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Introduction

Let X be a smooth complex algebraic variety. Let

F = (f1, . . . , fr ) : X → Cr

be a collection of regular functions on X and let f = f1 · f2 · · · fr .
We are interested in the algebraic and topological properties of the
singularities of the hypersurface f = 0.

Given X and F as above, we introduce the following
algebraic/topological invariants.
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introduction

1 Bernstein-Sato ideals;

2 support of Sabbah’s specialization complex;

3 (local) cohomology support loci;

4 non-simple loci;

5 monodromy Zeta function.

Among these invariants, (1) is algebraic, (2), (3), (4) are
topological and (5) is both algebraic and topological. Our main
motivation is to understand the relation between (1) and (2).



Bernstein-Sato ideals

Let DX be the sheaf of algebraic differential operators on X . The
Bernstein-Sato ideal associated to F is the ideal

BF ⊂ C[s1, . . . , sr ]

of all polynomials b(s1, . . . , sr ) such that

b(s1, . . . , sr )
∏

1≤i≤r
f sii = P

∏
1≤i≤r

f si+1
i

for some global algebraic differential operator P, i.e., a global
section of DX [s1, . . . , sr ].

When r = 1, the monic generator of BF is the Bernstein-Sato
polynomial bf .
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Bernstein-Sato ideals

Example

Let X = C2 and let F = (x , y , 1− x − y). Then
BF =< (s1 + 1)(s2 + 1)(s3 + 1) >.

Example

Let X = C3 and let F = (z , x5 + y5 + zx2y3). Then BF is
generated by
(s1 + 1)(s2 + 1)2(5s2 + 2)(5s2 + 3)(5s2 + 4)(5s2 + 6)(s1 + 2)(s1 +
3)(s1 + 4)(s1 + 5),
(s1 +1)(s2 +1)2(5s2 +2)(5s2 +3)(5s2 +4)(5s2 +6)(5s2 +7)(s1 +2),
(s1+1)(s2+1)2(5s2+2)(5s2+3)(5s2+4)(5s2+6)(5s2+7)(5s2+8).
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Bernstein-Sato ideals

Conjecture (Budur)

Given any X ,F , BF is always generated by products of linear
polynomials of the form

α1s1 + · · ·+ αr sr + α

where αi ∈ Q≥0 and α ∈ Q>0.



Sabbah’s specialization complex

Denote the zero locus of f =
∏r

i=1 fi by Y . Then Y is a
hypersurface in X . Denote the complement of Y in X by U.
Consider the following diagram,

Y �
� i // X

F
��

U

F
��

? _
j

oo Ũ

F̃
��

πoo

Cr (C∗)r? _oo CrExp
oo

.

Sabbah’s specialization complex functor of F is defined by

ψF = i−1Rj∗Rπ!(j ◦ π)∗ : Db
c (X ,C)→ Db

c (Y ,A)

where A = C[t1, t
−1
1 , . . . , tr , t

−1
r ].
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Sabbah’s specialization complex

When r = 1, Sabbah’s specialization complex functor equals the
shift by [-1] of Deligne’s nearby cycles functor.

We call ψ(CX ) Sabbah’s specialization complex.

We define the support of Sabbah’s specialization complex to be

S(F ) =
⋃
x∈Y

⋃
i

Supp
(
Hi (ψ(CX ))x

)
a Zariski closed subset of (C∗)r = Spec(C[t1, t

−1
1 , . . . , tr , t

−1
r ]).
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Sabbah’s specialization complex

Conjecture (Budur)

Let Exp : Cr → (C∗)r be the map sending (zi )1≤i≤r to
(exp(2π

√
−1zi ))1≤i≤r . Then

Exp(V (BF )) = S(F ).

When r = 1, this is the well-known theorem of Malgrange and
Kashiwara.

Theorem (Budur)

Under the above notations,

Exp(V (BF )) ⊃ S(F ).
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Sabbah’s specialization complex

By relating the support of Sabbah’s specialization complex with
the pole and zero locus of the monodromy Zeta function, we
proved the following.

Theorem (Budur-Liu-Saumell-W)

Under the above notations, S(F ) ⊂ (C∗)r is a finite union of
torsion translated tori of codimension one.

In general, V (BF ) may have irreducible components of higher
codimension. However, in all the examples we know, any of the
higher codimensional components is contained in a translate of
another codimension one component by some lattice point in Cr .
Therefore, in all the examples we know, Exp(V (BF )) is of pure
codimension one in (C∗)r .
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Hyperplane arrangement

Recall that the support of Sabbah’s specialization complex is the
union of support of local germs.

S(F ) =
⋃
x∈Y

⋃
i

Supp
(
Hi (ψ(CX ))x

)

At any x ∈ Y , the support⋃
i

Supp
(
Hi (ψ(CX ))x

)
is determined by the cohomology jump support loci of the small
ball complement B \Y , where B is a small ball in X centered at x .
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Hyperplane arrangement

Since the cohomology support loci of the small ball complement is
well-understood for a hyperplane arrangement, we have a formula
for the support of Sabbah’s specialization complex for a hyperplane
arrangement.

Theorem

Let F = (f1, . . . , fr ) be a collection of linear functions on X = Cn

defining mutually distinct hyperplanes. Then

S(F ) = Z

∏
W

 ∏
i :fi (W )=0

ti − 1


where the product is over all dense edges W .



Length function and non-simple locus

For any object E in an Artinian abelian category, there exists a
filtration

0 = E0 ⊂ E1 ⊂ · · · ⊂ El = E

such that Ei+1/Ei are simple objects. The number l is independent
of the choice of the filtration. We call l the length of E , denoted
by l(E ).

The category of perverse sheaves on X is an Artinian abelian
category. Let M(U) be the moduli space of rank one local systems
on U. Since the inclusion map j : U → X is affine, Rj∗ maps
perverse sheaves on U to perverse sheaves on X . So we can define
a length function on l(X ,F ) : M(U)→ Z>0 by

l(X ,F )(L) = l (Rj∗(L[n]))

where l (Rj∗(L[n])) is the length of Rj∗(L[n]) as a perverse sheaf.
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Length function and non-simple locus

When X = Cn, there is a natural isomorphism M(U) ∼= (C∗)r ,
which maps every local system to the monodromy through
meridians of each divisor fi = 0.

Theorem (Budur-Liu-Saumell-W)

When X = Cn, under the above isomorphism{
L ∈ (C∗)r |l(X ,F )(L) ≥ 2

}
= S(F ).

In particular, when F is a collection of linear polynomials,{
L ∈ (C∗)r |l(X ,F )(L) ≥ 2

}
is combinatorial invariant.



Length function and non-simple locus

When X = Cn, there is a natural isomorphism M(U) ∼= (C∗)r ,
which maps every local system to the monodromy through
meridians of each divisor fi = 0.

Theorem (Budur-Liu-Saumell-W)

When X = Cn, under the above isomorphism{
L ∈ (C∗)r |l(X ,F )(L) ≥ 2

}
= S(F ).

In particular, when F is a collection of linear polynomials,{
L ∈ (C∗)r |l(X ,F )(L) ≥ 2

}
is combinatorial invariant.



Length function and non-simple locus

When X = Cn, there is a natural isomorphism M(U) ∼= (C∗)r ,
which maps every local system to the monodromy through
meridians of each divisor fi = 0.

Theorem (Budur-Liu-Saumell-W)

When X = Cn, under the above isomorphism{
L ∈ (C∗)r |l(X ,F )(L) ≥ 2

}
= S(F ).

In particular, when F is a collection of linear polynomials,{
L ∈ (C∗)r |l(X ,F )(L) ≥ 2

}
is combinatorial invariant.



Length function and non-simple locus

Question

When X = Cn, the length jump loci

W i (X ,F ) =
{
L ∈ (C∗)r |l(X ,F )(L) ≥ i

}
is combinatorial invariant.

Conjecture

For any smooth complex variety X and any collection of regular
functions F ,

W i (X ,F ) =
{
L ∈ M(U)|l(X ,F )(L) ≥ i

}
is a finite union of torsion translated subtori in M(U).
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Happy birthday Mike!


