Towards a new resonance-Chen ranks formula: the case of welded braids

He Wang (joint work with Alex Suciu)

Northeastern University

AMS Spring Eastern Sectional Meeting, Special Session on Topology and Combinatorics of Arrangements (in honor of Mike Falk) Stony Brook, New York,

March 19, 2016

Associated graded Lie algebras

- G: a finitely generated group.
- The lower central series of G: $\Gamma_1 G = G$, $\Gamma_2 G = [G, G]$, $\Gamma_{k+1} G = [\Gamma_k G, G], \ k \ge 1.$
- The associated graded Lie algebra of G is defined to be

$$\operatorname{gr}(G;\mathbb{C}):=\bigoplus_{k\geq 1}(\Gamma_k(G)/\Gamma_{k+1}(G))\otimes_{\mathbb{Z}}\mathbb{C}.$$

The LCS ranks of G are defined as φ_k(G) := dim(gr_k(G; C)).

Example (Free group F_n with n generators)

 $gr(F_n; \mathbb{C})$ is isomorphic to the free Lie algebra.

$$\phi_k(F_n) = \frac{1}{k} \sum_{d|k} \mu(k/d) n^d,$$

where μ is the Möbius function.

Pure braid groups

- Let P_n be the pure braid group on n strings.
- A classifying space for P_n is the configuration space

$$\operatorname{Conf}_n(\mathbb{C}) = \{(z_1, \ldots, z_n) \in \mathbb{C}^n \mid z_i \neq z_j \text{ for } i \neq j\}.$$

$$P_n = F_{n-1} \rtimes_{\alpha_{n-1}} P_{n-1} = F_{n-1} \rtimes F_{n-2} \rtimes \cdots \rtimes F_1,$$

where $\alpha_n \colon P_n \subset B_n \hookrightarrow \operatorname{Aut}(F_n)$. In fact,

$$B_n = \{\beta \in \operatorname{Aut}(F_n) \mid \beta(x_i) = wx_{\tau(i)}w^{-1}, \beta(x_1 \cdots x_n) = x_1 \cdots x_n\}.$$

Theorem (Falk–Randell 85)

Let $G = H \rtimes Q$ be a semi-direct product of groups, and suppose Q acts trivially on H_{ab} . Then there is a split exact sequence of graded Lie algebras,

$$0 \longrightarrow \operatorname{gr}(H) \longrightarrow \operatorname{gr}(G) \longrightarrow \operatorname{gr}(Q) \longrightarrow 0 .$$

Theorem (Falk–Randell 85, Kohno85)

The graded Lie algebra $gr(P_n; \mathbb{C})$ is generated by degree 1 elements s_{ij} for $1 \le i \ne j \le n$, subjects to the relations

$$s_{ij} = s_{ji}, [s_{jk}, s_{ik} + s_{ij}] = 0, [s_{ij}, s_{kl}] = 0 \text{ for } i \neq j \neq l.$$

In particular, the LCS ranks of P_n are given by

$$\phi_k(P_n) = \sum_{s=1}^{n-1} \phi_k(F_s).$$

Chen Lie algebras

- The *Chen Lie algebra* of a finitely generated group G is defined to be the graded Lie algebra, $gr(G/G''; \mathbb{C})$, of the maximal metabelian quotient of G.
- The quotient map $h: G \twoheadrightarrow G/G''$ induces $gr(G; \mathbb{C}) \twoheadrightarrow gr(G/G''; \mathbb{C})$.
- The *Chen ranks* of *G* are defined as $\theta_k(G) := \dim(\operatorname{gr}_k(G/G''; \mathbb{C})).$

•
$$\phi_k(G) \ge \theta_k(G)$$
. Equality holds for $k \le 3$.

•
$$\theta_k(F_n) = (k-1)\binom{n+k-2}{k}, \ k \ge 2.$$
 [Chen (51)]

Proposition (Cohen-Suciu 95)

The Chen ranks of the pure braid groups P_n are given by

$$\theta_1(P_n) = \binom{n}{2}, \ \theta_2(P_n) = \binom{n}{3}, \ \text{and} \ \theta_k(P_n) = (k-1)\binom{n+1}{4} \text{ for } k \ge 3.$$

Notice that $\theta_k(P_n) \neq \sum_{s=1}^{n-1} \theta_k(F_s) \Longrightarrow P_n \ncong F_{n-1} \times \cdots \times F_1$.

Resonance varieties

- Suppose $A^* := H^*(G, \mathbb{C})$ has finite dimension in each degree.
- For each a ∈ A¹, define a cochain complex of finite-dimensional C-vector spaces,

$$(A,a): A^0 \xrightarrow{a \cup -} A^1 \xrightarrow{a \cup -} A^2 \xrightarrow{a \cup -} \cdots,$$

with differentials given by left-multiplication by a.

• The resonance varieties of G are the homogeneous subvarieties of A^1

$$\mathcal{R}_i(G,\mathbb{C}) = \{ a \in A^1 \mid \dim_{\mathbb{C}} H^1(A^*; a) \ge i \}.$$

 The resonance varieties were introduced by Michael Falk in the context of hyperplane arrangements (97).

•
$$\mathcal{R}_1(\mathbb{Z}^n,\mathbb{C}) = \{0\}; \ \mathcal{R}_1(\pi_1(\Sigma_g),\mathbb{C}) = \mathbb{C}^{2g}, \ g \geq 2.$$

Pure braid groups P_n

Based on Falk's work (97), Cohen and Suciu (99) computed the first resonance variety of the pure braid group P_n , which has decomposition into irreducible components given by

$$\mathcal{R}_1(P_n) = \bigcup_{1 \le i < j < k \le n} L_{ijk} \cup \bigcup_{1 \le i < j < k < l \le n} L_{ijkl},$$

where

$$L_{ijk} = \left\{ x_{ij} + x_{ik} + x_{jk} = 0 \text{ and } x_{st} = 0 \text{ if } \{s, t\} \not\subset \{i, j, k\} \right\},\$$

$$L_{ijkl} = \left\{ \begin{array}{l} \sum_{\{p,q\} \subset \{i, j, k, l\}} x_{pq} = 0, \ x_{ij} = x_{kl}, \ x_{jk} = x_{il}, \ x_{ik} = x_{jl}, \\ x_{st} = 0 \text{ if } \{s, t\} \not\subset \{i, j, k, l\} \end{array} \right\}.$$

In particular, $\dim(L_{ijk}) = \dim(L_{ijkl}) = 2$.

Conjecture (Chen ranks conjecture, Suciu 01)

Let G be an arrangement group.

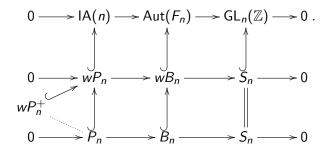
Let h_n be the number of *n*-dimensional irreducible components of $\mathcal{R}_1(G)$.

$$\theta_k(G) = \sum_{n \ge 2} h_n \cdot \theta_k(F_n), \text{ for } k \gg 1.$$
(1)

Theorem (Cohen-Schenck 15)

- Formula (1) holds if G is a 1-formal, commutator-relators group, such that the resonance variety $\mathcal{R}_1(G)$ is 0-isotropic, projectively disjoint, and reduced as a scheme.
- The hyperplane arrangement groups $PA_n = P_{n+1}$, PB_n and PD_n associated to the Coxeter groups A_n , B_n and D_n satisfy the above conditions. Furthermore, for $k \gg 1$, $\theta_k(PB_n) = (k-1)[16\binom{n}{3} + 9\binom{n}{4}] + (k^2 - 1)\binom{n}{2}$ and $\theta_k(PD_n) = (k-1)[5\binom{n}{3} + 9\binom{n}{4}].$

Pure welded braid groups wP_n (McCool groups)



wB_n = {β ∈ Aut(F_n) | β(x_i) = wx_{τ(i)}w⁻¹} and wP_n = wB_n ∩ IA_n.
The pure welded braid group wP_n has presentation [McCool 86]

$$\left\langle x_{ij}, (1 \le i \ne j \le n) \middle| \begin{array}{c} x_{ij}x_{ik}x_{jk} = x_{jk}x_{ik}x_{ij}, \\ [x_{ij}, x_{kl}] = 1, \\ [x_{ij}, x_{kj}] = 1, \text{ for } i, j, k, l \text{ distinct } \end{array} \right\rangle.$$

• wP_n^+ is the subgroup of wP_n generated by $\{x_{ij} \mid 1 \le i < j \le n\}$.

McCool groups

- wP_n and wP_n^+ are 1-formal.[Berceanu-Papadima 09]
- *H*^{*}(*wP_n*, ℂ) was computed by Jensen, McCammond, and Meier (06), proving a conjecture of Brownstein and Lee (93).
- D. Cohen (09) computed the first resonance variety of the group wP_n :

$$\mathcal{R}_1(wP_n,\mathbb{C}) = \bigcup_{1 \le i < j \le n} C_{ij} \cup \bigcup_{1 \le i < j < k \le n} C_{ijk},$$

where $C_{ij} = \mathbb{C}^2$ and $C_{ijk} = \mathbb{C}^3$.

• D. Cohen and Schenck (15) showed that the Chen ranks of wP_n are given by the 'Chen ranks formula'

$$\theta_k(wP_n) = (k-1)\binom{n}{2} + (k^2 - 1)\binom{n}{3}$$

for $k \gg 1$.

Upper upper McCool groups

- F. Cohen, Pakhianathan, Vershinin, and Wu (07) computed the following:
 - The cohomology algebra H^{*}(wP⁺_n; ℂ) and the Betti numbers b_k(wP⁺_n) = b_k(P_n).
 - $wP_n^+ \cong F_{n-1} \rtimes F_{n-2} \rtimes \cdots \rtimes F_1$ satisfies the assumptions of the theorem of Falk–Randell.
 - The graded Lie algebra $gr(wP_n^+; \mathbb{C})$ and the LCS ranks $\phi_k(wP_n^+) = \phi_k(P_n) = \sum_{s=1}^{n-1} \phi_k(F_s)$.

Both wP_n^+ and P_n are subgroups of wP_n . Question: are wP_n^+ and P_n isomorphic for $n \ge 4$?

For n = 4, an incomplete argument was given by Bardakov and Mikhailov (08) using single-variable Alexander polynomials.

Theorem (Suciu-W. 15)

The Chen ranks θ_k of wP_n^+ are given by $\theta_1 = \binom{n}{2}, \theta_2 = \binom{n}{3}, \theta_3 = 2\binom{n+1}{4}$,

$$\theta_k = \binom{n+k-2}{k+1} + \theta_{k-1} = \sum_{i=3}^k \binom{n+i-2}{i+1} + \binom{n+1}{4}, \ k \ge 4.$$

Corollary

The pure braid group P_n , the upper McCool groups wP_n^+ , and the product group $\prod_n := \prod_{i=1}^{n-1} F_i$ are not isomorphic for $n \ge 4$.

Proof:
$$\theta_4(P\Sigma_n^+) = 2\binom{n+1}{4} + \binom{n+2}{5}, \theta_4(P_n) = 3\binom{n+1}{4}, \theta_4(\Pi_n) = 3\binom{n+2}{5}.$$

Theorem (Suciu–W. 15)

The first resonance variety of the upper McCool groups wP_n^+ is

$$\mathcal{R}_1(wP_n^+,\mathbb{C}) = \bigcup_{n \ge i > j \ge 2} L_{i,j},$$

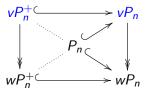
where $L_{i,j} = \mathbb{C}^{j}$ the linear subspace defined by the equations $\begin{cases}
x_{i,l} + x_{j,l} = 0 & \text{for } 1 \leq l \leq j - 1, \\
x_{i,l} = 0 & \text{for } j + 1 \leq l \leq i - 1, \\
x_{s,t} = 0 & \text{for } s \neq i, s \neq j, \text{ and } 1 \leq t < s.
\end{cases}$ In particular, L_{ij} is not 0-isotropic if $j \geq 3$.

Corollary

- There is no epimorphism from wP_n to wP_n^+ for $n \ge 4$. In particular, the inclusion $\iota: wP_n^+ \to wP_n$ admits no splitting for $n \ge 4$.
- The Chen ranks formula does not hold for wP_n^+ for $n \ge 4$, i.e., $\theta_k(wP_n^+) \neq \sum_{j=2}^{n-1} (n-j)\theta_k(F_j)$.

Pure virtual braid groups

• The presentations of vP_n and vP_n^+ were given by Bardakov (04).



 The cohomology algebras H^{*}(vP_n; ℂ) and H^{*}(vP⁺_n; ℂ) were computed by Bartholdi, Enriquez, Etingof, and Rains 06, and Lee 13.

Theorem (Suciu, W. 16)

The pure virtual braid groups vP_n and vP_n^+ are 1-formal if and only if $n \leq 3$.

Proposition (Suciu, W. 16)

If both G_1 and G_2 satisfy the Chen ranks formula, then $G_1 \times G_2$ also satisfies the Chen ranks formula, but $G_1 * G_2$ may not.

- Examples of free products do not satisfy the Chen ranks formula include free product Z * Zⁿ and the groups vP₃ = Z * P
 ₄.
- The groups vP_4^+ and vP_5^+ do not satisfy the Chen ranks formula.

The pure braid groups on Riemann surfaces

- P_{g,n} = π₁(Conf(Σ_g, n)), where Σ_g is a compact Riemann surface of genus g (g ≥ 1).
- Dimca-Papadima-Suciu (09) computed the (first) resonance variety of $P_{1,n}$, which is not linear. Consequently, $P_{1,n}$ is not 1-formal for $n \ge 3$.

The Chen ranks formula is not satisfied. However, $P_{1,n}$ is "filtered-formal". A generalized Chen ranks formula is satisfied by replacing the resonance varieties by the tangent cone of the "characteristic varieties".

References

Alexander I. Suciu and He Wang,

Chen ranks and resonance varieties of the upper McCool groups, preprint, 2016.

Alexander I. Suciu and He Wang,

Formality properties of finitely generated groups and Lie algebras, arXiv:1504.08294v2, preprint, 2015.

Alexander I. Suciu and He Wang,

The pure braid groups and their relatives, arXiv:1602.05291, preprint, 2016. to appear in Springer INdAM Series

Alexander I. Suciu and He Wang,

Pure virtual braids, resonance, and formality, arXiv:1602.04273, preprint, 2016.

Thank You! Happy Birthday Mike Falk!