $\{P_{\underline{c}}(s)\}$ and a functional equation.
- Lower bound (certify roots):
 - n = m: show $(D \bullet f^{-i} \subsetneq D \bullet f^{-i+1})_1^n$ via representations of Sl(n) (Raicu).
 - n = m + 1: Induction plus local cohomology.
 - n = n: Statement on inequality of inclusions remains a conjecture. Lörincz: consider intermediate polynomial defined over D^{sl}.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Local cohomology and roots

For
$$r = 1$$
, $b_f(-1) = 0$ since $R[1/f] \neq R$.

Theorem

If
$$H_f^r(R) \neq 0$$
 then one of $-r - \mathbb{N}$ is a root of $b_{\underline{f}}(s)$.

Idea: If no such root, Čech complex gives a contradiction.