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Introduction

In an earlier lecture we considered the idea of
finding the average rate of change of some quan-
tity Q(t) over a time interval [t1, t2] and asked
what would happen when the time interval became
smaller and smaller. This led to the notion of limits,
which we have examined in the previous two lec-
tures. In this section we return to our study of av-
erage rates of change and apply what we learned
about limits. This leads directly to the derivative.
It turns out that the derivative has an equivalent
(purely) mathematical formulation: that of finding
the line tangent to a curve at some point. This is
where we will start.
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The Tangent Problem

Suppose y = f(x) is some given function and a is
some fixed point in the domain. We will explore the
idea of finding the equation of the line tangent to
the graph of f at the point (a, f(a)). Look at the
picture below:

a

f(a)

The tangent line at x = a is the unique line that
goes through (a, f(a)) and just touches the graph
there.
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The Slope?

Recall the an equation of the line is determined
once we know a point P and the slope m. If
P = (a, f(a)) then the equation of the line tangent
to the curve will take the form

y − f(a) = m(x − a)

for some slope m that we have to determine.

How do we determine the
slope of the tangent line?

We will do so by a limiting process.
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Secant lines

Given the graph of a function y = f(x) we call a
secant line a line that connects two points on a
graph.

In the graph to the right a red
line joins the points (a, f(a)) and
(a+h, f(a+h). ( Think of h as a
relatively small number.) a

f(a)

a + h

f(a + h)

Now, what is the slope of the secant line? The
change in y is ∆y = f(a+h)−f(a) and the change
in x is ∆x = a + h − a = h. So the slope of the
secant line is:

∆y

∆x
=

f(a + h) − f(a)

h
.
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Small h

The following graph illustrates what happens when
we choose smaller values of h. Notice how the se-
cant lines get closer to the tangent line.

a

f(a)



Introduction
Introduction
The Tangent
Problem
The Slope?
Secant lines
Small h
The main idea
An animation
Slope of Tangent
Example

Section 2.6: The Derivative Business Calculus - p. 7/44

Small h
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The following graph illustrates what happens when
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The main idea

The main idea is to let h get smaller and smaller.
Remember all we need is the slope of the tangent
line so we will compute

lim
h→0

f(a + h) − f(a)

h
.

In the following animation notice how the slopes of
the secant lines approach the slope of the tangent
line.
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Convergence of Secant Lines: An animation

Notice how the secant line and hence its slopes converge to the

tangent line.
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Slope of the Tangent Line

Since the slope of the secant lines are given by the
formula

f(a + h) − f(a)

h
,

the slope of the tangent line is given by

lim
h→0

f(a + h) − f(a)

h
,

when this exists. We will call this number the
derivative of f at a and denote it f ′(a). Thus

The derivative of f at x = a is given by

f ′(a) = lim
h→0

f(a + h) − f(a)

h
.
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Example

To illustrate some of these ideas let’s consider the
following example:

Example 1: Let f(x) = x2 and fix a = 1. Compute
the slope of the secant line that connects (a, f(a))
and (a + h, f(a + h) for
■ h = 1

■ h = .5

■ h = .1

■ h = .01

Compute the derivative of f at x = 1, i.e. f ′(1).
Finally, find the equation of the line tangent to the
graph of f(x) = x2 and x = 1.
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f(x) = x2

Let mh be the slope of the secant line. Then

mh =
f(1 + h) − f(1)

h
=

(1 + h)2 − 1

h
.

■ For h = 1 m1 = (1+1)2−1
1

= 4 − 1 = 3.

■ For h = .5 m.5 = (1.5)2−1
.5

= 2.5.

■ For h = .1 m.1 = (1.1)2−1
.1

= 2.1

■ For h = .01 m.01 = (1.01)2−a

.01
= 2.01
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f(x) = x2

Let mh be the slope of the secant line. Then

mh =
f(1 + h) − f(1)

h
=

(1 + h)2 − 1

h
.

■ For h = 1 m1 = (1+1)2−1
1

= 4 − 1 = 3.

■ For h = .5 m.5 = (1.5)2−1
.5

= 2.5.

■ For h = .1 m.1 = (1.1)2−1
.1

= 2.1

■ For h = .01 m.01 = (1.01)2−a

.01
= 2.01

What do you think the limit will
be as h goes to 0?
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f(x) = x2

The limit is the derivative. We compute

f ′(1) = lim
h→0

f(a + h) − f(a)

h

= lim
h→0

(1 + h)2 − 1

h

= lim
h→0

1 + 2h + h2 − 1

h

= lim
h→0

2h + h2

h
= lim

h→0
2 + h = 2.

Therefore the slope of the tangent line is m = 2.
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f(x) = x2

The equation of the tangent line is now an easy
matter. The slope m is 2 and the point P that the
line goes through is (1, f(1)) = (1, 1). Thus, we get

y − 1 = 2(x − 1)

or
y = 2x − 1.

On the next slide we give a graphical representa-
tion of what we have just computed.
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f(x) = x2
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f(x) = x2

Here h = 1 and the secant line goes through the
points (1, 1) and (2, 4)
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f(x) = x2

Here h = .5 and the secant line goes through the
points (1, 1) and (1.5, 2.25)



Introduction
Introduction
The Tangent
Problem
The Slope?
Secant lines
Small h
The main idea
An animation
Slope of Tangent
Example

Section 2.6: The Derivative Business Calculus - p. 15/44

f(x) = x2

Here h = .1 and the secant line goes through the
points (1, 1) and (1.1, 1.21)
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f(x) = x2

Here h = .01 and the secant line goes through the
points (1, 1) and (1.01, 1.0201)
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Rates of Change
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Rates of change

Given a function y = f(x) the difference quotient

f(x + h) − f(x)

h

measures the average rate of change of y with
respect to x over the interval [x, x + h]. As the
interval becomes smaller, i.e. as h goes to 0, we
obtain the instantaneous rate of change

lim
h→0

f(x + h) − f(x)

h
,

which is precisely our definition of the derivative
f ′(x). Thus, the derivative measures in an instant
the rate of change of f(x) with respect to x.
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Velocity

If s(t) is the distance travelled by an object (your
car for instance) as a function of time t then the
quantity

s(t + h) − s(t)

h

is the average rate of change of distance over the
time interval [t, t + h]. This is none other than your
average velocity. The quantity

lim
h→0

s(t + h) − s(t)

h

is the instantaneous rate of change: This is none
other than your velocity which you would read from
your speedometer. Thus your speedometer can be
thought of as a derivative machine.
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Example

ice
Example 2: Suppose the distance travelled by a
car (in feet) is given by the function s(t) = 1

2
t2 + t

where 0 ≤ t ≤ 20 is measured in seconds.
■ Find the average velocity over the time interval

◆ [10, 11]
◆ [10, 10.1]
◆ [10, 10.01]

■ Find the instantaneous velocity at t = 10.
■ Compare the above results.
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s(t) = 1

2
t2 + t

■ The average velocity over the given time intervals
are:

◆
s(11)−s(10)

11−10
= 1

2
(11)2 + 11 − (1

2
(10)2 + 10) = 11.5

(ft/sec)

◆
s(10.1)−s(10)

10.1−10
= 1.105

.1
= 11.05 (ft/sec)

◆
s(10.01)−s(10)

10.01−10
= 1.1005

.01
= 11.005 (ft/sec)
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s(t) = 1

2
t2 + t

■ We could probably guess that the instantaneous
velocity at t = 10 is 11 (ft/sec). But lets calculate
this using the definition

s′(t) = lim
h→0

s(t + h) − s(t)

h

= lim
h→0

1
2
(t + h)2 + (t + h) − (1

2
t2 + t)

h

= lim
h→0

1
2
(t2 + 2th + h2) + t + h − 1

2
t2 − t

h

= lim
h→0

th + 1
2
h2 + h

h

= lim
h→0

t +
1

2
h + 1 = t + 1.
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s(t) = 1

2
t2 + t

Notice that we have calculated the derivative at any
point t:

s′(t) = t + 1.

We now evaluate at t = 10 to get

s′(10) = 11

just as we expected.

The average velocity over the time intervals
[10, 10 + h] for h = 1, h = .1 and h = .01 become
closer to the instantaneous velocity at t = 10. This
is as we should expect.
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Finding the derivative of a function
using the definition
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Notation

Differential calculus has various ways of denoting
the derivative, each with their own advantages.
We have used the prime notation , f ′(x) (read: "f
prime of x"), to denote the derivative of y = f(x).
You will also see y′ written when it is clear y = f(x).
The prime notation is simple, quick to write, but not
very inspiring.
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Another notation is

df

dx
or

dy

dx
.

This notation is much more suggestive. Recall that
the derivative is the limit of the difference quotient
∆y

∆x
: the change in y over the change in x. The

notation "dy" or "df " is used to suggest the instan-
taneous change in y after the limit is taken and like-
wise for dx. One must not read too much into this
notation. df

dx
is not a fraction but the limit of a frac-

tion.

There are other notations that are in use but these
are the two most common.
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An outline

To compute the derivative df

dx
= f ′(x) of a function

y = f(x) using the definition follow the steps:
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An outline

To compute the derivative df

dx
= f ′(x) of a function

y = f(x) using the definition follow the steps:

1. Find the change in y: f(x + h) − f(x)
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An outline

To compute the derivative df

dx
= f ′(x) of a function

y = f(x) using the definition follow the steps:

1. Find the change in y: f(x + h) − f(x)

2. Compute f(x+h)−f(x)
h
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An outline

To compute the derivative df

dx
= f ′(x) of a function

y = f(x) using the definition follow the steps:

1. Find the change in y: f(x + h) − f(x)

2. Compute f(x+h)−f(x)
h

3. Determine limh→0
f(x+h)−f(x)

h
.
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Example

ice
Example 3: Find the derivative of y = x3 − x.
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Example

ice
Example 3: Find the derivative of y = x3 − x.

Let f(x) = x3 − x. Then

f(x + h) − f(x) = (x + h)3 − (x + h) − (x3 − x)

= x3 + 3x2h + 3xh2 + h3

−x − h − x3 + x

= 3x2h + 3xh2 + h3 − h
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Example

ice
Example 3: Find the derivative of y = x3 − x.

Let f(x) = x3 − x. Then

f(x + h) − f(x) = (x + h)3 − (x + h) − (x3 − x)

= x3 + 3x2h + 3xh2 + h3

−x − h − x3 + x

= 3x2h + 3xh2 + h3 − h

Next we get

f(x + h) − f(x)

h
=

3x2h + 3xh2 + h3 − h

h

= 3x2 + 3xh + h2 − 1
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Example

ice
Example 3: Find the derivative of y = x3 − x.

Let f(x) = x3 − x. Then

f(x + h) − f(x) = (x + h)3 − (x + h) − (x3 − x)

= x3 + 3x2h + 3xh2 + h3

−x − h − x3 + x

= 3x2h + 3xh2 + h3 − h

Next we get

f(x + h) − f(x)

h
=

3x2h + 3xh2 + h3 − h

h

= 3x2 + 3xh + h2 − 1

Finally, dy

dx
= limh→0 3x2 + 3xh + h2 − 1 = 3x2 − 1.
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Example

ice
Example 4: Find the equation of the line tangent
to

f(x) =
√

x

at the point (4, 2).
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f(x) =
√

x

We need the slope of the tangent line at this point.
This is f ′(4).

f
′(4) = lim

h→0

f(4 + h) − f(4)

h

= lim
h→0

√

4 + h − 2

h

= lim
h→0

√

4 + h − 2

h

√

4 + h + 2
√

4 + h + 2

= lim
h→0

4 + h − 4

h(
√

4 + h + 2)

= lim
h→0

1
√

4 + h + 2
=

1

4
.
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f ′(4) = 1

4
and P = (4, 2)

Given a point and a slope we compute the line:

y − 2 =
1

4
(x − 4)

or

y =
1

4
x + 1.
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Do not despair!

Admittedly, the calculation of a derivative using the
definition can be tedious. However, in the next
chapter we will discuss a set of rules for differenti-
ation that will allow us to calculate the derivative of
many commonly encountered functions very eas-
ily. Nevertheless, it is important that you under-
stand the definition and the underlying meaning of
the derivative; at times, it will be necessary to come
back to it.
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Reformulation of Continuity

In the last section we discussed the meaning of
continuity. Recall a function y = f(x) is continu-
ous at a point a if f(a) is defined and

lim
x→a

f(x) = f(a).

If we let x = a + h then x approaches a if h ap-
proaches 0. This observations allows us the give
an equivalent definition for continuity: f(a) is de-
fined and

lim
h→0

f(a + h) − f(a) = 0.
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Differentiable functions are Continuous

A function is said to be differentiable at a point
x = a if f ′(a) exists. This means that the limit
limh→0

f(a+h)−f(a)
h

exists. We say f is differentiable
on an interval (a, b) if it is differentiable at every
point in the interval.

Notice the next theorem:

Theorem: A function that is differentiable at a
point x = a is continuous there.

We have not been proving many theorems but this
one is easy and short enough that we will do so on
the next slide.
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Proof

Proof: To say f is differentiable at x = a means

lim
h→0

f(a + h) − f(a)

h

exists and is a finite number, denoted f ′(a). Thus

lim
h→0

(f(a + h) − f(a)) = lim
h→0

f(a + h) − f(a)

h
· h

= lim
h→0

f(a + h) − f(a)

h
· lim

h→0
(h)

= f ′(a) · 0 = 0.

This means that f is continuous at x = a.
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Continuity does not imply Differentiability

We must not read something that is not in this theo-
rem. Though a differentiable function is necessarily
continuous a continuous function is not necessarily
differentiable. Consider this classic example:

y = |x| .
At x = 0 there are several lines that just touch the
graph at (0, 0); it is not unique.
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Continuity does not imply Differentiability

We must not read something that is not in this theo-
rem. Though a differentiable function is necessarily
continuous a continuous function is not necessarily
differentiable. Consider this classic example:

y = |x| .
At x = 0 there are several lines that just touch the
graph at (0, 0); it is not unique.

Remember, tangent lines are unique and since
y = |x| has no unique tangent line it is not differ-
entiable at x = 0.
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y = |x| at x = 0

Consider what happens here in terms of the defini-
tion:

y′(0) = lim
h→0

|0 + h| − 0

h

= lim
h→0

|h|
h

.

Now, to compute this limit we will consider the left
and right-hand limits.
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Left and Right-hand limits of |h|
h

If h is positive then |h| = h and

y′(0) = lim
h→0+

|h|
h

= lim
h→0

h

h
= 1.

If h is negative then |h| = −h and

y′(0) = lim
h→0−

|h|
h

= lim
h→0

−h

h
= −1.

The left and right hand limits are not equal there-
fore limh→0

|h|
h

does not exist.

If y = |x| then y is continuous but not
differentiable at x = 0.
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Summary

This section is very important and likely new to
many students in this course. Here are some key
concepts to master.
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Summary

This section is very important and likely new to
many students in this course. Here are some key
concepts to master.

■ The definition of the derivative:
f ′(x) = limh→0

f(x+h)−f(x)
h

.

■ The meaning: The derivative of a function
represents the instantaneous rate of change of f

as a function of x.
■ Primary Applications: Tangent lines, velocity
■ Computation of the derivative.
■ The connection between continuity and

differentiation.
■ Notation: y′ or dy

dx
.
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In-Class Exercise

return In-Class Exercise 1: At a fixed temperature the
volume V (in liters) of 1.33 g of a certain gas is
related to its pressure p (in atmospheres) by the
formula

V (p) =
1

p
.

What is the average rate of change of V with re-
spect to p as p increases from 5 to 6 ?

1. 1

2. 1
6

3. −1
5

4. − 1
30

5. −1
6
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In-Class Exercise

return
In-Class Exercise 2: Use the definition of the
derivative to find y′ if

y = 4x2 − x.

1. 4x2 − 1

2. 8x − 1

3. 8x

4. 4x2 − x

5. None of the above
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In-Class Exercise

return
In-Class Exercise 3: Find the equation of the line
tangent to

y = x2 + x

at the point (1, 2).

1. y = 3x − 1

2. y = 3x − 5

3. y = 2x

4. y = 2x − 3

5. None of the above
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