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The Terao problem

Definition

Let A be a central arrangement of hyperplanes in a linear
space V ' Cr . We assume the arrangement is essential in
which case r is the rank of it.
The arrangement is free if its C- module of derivations is free.
The Terao problem (also called conjecture) asks if this property
of arrangement is combinatorial, i.e., determined by the
intersection lattice L of A.

Although that question was asked by Hiroaki Terao around
1980 the complete answer is still unknown even for r = 3.
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Goal

In this talk we deal with rank 3 arrangements only. One of the
goals of this work in progress is to find combinatorial properties
of an arrangement, i.e., properties of its intersection lattice
necessary for the arrangement to be free.
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Notations

Let us introduce some notations. The arrangement poset L is
ranked and has the only two non-trivial levels L1 of rank 1
elements and L2 of rank 2 elements. We can projectivize and
thus call elements from L1 lines and ones from L2 points. We
put |L1| = n and |L2| = N. The set of points L2 can be
partitioned as L2 =

⋃M
i=2 Li where Li consists of points of

multiplicity i (i = 2, . . . ,M). For X ∈ Li we write m(X ) = i and
put Ni = |Li | for each i .

Sometimes we want to emphasize dependence of A, for
example we write M(A).
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Poincaré polynomial

Recall that the Poincaré polinomial π = π(L, t) for rank 3 is
π = 1 + nt + a2t2 + a3t3 with a2 =

∑
X∈L2

µ(X ) where the value
of Möbius function µ is µ(X ) = m(X )− 1. Then a3 = 1+ a2− n.
For every arrangement, π factors with one factor 1 + t and the
other π0 = 1 + (n − 1)t + a3t2.

Plugging in previous notations we obtain

π0 = 1 + (n − 1)t + [−(n − 1) +
M∑

k+1

(k − 1)Nk ]t2.

We attribute π0(L) to an arrangement with the intersection
lattice isomorphic to L.
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Factorization theorem

The following theorem was proved by Terao in 1981. For rank 3
it says the following.

Theorem

If an arrangement is free then its polynomial π0 factors as
π0 = (1 + e1t)(1 + e2t) where both ei are positive integers. If
one adjoins 1 to them one gets the degrees of homogeneous
minimal generators of the derivation module.
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T-lattices

For brevity, let us call the lattices whose π0 factors T-lattices
and the numbers ei the exponents of a T-lattice.

If L is a T-lattice then its polynomial π has two real roots
whence its discriminant is non-negative. Thus we have

(n − 1)2 + 4(n − 1)− 4
M∑

k=2

(k − 1)Nk ≥ 0

or
(n − 1)(n + 3)

4
≥

M∑
k=2

(k − 1)Nk .
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Lattices L with M(L) = 3

Here is the main theorem of the talk.

Theorem

If L is a T-lattice with M(L) = 3 then the number of atoms n is
not larger than 9.

8



Proof

Proof.

If M(L) = 3 the inequality we had on the previous frame
becomes

(n − 1)(n + 3)
4

≥ (N2 + 2N3)

and counting pairs of lines in two different ways we also get(
n
2

)
= N2 + 3N3.

Eliminating N3 from the system by subtracting the inequality
from the equality and using the equality again we obtain

(n − 1)(n − 3)
4

≤ N3 ≤
1
3

(
n
2

)
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End of proof

Omitting N3 from the middle we have

(n − 1)(n − 3)
4

≤ 1
3

(
n
2

)
whence

n − 3
4
≤ n

6
which immediately implies

n ≤ 9.

10



Examples

Examples. Consider the sequence of reflection arrangements
of special monomial type G(3,3,3). Recall that they can be
given explicitly in C3 by the equation

(x3 − y3)(y3 − z3)(x3 − z3) = 0.

We have n = 9 and N = N3 = 12. As all reflection
arrangements these are free whence their lattices are T-lattices
with {e1,e2} = {4,4}.

This shows that the upper bound 9 in the Theorem is strict.
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Corollary

It is well-known that for small n, at least for n ≤ 11 the Tearao
problem has the positive solution. Thus we have the following
corollary.

Corollary

For the class of T-lattices with only double or triple points of
intersection the Terao problem has the positive solution.

IF SOMEBODY IN THE ROOM HAS KNOWN IT PLEASE
SPEAK UP.
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L with M(L) > 3

Conjecture The set of all arrangement lattices L with M(L)
fixed is finite.

The conjecture is open for every M(L) > 3. Take for instance,
M(L) = 4. Then there are the equality and inequality

N2 + 3N3 + 6N4 =

(
n
2

)
and

N2 + 2N3 + 3N4 ≤
(n − 1)(n + 3)

4
.
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Corollaries

It is not hard to get some corollary from this system. Here are
several of them

N4 ≥
(n − 1)(n − 9)

12
,

N3 + 3N4 ≥
(n − 1)(n − 3)

4
,

N2 + N3 ≤
3
2
(n − 1).

However these inequalities does not forbid the existence of an
infinite set of values of n.
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Direction to go

In order to use more properties of L it is reasonable to start with
the formality property à la Mike Falk and Richard Randell
(1986). Shortly the property says that all linear relations among
hyperplanes are generated by 3-relations.

It was proved in 1993 that the formality is necessary for the
freeness. Although the formality is not combinatorial it together
with irreducibility of A implies the combinatorial property that⋃

X∈L2,X 6∈L2 AX = A. This may be useful for future
developments.
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SORRY FOR THE ELEMENTARY TALK
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