Nonlinear Optimization Theory and Algorithms Math 7390 Fall 2022

Time: Monday, Wednesday and Friday, 1:30-2:20 PM, 232 Lockett Hall

Instructor:	Name: Hongchao Zhang Email: zhc At lsu.edu web page : http://www.math.lsu.edu/~hozhang/Math7390-Fall2022/Math7390.html
Office Hours:	Monday, W denesday and Friday 2:20 $\sim\!\!3{:}00$ PM, or by email Appointment Zoom Meeting ID: 435 490 7449
Text:	Lecture Notes and Nonlinear Programming 2nd Edition (2004), by Dimitri P. Bertsekas, ISBN 1-886529-00-0
Prerequisites:	Linear Algebra, Numerical Linear Algbra, Multivariable Calculus ; Basic programming abilities in Matlab, Fortran or C.
Contents:	This class will cover classical nonlinear optimization theory and algorithms. Tentative topics include but not limited to Line search methods, Newton and quasi-Newton methods, Conjugate gradient methods, KKT optimality conditions, Penalty methods, Sequential quadratic programing, Trust region methods, nonsmooth optimization.
Homework:	Homework will be assigned during the lecture.
Grade:	Class Attendence: 10%; Homework: 30%; Midterm Project: 30% Final Project: 30%
Grade Scale:	A-: 90-92 A:93-96 A+:97-100; B-: 80-82 B:83-86 A+:87-89; C-: 70-72 C:73-76 C+:77-79; D-: 60-62 D:63-66 D+:67-69; F: less than 60 Final grades maybe finally scaled, but will only be scaled up.
Note:	Except for unforeseen reasons, students must obtain advance approval from the instructor for missing any assignments